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ABSTRACT

Dataflow modelling languages such as SCADE or
Simulink are the de-facto standard for the Model
Driven Development of safety critical embedded
control and command systems. Software is mainly
being produced by Automated Code Generators
whose correctness can only be assessed meaning-

fully if the input language semantics is well known.

These semantics share a common part but are
mainly defined through block libraries. The writ-
ing of a complete formal specification for the block
libraries of the usual languages is highly challeng-
ing due to the high variability of the structure
and semantics of each block. This contribution
relates the use of software product line princi-
ples in the design of a domain specific language
targeting the formal specification of block libra-
ries. It summarises the advantages of this DSL
regarding the writing, validation and formal veri-
fication of such specifications. These experiments
have been carried out in the context of the GE-
NEAUTO embedded code generator project tar-
geting SIMULINK and ScCICOS; and are being ex-
tended and applied in its follow ups projects PRO-
JECTP and Hi-MoCo.
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1. INTRODUCTION

Model Driven Engineering (MDE) advocates the
automation of routine transformations from de-
sign models to code relying on Automated Code
Generators (ACGs). However, these ones are
complex software themselves that also need to
be verified in order to replace the human activ-
ities reliably. This task is further complicated,
when both the source and target languages and
the transformations don’t have complete formal
specifications, are constantly evolving and/or the
associated tools are closed source.

Dataflow-style languages are widely used for the
high-level specification and design of control and
command algorithms, which are used in critical
embedded systems. The main elements of such
languages are computation nodes (blocks) and di-
rected dataflow connections between them (sig-
nals). Variants of the same block are highly reused
in the design of many systems and are parame-
terised and stored in block libraries, which pro-
vide an evolving basis of industrial software and
know-how. It is then common for key industrials
to have their own set of block libraries tailored to
their domain and customers.

The current work was started in the context of
the GENEAUTO! project, where an open source
embedded code generator for SIMULINK? and SciI-

"http://www.geneauto.org/
2http://wuw.mathworks.com/products/
simulink/
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cos? dataflow modelling languages was developed.
The work is carried on and extended in follow
up projects PrRoJECTP? and HI-MoCo®. One
of their main goals is to achieve qualification of
the tool-set according to the currently most strin-
gent and detailed industrial software development
guideline DO-178C that is mainly used in the civil
avionics. Therefore, there is a significant focus on
the specification and verification of all the aspects
of development, including a rigorous specification
of the code generator input languages.

This contribution presents a model-based forma-
lisation for the block libraries of common dataflow
languages relying on a Domain Specific Language
(DSL) BlockLibrary. The key aspects of this lan-
guage and some earlier work were presented in
[1] and [2]. Here we develop the methodology
further and show its relations with usual Soft-
ware Product Line (SPL) principles. Then, we
focus on the verification of the BlockLibrary SPL
wrt. structural, variability and semantic proper-
ties. The paper is organised as follows. Section 2
gives insights into dataflow languages and block
libraries. Section 3 discusses the motivations and
alternatives for specifying the problem domain.
Section 4 explains the BlockLibrary language and
Section 5 discusses the related verification criteria
and experiments. Finally, we conclude and point
out future work.

2. DATAFLOW LANGUAGES

Apart from classical imperative programming that
focuses on sequences of instructions, dataflow pro-
grams are sets of equations that describe elemen-
tary computations and data dependencies between
them. In pure dataflow, an equation is computed
as soon as the data that it depends on becomes
available (computed). In this paper, we shall re-
fer to these computation nodes as blocks and the
dataflows between them as signals. Blocks can
be either atomic (opaque) or hierarchical (com-
positions of other blocks and signals). An atomic
block is combinatorial if its outputs only depend
on the current values of its inputs. An atomic
block is sequential if its outputs also depend on
its input values from the past. LUSTRE [3] is a
well-known textual dataflow language. Similar
graphical languages are SCADE®, SIMULINK and

3http://www.scicos.org/
‘http://www.open-do.org/projects/p/
Shttp://www.eurekanetwork.org/project/-/
id/6037
Shttp://wuw.esterel-technologies.com/
products/scade-suite/

Sci1cos. LUSTRE is a fully formal language devel-
oped in the academia and successfully transferred
to the industry as the semantic backbone of the
SCADE tool and language. SIMULINK is a com-
mercial tool largely adopted in the industry and
Scicos is a similar open source alternative. Fig-
ure 1 displays an example of a SIMULINK diagram.

All these languages have a similar execution se-
mantics (see for example the one of LUSTRE given
in [3]). A program is executed periodically ac-
cording to a sample time. Execution starts from
an init phase - the state is initialised. At each
sample time there is a compute phase - all the
equations (blocks) are computed, which is fol-
lowed by an update phase - state update is per-
formed for each equation (block) that has an ef-
fect on memory (sequential blocks). The core se-
mantics of SIMULINK, SCICOS and several other
languages is similar. Often, the dataflow lan-
guages provide also some means to control the
sequencing of blocks and execute them at differ-
ent rates, conditionally or on-demand.

The semantics of blocks (computation nodes) is
an important extension point of the core language
as the functionality and extensibility of block lib-
raries determine the practical usability of the lan-
guage. Obviously, there is a large number of dif-
ferent computations to be done in a realistic sys-
tem. But, in order to reduce the number of blocks
in the library and ease their maintenance, the se-
mantics of blocks are often tunable by a number
of static parameters. These control, for example,
the number and data types of inputs/outputs,
their dimensions (scalar, vector, matrix) and the
amount of memory that the block relies on. We
will refer to the inputs, outputs, parameters and
memory of a block as its StructuralFeatures.

As an example, Figure 1 shows some configura-
tions of the Sum block from the SIMULINK stan-
dard library with different parameters, types, di-
mensions and number of inputs/outputs. This
block can do summation of inputs ("multi input
mode”), summation of all the elements of the sin-
gle input ("single input-full summation mode”) or
summation of elements along a specified dimen-
sion of the single input (”"single input-dimension
summation mode”). Additional parameters allow
to tune the signs at each input port, rounding and
other computational details. The full specifica-
tion of this block in the SIMULINK documentation
is around 20 pages of natural language.

Such polymorphic variability makes the writing of



[2 1] +
J - \ 2] | 1]
[1 1] Sum of inputs
> Z >
[1 1]
Sum of input
elements
1 2 3 al ~ _
45 6

Subtract by the 2nd dimension

Figure 1: Simulink model with different configurations of the Sum block

a precise and complete specification of the block’s
semantics, its implementation, validation and ve-
rification quite challenging.

3. MOTIVATION FOR A DSL

In this section we discuss the chosen formalism
for specifying the blocks structure and semantics.
We illustrate both why we do not rely on already
existing solutions and the advantages brought by
the use of a DSL dedicated to our purpose relying
on some SPL principles.

3.1 '"Out of the box" solutions

There is a large number of formalisms for creating
specifications. We limit our choice to those that
are well known, expressive and are likely to be ac-
cepted by engineers from the industry. Modelling
languages are a good candidate. For instance, the
standard class diagrams extended with OCL con-
straints have simple formal semantics, are easy to
use and are widely adopted in the industry. Un-
fortunately, these ones offer too much freedom
in the writing of specifications. This complicates
the analysis and systematic applicability of the
specifications. Class diagrams can be specialised
using profiles. However, this is no more an “out
of the box” solution but the start of DSL design.
In addition to that, there is no dedicated varia-
bility management, which would be required for
our purpose.

The same elements led us to eliminate general
purpose programming languages or databases for
block specification. All these offer too little var-
iability management functionality and allow too
much freedom in specifications writing.

Feature Modelling was developed specifically for
variability management. The methodology was
defined in [4] and was given formal semantics in
later publications, such as [5, 6]. Feature mod-
els are easy to understand and a lot of work has

been done on their formal analysis and use. A
comprehensive overview is given in [7]. Basic Fea-
ture Models (FM) contain features, a set of basic
relations (mandatory, optional, alternative) and
cross-tree constraints. An example of a feature
model for the Sum block is provided in Figure 2.
Parameters of a block can be represented either
as features or as attributes of features (using at-
tributed feature models). It is also often required
to define cross-tree constraints to link features,
such as the one in Listing 1. In this example,
the constraints specify the relation between sin-
gle matrix input configuration of the block and
the parameter that defines the computation kind
(see the two last examples in Figure 1).

SumBlock Legend:

/7\ @ Mandatory

—~& | /\ Alternative
Sum Over Slgns Output Input Abstract
\ Concrete
AIIDlmensmns \
Speuﬁelemens;on \
o Multlplelnputs
Singlelnput AN
— O~ / \\\
-_— N 2 | ]
Scalar Matrix \Vector Scalars | | Vectors | | Matrices |
-

SumoOfDimension | SumOfAllElements

Figure 2: A simple feature model for the
Sum block specification

SumOfDimension implies SpecifiedDimension

SumOfAllElements implies AllDimensions
(Scalar or Vector) implies AllDimensions
MultipleInputs implies AllDimensions

Listing 1: Sum block feature model cross-
tree constraints

Such representation allows, for instance, to spec-
ify the structural variability of a block. However,



it is quite limited. We need to specify on each
feature the selection conditions. For example, we
want to choose between features Vector and Ma-
triz. Depending on the input of a particular block
instance we need to give meaning (semantics) to
each feature of the model. We also want to be able
to express conditions on any other StructuralFea-
ture of the block in order for example to restrict
their range of values. In this purpose we have to
extend the representation, eventually leading to a
dedicated DSL with feature modelling elements.
A similar conclusion has been reached e.g. in [8]
after looking at several alternatives.

Another alternative would be to use A-modelling
for specifying blocks. In this setting, all the manda-
tory elements of the block should be defined in
the main component and a delta defined for each
variant of the block specification. This could be
done, but it would still be required to specialise
it to our domain and it would become cumber-
some, when a block type captures very different
behaviours, as in the example described earlier.

3.2 One DSL to rule them all

Feature models are a good starting point for var-
iability management. However, in order to spec-
ify the domain more precisely and allow better use
of the specification, we have chosen a combined
DSL with feature modelling elements. Such an
approach has also been promoted in [8] and [9].
A common way to develop tools around DSLs is
to use the MDE methodology. We have used the
Eclipse Modelling Framework” (EMF), which of-
fers rich support for tool development and is very
widely accepted both in the modelling community
and by industrial users. We have developed a tex-
tual editor for our DSL using XTEXT and other
tools around it. The DSL and its applications are
presented in the next sections.

4. BLOCKLIBRARY MODEL

In MDE, defining a DSL starts from defining the
metamodel. The BlockLibrary metamodel has
been specified in Ecore, an EMF variant of the
MOF® standard. The metamodel has been com-
pleted with OCL [10] constraints to make the
structural and semantic constraints more precise.
Such constraints can be automatically validated
on BlockLibrary instances using standard EMF
tools. The main concepts of the metamodel have
been presented in Figure 3 and their definitions
are given in the next subsections. A detailed

"http://www.eclipse.org/emf/
Shttp://www.omg.org/mof/
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Figure 3: The BlockLibrary metamodel

version of the metamodel and related OCL con-
straints are available from the project’s website
[11].

4.1 Annotations

Formal annotations play an important role in the
BlockLibrary DSL. We distinguish several kinds
of annotations: definition (constant or function),
precondition, postconditon, invariant and mode
invariant. Mode invariants are specific to the
DSL and will be explained later. We will also
make use of Hoare Triples:

DEFINITION 1. A HoareTriple HT is a 3-tuple
of annotations (Pre, Fun, Post), where Pre is a
precondition, Fun is a behavior definition and Post
is a postconditon.

Annotations can be generally specified in any for-
mal language. We chose to implement support for
a subset of OCL as the general constraint and
definition language and are working on adding a
Matlab-like action language for more convenient
specification of the semantics of blocks. For now,
our action language allows common constructs
found in simple imperative languages.

4.2 Structural elements

We shall present the main structural elements of
the BlockLibrary DSL bottom-up. All structural
elements have a name attribute and can hold local
definitions and invariants. These and some less
relevant details have been omitted below.



DEFINITION 2. A ParameterType PT defines a
static parameter that a block instance can or must
have. It is a 8-tuple ({DT'}, D, M), where: {DT}
is a set of allowed data types; D specifies, whether
the parameter is dimensionalisable and M speci-
fies, whether the parameter is mandatory or not.

DEFINITION 3. A PortGroup PG defines a group
of ports that a block instance can or should have.
It is a 4-tuple (Min, Max, D, V'), where: Min and
Mazx specify how many of such ports a block in-
stance can have; D specifies, whether the ports are
dimensionalisable and V specifies, whether port
group 1is virtual (mapped to a parameter) or not.

DEFINITION 4. A MemoryVariable MV defines
a state variable that a block instance must have
in a given configuration. It is a 2-tuple (Apr,
AL ), where: Apr is a function that determines the
data type of the variable and A1, a function that
determines the amount of memory needed (depth
of the past used in the sequential block).

DEFINITION 5. StructuralFeature SF is one of:
PT| PG| MV

DEFINITION 6. A BlockVariant BV specifies a
variation point of a BlockType. It is a 7-tuple:
{PT}, {PG}i,{PG}o,{MV},{VS}, Dyn,
{Invmode}), where: {PT} is a set of Parameter-
Types; {PG}; a set of input PortGroups; {PG}o
a set of output PortGroups; { MV} a set of Memo-
ryVariables; {VS} a possibly empty set of Vari-
antSet(s) that BV directly extends, Dyn specifies,
whether the variant is dynamic and {InvVmode}
are the mode invariants defined in BV.

DEFINITION 7. A VariantSet VS is a 3-tuple:
({V S}eat, {BV},Op), where: {VS}ear is a possi-
bly empty set of VariantSets that the current Vari-
antSet extends; {BV} a set of contained Block-
Variants and Op = andy, | xorn, which are the
n-ary versions of the and and xor logical relations
that specify how the BV are to be combined in the
VS. n = |[{BV}|. The VS corresponds to a set of
constraint edges in the FODA terminology and to
the consists-of relations in [12].

DEFINITION 8. A BlockMode BM represents
one possible semantics of the block type. It is a 7-
tuple (Init, Compute, Update, {V S}, Amv, Dyn,
{INVmode}), where: Init, Compute and Update
are HoareTriples HT specifying the respective se-
mantic functions of the block in this mode; {VS}
is a non-empty set of implemented VariantSets;
Avv 18 a function that returns the set of Me-
mory Variables required by the block in this mode,
Dyn specifies, whether the variant is dynamic and
{INVUmode} are the mode invariants defined in BM.

DEFINITION 9. A BlockType BT captures the
full specification of a block type. It is a 2-tuple:
{BV},{BM}), where: {BV} is a set of defined
BlockVariants and { BM} a set of defined Block-
Modes.

DEFINITION 10. A BlockLibrary BL is a 2-tuple:
({BT},{BV}), where: {BT} is a set of defined
BlockTypes and {BV} a set of globally reusable
BlockVariants.

In terms of feature modelling, a BlockType can
be seen as a root feature. BlockVariants and
BlockModes are sub-features, related to the root
feature or other features via VariantSets. The
BlockType specification forms a Directed Acyclic
Graph (DAG) with possibly multiple roots (reusa-
ble BlockVariants). BlockModes form the leaves
of the DAG.

Mode invariants have a special role. They are
used to distinguish between the semantic varia-
tion points of a BlockType. 1.e. they are the selec-
tion conditions mentioned in Section 3.1. Mode
invariants are specified in terms of static parame-
ters and/or values at the input ports defined or
inherited by a BlockVariant or BlockMode. There
are multiple ways to decompose the specification
of a BlockType. The primary way is to decom-
pose according to the values of some key parame-
ters that control the shape and behaviour of the
block. However, more detailed decomposition is
also possible by specifying dynamic BlockVariants
or BlockModes, which decompose the behaviour
further according to the run-time values of the
block’s inputs. It is mandatory to have at least
one mode invariant in each BlockVariant and that
all mode invariants in a BlockType are consistent.

4.3 BlockType specification examples
Variation graphs of two BlockType specifications
are given in Figures 4 and 5. They show the
structure of the specification of the Sum and De-
lay blocks. BlockVariants are depicted as ellipses,
BlockModes as rectangles, and VariantSets as hou-
se shaped nodes and xor VariantSets as diamond
shaped ALT nodes. A fragment of the textual
specification of Sum has been given in Listing 3.

We shall explain the variation graph of the Delay
BlockType specification more closely. The pur-
pose of this block is to delay the input signal by
either a fixed (FizedDelay BlockVariant) or vari-
able bounded (VarDelay BlockVariant) amount
of time. Depending on the values of static para-
meters a block instance can have from one to four
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Figure 5: BlockType graph of Delay

input ports. The first two modes represent confi-
gurations with fixed initial value (FizedXO Block-
Variant). The last mode (VarRstDelayMode) de-
fines two additional leaf configurations of the block
that both implement the VarDelay BlockVariant,
which provides the ability to reset the block’s out-
put via a dedicated input port. This functionality
is included into the specification by implement-
ing the globally reusable Resettable Block Variant,
which is further extended by two BlockVariants
providing either a fixed (FizedXO) or variable ini-
tial value (VarXO). This alternative choice be-
tween the last two configurations is modelled by
an zor VariantSet.

4.4 Semantics

In the SPL approach, one of the basic tasks is
to determine the set of all valid configurations,
called products. In the BlockLibrary DSL a speci-
fication instance of a BlockType is called a Signa-
ture. It is composed of a BlockMode and one pos-
sible BlockVariant hierarchy that it implements.
The Signature is static, when its BlockMode and
all BlockVariants are static. Otherwise, it is dy-
namic. Because of multiple inheritance the vari-
ation graph is a DAG and it is possible that a
BlockMode has multiple Signatures. Each valid
instance of a block must be resolvable to exactly

/*Q
requires invariant (input_1);
requires invariant (parameter_1);
requires invariant (memory_1); ...
requires mode_invariants(BlockVariant_1);
requires mode_invariants (BlockMode);
requires pre(Block_-Mode);

ensures post(memory_1); .
ensures post(Block_-Mode);

*

/

void Block_-Mode_sigN (
input_1, ..., input_n,
output_1, ..., output_n,
parameter_1, ..., parameter_n,
memory_1, ..., memory_n)

{

init_semantics (Block_-Mode);
compute_semantics (Block-Mode);
update_semantics (Block_-Mode );

}

Listing 2: Generic specification of a Signa-
ture

one static Signature or a set of disjoint dynamic
Signatures.

A BlockMode corresponds to the behaviour of the
block under the static or dynamic mode invari-
ants for this mode. Its dataflow semantics is given
by the Hoare triples of the semantic functions
(init, compute, update) specified in the Block-
Mode. The semantics can be given axiomatically
by providing the pre- and postconditions and/or
operationally by providing the actual function def-
initions. All the invariants and structural proper-
ties inherited by the BlockMode transform logi-
cally to the primary preconditions of the semantic
functions.

Using an imperative code language with anno-
tations (like ACSL [13] or SPARK [14]), a Signa-
ture can be nicely mapped to a function contract.
This function contract can be complemented with
the function definition, if the specifier provides
also the operational semantics of the block. The
generic form of this function contract is given in
Listing 2. This transformation completes the se-
mantic specification of our BlockLibrary specifi-
cation language by giving it an interpretation in
the formal domain of function contracts.

library BlockLibrary {

type enum TSum_over {AllDimensions,
SpecifiedDimension}

blocktype Sum {
variant Sum_Main {

out data Out0
parameter Signs
invariant ocl {

Signs.value—>forAll (s |

TArrayDouble
TString {
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invariant ocl {
Signs.value—>size () > 0

}
}
parameter Dimension TInt {
invariant ocl {
Dimension.value = 1 or
Dimension.value = 2

}
}

parameter Sum_over TSum_over

variant MultipleInput extends Sum_Main {

in data InO TArrayDouble [2 .. 0]
modeinvariant ocl {
Signs.value—>select (s |
s="+’ or s='-")—>size () =
In0.size ()
}
modeinvariant ocl {
Sum_over.value =
' TSum_over :: AllDimensions

}

mode AlllnputsScalar implements
MultipleInput {
modeinvariant ocl {
In0—>
forAll(e| e.value.isScalar ())
definition eml =
computeAllInputScalar {

var out0 = 0;
for (var i=1; i<size (In0);
=i+ 1) {
if (Signs.value[i] = '4)
outl0 =
out0 + InO[i]. value;
else
out0 =
out0 — InO[i].value;

Out0.value = out0;

}

compute computeAlllnputScalar

}
}

Listing 3: Extract of the Sum block textual
specification

S. SPECIFICATION CORRECTNESS

BlockLibrary models are should be trustable data
that is used as input for multiple development
and verification activities. Confidence of the spe-
cification can be provided by performing formal
verification of it. In this section, we illustrate our
verification strategy through the following three
aspects: a) syntactical and structural correctness;
b) completeness and consistency of the specifica-
tions wrt. variability and finally c¢) correctness
and verifiability of the specified block semantics.

5.1 Structural correctness

Structural correctness can be assessed by stan-
dard ECORE-MOF compliant tools that check,
whether a BlockLibrary model conforms to the
BlockLibrary metamodel and the associated OCL
constraints. We have added the required elements
to our tooling to ensure this verification.

5.2 Variability correctness

Each Signature forms an instance of the specifica-
tion of a BlockType. It contains a distinct combi-
nation of BlockVariants, StructuralFeatures and
Annotations.

5.2.1 Variability properties

Variability modelling targets the enumeration of
all the possible products of a SPL ensuring that
each product is unique. Signatures should satisfy
the same property. We need to take into account
the structure of the BlockLibrary and the speci-
fied constraints. We have split the verification of
the set of Signatures to 1) disjointness - every
Signature is different from the others; 2) com-
pleteness - the whole set of Signatures always
contains a specification that is satisfiable.

5.2.2  Verification technique

The common practice to assess properties of DSL-
s is to translate its models to a formalism that
supports formal verification methods and tools.
These methods must be adapted to the kind of
properties targeted for the DSL. There exist many
formal verification methods and associated tools
in the literature. For a non-recent but accurate
overview, the reader can refer to [15] (chapter 2).
In our case we are working on sophisticated type
systems for blocks and want to assess properties
based on these types. We decided to rely on theo-
rem proving as it provides good capabilities re-
garding both automation of the verification and
efficiency of the analysis.

We focused on a translation from the BlockLib-
rary language to the WHY3 [16] language. As a
formal language, WHY3 provides foundations for
formal assessment of properties using automated
or assisted theorem proving. The Why platform
relies on WHY3 as a pivot language that can be
translated to a variety of automatic SMT solvers
(Alt-Ergo, Simplify, Z3, CVC3, ...), proof assis-
tants (Coq, PVS, ...) and other verification for-
malisms. Having bridges to both automatic SMT
solvers and proof assistants is an advantage, as it
allows to rely on the power and automation ca-
pabilities of the SMT solvers in most cases and



on the proof assistants for tackling complex and
non-standard problems. Our goal is to automate
the verification and avoid the need for proof as-
sistants as much as possible.

A logical specification in WHY3 is written by defin-
ing theories and extending already existing theo-
ries. WHY3 includes also a general purpose pro-
gramming language WHYML used as an inter-
mediate language for program verification. The
semantics of the language is well defined and the
development of the platform is strongly supported
by both academic and industrial partners.

5.2.3 BlockLibrary translation

The BlockLibrary formalism has two main aspects:
1) structuring the specification data; 2) specify-
ing the properties of interest. Both of these as-
pects need to be given a translation to a common
logical data structure on which formal reasoning
can be performed. We rely on the structure of
the specification provided by our SPL approach
and specifically the Signature calculus that ex-
tracts all the possible instances of the specifica-
tion. Amnnotations expressed on StructuralFea-
tures are translated to axioms as they should be
true at any time. The other Annotations are
translated to predicates. The signature is then
considered as a conjunction of those predicates.

Annotations are written using OCL or our cus-

length in0

Listing 4: OCL constraint in Why3

function select (1: list ’a)
(p: HO.pred ’a): list ’a =
match 1 with
| Nil —> Nil
| Cons hd tl1 —> if (p hd)
then Cons hd (select tl p)
else select tl p
end

lemma Select_Selected:
forall 1: list ’a, p: HO.pred ’a.
let res = select 1 p in
forall i: int.
0 <=1i < length 1 —> p res[i]

lemma Select_NotSelected:
forall 1: list ’a, p: HO.pred ’a.
let res = select 1 p in
forall i: int.
0 <=1 < length 1 —>
(not p 1[i] —> not mem 1[i] res)

Listing 5: OCL Select operator in Why3

5.2.4  Variability correctness properties
The mode constraint that the i** Signature of a
BlockMode m has to satisfy is formally given in
(1). The completeness and disjointness of a
BlockType are then respectively (2) and (3).

Vm € {BM},Yv; € {BV};,3k; €N,

tom simple action language. Each of these lan- Sigm,; = mode_inv(m)1 A ... Amode_inv(m); A
guages has been given a translational semantics.

mode_inv(vi)1 A ... A mode_inv(vi)k, A
For OCL we relied on the semantics of the orig-

mode_inv(vp)1 A ... A mode_inv(vp)g, (1)

inal specification [10]. We provided an axioma-
tisation for a large subset of the language op-
erations through dedicated WHY3 theories [11].
An example of translation of an OCL constraint
(Listing 3 lines 27-31) is provided in Listing 4.
The logical specification of the select OCL ope-
rator is given in Listing 5. The translational se-
mantics of our custom action language has been
given by mapping the imperative constructs (con-
ditionals, loops, variable declaration and variable
assignment) to their equivalents in WHYML.

predicate multipleinput_-modelnv_0
(out0 tOut0_-Sum_Main_T ArrayDouble)
(in0 : tInO_MultipleInput_-TArrayDouble)
(signs tSigns_Sum_Main_TString)
(sum_over
(dimension
length (
select signs.value_pt
(\ bind_i: tChar.
bind_i={code=43} \/
bind_i={code=45})) =

tDimension_Sum_Main_TInt) =

tSum_over_Sum_Main_TSum_over)

Sigl FANPRAAN Sz’gn (2)
Vi,ji # j = ~(Sigi A Sig;) 3)

5.2.5 Verification of properties

The Signature constraints are translated by the
Why platform to the input formalism of SMT
solvers. In our experiments the verification of
completeness and disjointness of the specifications
of all the blocks in our study succeeded fully au-
tomatically in very small time.

When a property cannot be proven using the Why
platform, it is possible to debug the proof by split-
ting the properties and relaunching the genera-
tion for each sub-property. For the Complete-
ness (2) property a simple split provides a goal
for each Signature. Launching the proof on this
set of goals points to the unproven goal(s) and



guides the user to finding the errors in the speci-
fication. For the Disjointness (3) property, an
automatic script can extract and compose a goal
for each pair of Signatures. With this, it is pos-
sible to gain better insight into the specification
problem. Both methods can be refined also fur-
ther. We plan to integrate this into our tooling to
give the user useful feedback at the BlockLibrary
level.

Additional technical details about the transfor-
mation of the BlockLibrary language, its forma-
lisation using WHY3 theories, axiomatisation of
the OCL operations using WHY3 theories and
specification of its transformation to WHY3 can
be found on the project’s website [11] under the
BlockLibrary instance verification sub-page.

5.3 Semantic correctness

The semantic specification of a block’s behaviour
is given for each BlockMode. An axiomatic se-
mantics should be provided in the form of pre-
and postconditions of the expected functional be-
haviour. Operational semantics in the form of
function definitions can also be provided. There
might be more than one Signature for each Block-
Mode. But, the number of different functional
contracts for a block specification can be less.
This is due to the fact that a set of Signatures
might have exactly the same set of BlockVari-
ants, but different BlockModes. Additionally, it
is mandatory that the specified behaviours dif-
fer according to dynamic block values computed
at each execution of the block (value of an in-
put, memory variable...). In this case, only one
functional contract is generated with multiple be-
haviour definitions. These behaviours are distin-
guished by the mode invariant(s) provided in each
BlockMode. An example of such a specification
is given for a block performing one-dimensional
interpolation [11]. The function that the block
computes depends on the run-time value of the
block’s input.

Hoare triples can only be assessed with respect to
a provided behaviour (the computation between
the pre and post conditions). In our case an oper-
ational semantics of a BlockMode plays this role.
A translation of both axiomatic and operational
semantics to WHY3 produces a function with its
contract and body. The correctness of the opera-
tional semantics with respect to the axiomatic one
is then verifiable using the Why tooling. Whereas
simple functions might be easily proven correct,
constructs implying loops and memory must need
care, as they require more sophisticated mecha-

nisms like loop invariant annotations. There
is already a lot of work done in this field, e.g.
[17]. We decided not to tackle this problem up
to now. Verification can still be done, if the in-
variants are provided during the specification, in
the generated WHY3 specification or when there
is no need for such complementary invariants.

6. RELATED WORKS

In [18] the authors use FM for Feature-Oriented
Software Development. Their approach is to struc-
ture features (packages, classes, methods and at-
tributes) using FM. Their definition of a Feature:
a structure that extends and modifies the structure
of a given program in order to satisfy a stake-
holder’s requirement, to implement and encapsu-
late a design decision, and to offer a configuration
option is very close to the one we use in our work.
Our addition is to explicitly define the semantics
of the program in the FM via the BlockMode fea-
tures. This allows to fully specify the program in
a single data structure.

The nature of FM makes its analysis through SAT
solving very convenient and efficient. This ap-
proach is developed and used in multiple works
among which are [5], [19] and [6]. In these works,
FM are translated to a SAT solver formalism for
verification of the structural correctness of the
FM and their conformance to the semantics. As
features are not fully specified and are not given
semantics, this verification remains focused on
the FM and not on the meaning of its features. In
our work, the selection of features is done accord-
ing to the relations between features, but the cor-
rectness of this selection is assessed thanks to the
properties specified for each feature. This adds
semantic meaning to the feature selection, which
is mandatory for our use.

7. CONCLUSIONS AND FUTURE
WORK

This contribution presented a DSL and associ-
ated tools for the specification, validation and for-
mal verification of block libraries, a key aspect in
data flow modelling languages for safety critical
embedded systems. The DSL relies on SPL prin-
ciples in order to harness the huge variability in
the structure and semantics of block libraries in
languages like SIMULINK and Scicos. We have
shown how we rely on formal verification tech-
niques and the WHY3 platform in order to verify
semantic properties of the specification.

We plan to refine the whole formalisation, ac-



tion languages and improve feedback to the user
when a proof cannot be performed. We plan to
also improve the efficiency of the verification of
the block’s semantics by the introduction of loop
invariant generation. And finally, further experi-
mentation on industrial use cases from PROJECTP
and HI-MoCo projects will be conducted to anal-
yse the impact of the use of such formal specifi-
cation in qualified software development.
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