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Interior feedback stabilization of wave equations with

dynamic boundary delay

Käıs AMMARI ∗ and Stéphane GERBI †

Abstract. In this paper we consider an interior stabilization problem for the wave equation with dynamic

boundary delay. We prove some stability results under the choice of damping operator. The proof of the main

result is based on a frequency domain method and combines a contradiction argument with the multiplier tech-

nique to carry out a special analysis for the resolvent.
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1 Introduction

We study the interior stabilization of a wave equation in an open bounded domain Ω of Rn, n ≥ 2. We
denote by ∂Ω the boundary of Ω and we assume that ∂Ω = Γ0 ∪ Γ1, where Γ0, Γ1 are closed subsets of
∂Ω with Γ0 ∩ Γ1 = ∅. Moreover we assume meas(Γ0) > 0. The system is given by:





utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− µut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.1)

where ν stands for the unit normal vector of ∂Ω pointing towards the exterior of Ω and ∂
∂ν is the normal

derivative. Moreover, the constant τ > 0 is the time delay, a and µ are positive numbers and the initial
data u0 , u1, f0 are given functions belonging to suitable spaces that will be precised later.

Let us first review some results for particular cases which seem to us interesting.

In the absence of the delay term (i.e. τ = 0) problem (1.1) becomes





utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− µut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.2)
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This type of problems arise (for example) in modelling of longitudinal vibrations in a homogeneous bar
in which there are viscous effects. The term aut, indicates that the stress is proportional not only to the
strain, but also to the displacement rate (see [12] for instance). From the mathematical point of view,
these problems do not neglect acceleration terms on the boundary. Such type of boundary conditions
are usually called dynamic boundary conditions. They are not only important from the theoretical point
of view but also arise in several physical applications. For instance in one space dimension, problem
(1.2) can modelize the dynamic evolution of a viscoelastic rod that is fixed at one end and has a tip
mass attached to its free end. The dynamic boundary conditions represents the Newton’s law for the
attached mass (see [11, 5, 16] for more details). In the two dimension space, as showed in [48] and in the
references therein, these boundary conditions arise when we consider the transverse motion of a flexible
membrane Ω whose boundary may be affected by the vibrations only in a region. Also some dynamic
boundary conditions as in problem (1.2) appear when we assume that Ω is an exterior domain of R3 in
which homogeneous fluid is at rest except for sound waves. Each point of the boundary is subjected to
small normal displacements into the obstacle (see [8] for more details). This type of dynamic boundary
conditions are known as acoustic boundary conditions.

Well-posedness and longtime behavior for analogous equations as (1.1) (without delay) on bounded
domains have been investigated by many authors in recent years (see, e.g., [24], [25], [44], [45]).

Among the early results dealing with this type of boundary conditions are those of Grobbelaar-Van
Dalsen [24, 25, 26] in which the author has made contributions to this field.

In [24] the author introduced a model which describes the damped longitudinal vibrations of a homoge-
neous flexible horizontal rod of length L when the end x = 0 is rigidly fixed while the other end x = L
is free to move with an attached load. This yields to a system of two second order equations of the form





utt − uxx − utxx = 0, x ∈ (0, L), t > 0,

u(0, t) = ut(0, t) = 0, t > 0,

utt(L, t) = − [ux + utx] (L, t), t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = v0 (x) x ∈ (0, L),
u (L, 0) = η, ut (L, 0) = µ .

(1.3)

By rewriting problem (1.3) within the framework of the abstract theories of the so-called B-evolution
theory, an existence of a unique solution in the strong sense has been shown. An exponential decay result
was also proved in [26] for a problem related to (1.3), which describe the weakly damped vibrations of
an extensible beam. See [26] for more details.

Subsequently, Zang and Hu [49], considered the problem





utt − p (ux)xt − q (ux)x = 0, x ∈ (0, 1) , t > 0,

u (0, t) = 0, t ≥ 0 ,

(p (ux)t + q (ux) (1, t) + kutt (1, t)) = 0, t ≥ 0 ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, 1) .

(1.4)

By using the Nakao inequality, and under appropriate conditions on p and q, they established both
exponential and polynomial decay rates for the energy depending on the form of the terms p and q.

Similarly, and always in the absence of the delay term, Pellicer and Solà-Morales [45] considered the one
dimensional problem of (1.1) as an alternative model for the classical spring-mass damper system, and
by using the dominant eigenvalues method, they proved that for small values of the parameter a the
partial differential equations in problem (1.2) has the classical second order differential equation

m1u
′′(t) + d1u

′(t) + k1u(t) = 0,

as a limit, where the parameter m1 , d1 and k1 are determined from the values of the spring-mass damper
system. Thus, the asymptotic stability of the model has been determined as a consequence of this limit.
But they did not obtain any rate of convergence. This result was followed by recent works [44, 46]. In
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particular in [46], the authors considered a one dimensional nonlocal nonlinear strongly damped wave
equation with dynamical boundary conditions. In other words, they looked to the following problem:





utt − uxx − αutxx + εf
(
u(1, t), ut(1,t)√

ε

)
= 0,

u(0, t) = 0,

utt(1, t) = −ε [ux + αutx + rut] (1, t)− εf
(
u(1, t), ut(1,t)√

ε

)
,

(1.5)

with x ∈ (0, 1), t > 0, r, α > 0 and ε ≥ 0. The above system models a spring-mass-damper system,

where the term εf
(
u(1, t), ut(1,t)√

ε

)
represents a control acceleration at x = 1. By using the invariant

manifold theory, the authors proved that for small values of the parameter ε, the solutions of (1.5) are
attracted to a two dimensional invariant manifold. See [46], for further details.

The main difficulty of the problem considered is related to the non ordinary boundary conditions defined
on Γ1. Very little attention has been paid to this type of boundary conditions. We mention only a few
particular results in the one dimensional space [28, 45, 22, 31].

A related problem to (1.2) is the following:

utt −∆u+ g(ut) = f in Ω× (0, T )

∂u

∂ν
+K(u)utt + h(ut) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω

ut(x, 0) = u1(x) in Ω

where the boundary term h(ut) = |ut|ρut arises when one studies flows of gas in a channel with porous
walls. The term utt on the boundary appears from the internal forces, and the nonlinearity K(u)utt on
the boundary represents the internal forces when the density of the medium depends on the displacement.
This problem has been studied in [22, 21]: by using the Fadeo-Galerkin approximations and a compactness
argument the authors proved the global existence and the exponential decay of the solution of the
problem.

We recall some results related to the interaction of an elastic medium with rigid mass. By using the
classical semigroup theory, Littman and Markus [34] established a uniqueness result for a particular
Euler-Bernoulli beam rigid body structure. They also proved the asymptotic stability of the structure by
using the feedback boundary damping. In [35] the authors considered the Euler-Bernoulli beam equation
which describes the dynamics of clamped elastic beam in which one segment of the beam is made with
viscoelastic material and the other of elastic material. By combining the frequency domain method with
the multiplier technique, they proved the exponential decay for the transversal motion but not for the
longitudinal motion of the model, when the Kelvin-Voigt damping is distributed only on a subinterval
of the domain. In relation with this point, see also the work by Chen et al. [15] concerning the Euler-
Bernoulli beam equation with the global or local Kelvin-Voigt damping. Also models of vibrating strings
with local viscoelasticity and Boltzmann damping, instead of the Kelvin-Voigt one, were considered
in [36] and an exponential energy decay rate was established. Recently, Grobbelaar-Van Dalsen [27]
considered an extensible thermo-elastic beam which is hanged at one end with rigid body attached to
its free end, i.e. one dimensional hybrid thermoelastic structure, and showed that the method used in
[43] is still valid to establish an uniform stabilization of the system. Concerning the controllability of the
hybrid system we refer to the work by Castro and Zuazua [13], in which they considered flexible beams
connected by point mass and the model takes account of the rotational inertia.

The purpose of this paper is to study problem (1.1), in which a delay term acted in the dynamic boundary
conditions. In recent years one very active area of mathematical control theory has been the investigation
of the delay effect in the stabilization of hyperbolic systems and many authors have shown that delays
can destabilize a system that is asymptotically stable in the absence of delays (see [2, 3, 20, 38, 39, 41]
for more details).

As it has been proved by Datko [18, Example 3.5], systems of the form
{

wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t− τ) , t > 0,
(1.6)
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where a, k and τ are positive constants become unstable for an arbitrarily small values of τ and any
values of a and k. In (1.6) and even in the presence of the strong damping −awxxt, without any other
damping, the overall structure can be unstable. This was one of the main motivations for considering
problem (1.1)( of course the structure of problem (1.1) and (1.6) are different due to the nature of the
boundary conditions in each problem).

Subsequently, Datko et al [20] treated the following one dimensional problem:




utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kut(1, t− τ), t > 0,

(1.7)

which models the vibrations of a string clamped at one end and free at the other end, where u(x, t) is
the displacement of the string. Also, the string is controlled by a boundary control force (with a delay)
at the free end. They showed that, if the positive constants a and k satisfy

k
e2a + 1

e2a − 1
< 1,

then the delayed feedback system (1.7) is stable for all sufficiently small delays. On the other hand if

k
e2a + 1

e2a − 1
> 1,

then there exists a dense open set D in (0,∞) such that for each τ ∈ D, system (1.7) admits exponentially
unstable solutions.

It is well known that in the absence of delay in (1.7), that is for τ = 0, system (1.7) is uniformly
asymptotically stable under the condition a2 + k2 > 0 and the total energy of the solution satisfies for
all t > 0,

E(t, u) =

∫ 1

0

(u2
t + u2

x + a2u2)dx ≤ CE (0, u) e−αt (1.8)

for some positive constant α. See [14] for more details.

Recently, Ammari et al [4] have treated the N−dimensional wave equation




utt(x, t)−∆u(x, t) + aut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

∂u

∂ν
(x, t) = −ku(x, t), x ∈ Γ1, t > 0,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.9)

where Ω is an open bounded domain of RN , N ≥ 2 with boundary ∂Ω = Γ0∪Γ1 and Γ0∩Γ1 = ∅. Under
the usual geometric condition on the domain Ω, they showed an exponential stability result, provided
that the delay coefficient a is sufficiently small.

In [38] the authors examined a system of wave equation with a linear boundary damping term with a
delay. Namely, they looked to the following system





utt −∆u = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

∂u

∂ν
(x, t) = µ1ut(x, t) + µ2ut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x), x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = g0(x, t− τ) x ∈ Ω, τ ∈ (0, 1) ,

(1.10)
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and proved under the assumption
µ2 < µ1 (1.11)

(which means that the weight of the feedback with delay is smaller than the one without delay) that null
stationary state is exponentially stable. On the contrary, if (1.11) does not hold, they found a sequence
of delays for which the corresponding solution of (1.10) will be unstable. The main approach used in
[38], is an observability inequality obtained with a Carleman estimate.

The case of time-varying delay (i.e. τ = τ(t) is a function depending on t) has been studied by Nicaise,
Valein and Fridman [42] in one space dimension. In their work, an exponential stability result was given
under the condition:

µ2 <
√
1− d µ1, (1.12)

where d is a constant such that
τ ′(t) ≤ d < 1, ∀t > 0. (1.13)

Delay effects arise in many applications and practical problems and it is well-known that an arbitrarily
small delay may destabilize a system which is uniformly asymptotically stable in absence of delay (see
e.g. [32, 33, 17, 20, 50]).

The stability of (1.1) with τ = 0, a = 0 has been studied in [1] where it has been shown that the system
is stable under some geometric condition on Γ1 (as in [6]). Moreover, if µ = 0, that is in absence of delay,
the above problem for any a > 0 is exponentially stable even. On the contrary, in presence of a delay
term there are instability phenomena probably, as in [38].

In this paper the idea is to contrast the effect of the time delay by using the dissipative feedback (i.e.,
by giving the control in the feedback form a ut(x, t) or −a∆ut(x, t), x ∈ Ω, t > 0).

In the next section, we will show the global existence of problem (1.1) by transforming the delay term
and by using a semigroup approach. The natural question is then the stability of problem (1.1). This is
the goal of section 3. We will show that a “shifted” problem is asymptotically stable with a polynomial
decay rate and we cannot answer the question of the stability of problem (1.1). In fact, in the last
section, numerical experiments in 1D shows that under certain conditions, problem (1.1) is unstable.

To stabilize problem (1.1), we will see that a Kelvin-Voigt damping is efficient. This is done in section 4.

Lastly, we will conduct some numerical examples in 1D to illustrate these stability or instability results.

2 Well-posedness of problem (1.1)

In this section we will first transform the delay boundary conditions by adding a new unknown. Then we
will use a semigroup approach and the Lumer-Phillips’ theorem to prove the existence and uniqueness
of the solution of the problem (1.1).

We point out that the well-posedness in evolution equations with delay is not always obtained. Recently,
Dreher, Quintilla and Racke have shown some ill-posedness results for a wide range of evolution equations
with a delay term [23].

2.1 Setup and notations

We present here some material that we shall use in order to prove the local existence of the solution of
problem (1.1). We denote

H1
Γ0
(Ω) =

{
u ∈ H1(Ω)/ uΓ0

= 0
}
.

By (., .) we denote the scalar product in L2(Ω) i.e. (u, v)(t) =

∫

Ω

u(x, t)v(x, t)dx. Also we mean by ‖.‖q
the Lq(Ω) norm for 1 ≤ q ≤ ∞, and by ‖.‖q,Γ1

the Lq(Γ1) norm.

Let T > 0 be a real number and X a Banach space endowed with norm ‖.‖X .
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Lp(0, T ;X), 1 ≤ p < ∞ denotes the space of functions f which are Lp over (0, T ) with values in X,
which are measurable and ‖f‖X ∈ Lp (0, T ). This space is a Banach space endowed with the norm

‖f‖Lp(0,T ;X) =

(∫ T

0

‖f‖pXdt

)1/p

.

L∞ (0, T ;X) denotes the space of functions f : ]0, T [ → X which are measurable and ‖f‖X ∈ L∞ (0, T ).
This space is a Banach space endowed with the norm:

‖f‖L∞(0,T ;X) = ess sup
0<t<T

‖f‖X .

We recall that if X and Y are two Banach spaces such that X →֒ Y (continuous embedding), then

Lp (0, T ;X) →֒ Lp (0, T ;Y ) , 1 ≤ p ≤ ∞ .

2.2 Semigroup formulation of the problem

In this section, we will prove the global existence and the uniqueness of the solution of problem (1.1).
We will first transform the problem (1.1) to the problem (2.3) by making the change of variables (2.1),
and then we use the semigroup approach to prove the existence of the unique solution of problem (2.3).

To overcome the problem of the boundary delay, we introduce the new variable:

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Γ1, ρ ∈ (0, 1) , t > 0. (2.1)

Then, we have
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in Γ1 × (0, 1)× (0,+∞) . (2.2)

Therefore, problem (1.1) is equivalent to:





utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− µz(x, 1, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,
ut(x, 0) = u1(x) x ∈ Ω ,
z(x, ρ, 0) = f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(2.3)

The first natural question is the existence of solutions of the problem (2.3). In this section we will give
a sufficient condition that guarantees that this problem is well-posed.

For this purpose we will use a semigroup formulation of the initial-boundary value problem (2.3). If we

denote V := (u, ut, γ1(ut), z)
T
, we define the energy space:

H = H1
Γ0
(Ω)× L2 (Ω)× L2(Γ1)× L2(Γ1 × (0, 1)).

Clearly, H is a Hilbert space with respect to the inner product

〈V1, V2〉H =

∫

Ω

∇u1.∇u2dx+

∫

Ω

v1v2dx+

∫

Γ1

w1w2dσ + ξ

∫

Γ1

∫ 1

0

z1z2dρdσ (2.4)

for V1 = (u1, v1, w1, z1)
T , V2 = (u2, v2, w2, z2)

T and ξ > 0 a nonnegative real number defined later.
Therefore, if V0 ∈ H and V ∈ H , the problem (2.3) is formally equivalent to the following abstract
evolution equation in the Hilbert space H :

{
V ′(t) = A V (t), t > 0,

V (0) = V0,
(2.5)
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where ′ denotes the derivative with respect to time t, V0 := (u0, u1, γ1(u1), f0(.,−.τ))
T
and the operator

A is defined by:

A




u

v

w

z




=




v

∆u− a v

−∂u

∂ν
− µz (., 1)

−1

τ
zρ




.

The domain of A is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
× L2(Ω)× L2(Γ1)× L2

(
Γ1;H

1(0, 1)
)
, (2.6)

w = γ1(v) = z(., 0) on Γ1. (2.7)

The well-posedness of problem (2.3) is ensured by:

Theorem 2.1. Let V0 ∈ H , then there exists a unique solution V ∈ C (R+;H ) of problem (2.5).
Moreover, if V0 ∈ D (A ), then

V ∈ C (R+;D (A )) ∩ C1 (R+;H ) .

Proof. To prove Theorem 2.1, we use the semigroup approach and the Lumer-Phillips’ theorem.

For this purpose, we show firstly that the operator A is dissipative.

Indeed, let V = (u, v, w, z)T ∈ D (A ). By definition of the operator A and the scalar product of H , we
have:

〈A V, V 〉
H

=

∫

Ω

∇u.∇vdx+

∫

Ω

v∆udx−
∫

Ω

a|v(x)|2dx

+

∫

Γ1

w

(
−∂u

∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫

Γ1

∫ 1

0

zzρdρdσ.

By Green’s formula we obtain:

〈A V, V 〉
H

= −
∫

Ω

a|v(x)|2dx− µ

∫

Γ1

z (σ, 1)wdσ − ξ

τ

∫

Γ1

∫ 1

0

zρzdρdx. (2.8)

But we have:

ξ

τ

∫

Γ1

∫ 1

0

zρz(σ, ρ) dρ dσ =
ξ

2τ

∫

Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ) dρ dσ

=
ξ

2τ

∫

Γ1

(
z2(σ, 1, t)− z2(σ, 0)

)
dσ . (2.9)

Thus from the compatibility condition (2.7), we get:

− ξ

τ

∫

Γ1

∫ 1

0

zρz dρ dσ =
ξ

2τ

∫

Γ1

(
v2 − z2(σ, 1, t)

)
dσ .

Therefore equation (2.8) becomes:

〈A V, V 〉
H

= −
∫

Ω

a|v(x)|2dx− ξ

2τ

∫

Γ1

∫ 1

0

z2(σ, 1, t)dσ +
ξ

2τ

∫

Γ1

|v|2(σ)dσ

−µ

∫

Γ1

z (σ, 1)wdσ .
(2.10)

To treat the last term in the preceding equation,Young’s inequality gives:

−
∫

Γ1

v(σ)z (σ, 1) dσ ≤ 1

2

∫

Γ1

z2 (σ, 1) dσ +
1

2

∫

Γ1

v2(σ, t)dσ . (2.11)
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Therefore, we firstly get:

〈A V, V 〉
H

+

∫

Ω

a|v(x)|2dx−
(

ξ

2τ
+

µ

2

)∫

Γ1

|v(σ)|2dσ +

(
ξ

2τ
− µ

2

)∫

Γ1

z2(σ, 1)dσ ≤ 0 . (2.12)

Finally, choosing ξ⋆ = µτ we finally get: ∀ξ > ξ⋆

〈(
A −

(
ξ

2τ
+

µ

2

)
I

)
V, V

〉

H

≤ 0 . (2.13)

Now we show that λI − A is surjective for all λ > 0.

For F = (f1, f2, f3, f4)
T ∈ H , let V = (u, v, w, z)T ∈ D (A ) solution of

(λI − A )V = F,

which is:

λu− v = f1, (2.14)

λv −∆u+ av = f2, (2.15)

λw +
∂u

∂ν
+ µz(., 1) = f3, (2.16)

λz +
1

τ
zρ = f4. (2.17)

To find V = (u, v, w, z)T ∈ D (A ) solution of the system (2.14), (2.15), (2.16) and (2.17), we suppose u
is determined with the appropriate regularity. Then from (2.14), we get:

v = λu− f1 . (2.18)

Therefore, from the compatibility condition on Γ1, (2.7), we determine z(., 0) by:

z(x, 0) = v(x) = λu(x)− f1(x), for x ∈ Γ1. (2.19)

Thus, from (2.17), z is the solution of the linear Cauchy problem:

{
zρ = τ

(
f4(x)− λz(x, ρ)

)
, for x ∈ Γ1 , ρ ∈ (0, 1),

z(x, 0) = λu(x)− f1(x).
(2.20)

The solution of the Cauchy problem (2.20) is given by:

z(x, ρ) = λu(x)e−λρτ − f1e
−λρτ + τe−λρτ

∫ ρ

0

f4(x, σ)e
λστdσ for x ∈ Γ1 , ρ ∈ (0, 1). (2.21)

So, we have at the point ρ = 1,

z(x, 1) = λu(x)e−λτ + z1(x), for x ∈ Γ1 (2.22)

with

z1(x) = −f1e
−λτ + τe−λτ

∫ 1

0

f4(x, σ)e
λστdσ, for x ∈ Γ1.

Since f1 ∈ H1
Γ0
(Ω) and f4 ∈ L2(Γ1)× L2(0, 1), then z1 ∈ L2(Γ1).

Consequently, knowing u, we may deduce v by (2.18), z by (2.21) and using (2.22), we deduce w = γ1(v)
by (2.16).

From equations (2.15) and (2.16), u must satisfy:

λ(λ+ a)u−∆u = f2 + (λ+ a)f1, in Ω (2.23)
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with the boundary conditions

u = 0, on Γ0 (2.24)

∂u

∂ν
= f3 − λz(., 0)− µz(., 1), on Γ1. (2.25)

Using the preceding expression of z(., 1) and the expression of v given by (2.18), we have:

∂u

∂ν
= −

(
λ2 + µλe−λτ

)
u+ f(x), for x ∈ Γ1 (2.26)

with
f(x) = f3(x) + λf1(x)− µz1(x), for x ∈ Γ1 .

From the regularity of f3 , f2 , z1, we get f ∈ L2(Γ1).

The variational formulation of problem (2.23), (2.24),(2.26) is to find u ∈ H1
Γ0
(Ω) such that:

∫

Ω

λ(λ+ a)uω +∇u∇ωdx +

∫

Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ, (2.27)

=

∫

Ω

(f2 + (λ+ a)f1)ωdx+

∫

Γ1

f(σ)ω(σ)dσ,

for any ω ∈ H1
Γ0
(Ω). Since λ > 0, µ > 0, the left hand side of (2.27) defines a coercive bilinear form

on H1
Γ0
(Ω). Thus by applying the Lax-Milgram theorem, there exists a unique u ∈ H1

Γ0
(Ω) solution

of (2.27). Now, choosing ω ∈ C∞
c , u is a solution of (2.23) in the sense of distribution and therefore

u ∈ H2(Ω)∩H1
Γ0
(Ω). Thus using the Green’s formula and exploiting the equation (2.23) on Ω, we obtain

finally: ∫

Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ +

〈
∂u

∂ν
;ω

〉

Γ1

=

∫

Γ1

f(σ)ω(σ)dσ ∀ω ∈ H1
Γ0
(Ω) .

So u ∈ H2(Ω)∩H1
Γ0
(Ω) verifies (2.26) and we recover u and v and thus by (2.21), we obtain z and finally

setting w = γ1(v), we have found V = (u, v, w, z)T ∈ D (A ) solution of (I − A )V = F .

Thus, the proof of Theorem 2.1, follows from the Lumer-Phillips’ theorem.

Remark 2.2. Let Ad = A −
(

ξ
2τ + µ

2

)
I. Then, according to the above, the operator Ad generates a

C0 semigroup of contractions etAd on H .

3 Asymptotic behavior

In this section, we show that if ξ > ξ∗, the semigroup etAd decays to the null steady state with an
polynomial decay rate for regular initial data. To obtain this, our technique is based on a frequency
domain method and combines a contradiction argument with the multiplier technique to carry out a
special analysis for the resolvent.

Theorem 3.1. If ξ > ξ∗ then there exists a constant C > 0 such that, for all V0 ∈ D(Ad), the semigroup
etAd satisfies the following estimate

∥∥etAdV0

∥∥
H

≤ C√
t
‖V0‖D(Ad)

, ∀ t > 0. (3.1)

Remark 3.2. Let us notice that although the semigroup etAd generates a polynomial stability, we cannot
conclude on the stability of the semigroup etA . Indeed, if we denote µ1 = ξ

2τ + µ
2 , we first notice that

the domain of A and Ad = A − µ1I are not the same; this is due to the compatibility condition on Γ1,
namely equation (2.7). Nevertheless, let us consider V0 ∈ D(A ) and Ṽ0 = V0 − µ1V0 ∈ D(Ad), and the
two following problems: {

V ′ = A V
Vt=0 = V0

and

{
Ṽ ′ = AdṼ

Ṽt=0 = Ṽ0 .
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Given V0 = (u0, u1, γ1(u1), z0)
T ∈ D(A ), the second problem writes in term of V = (u, ut, γ1(ut), z)

T :





utt −
1

1 + µ1
∆u+

a+ µ1

1 + µ1
ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− µz(x, 1, t)− µut(x, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) + µ1τz(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = (1− µ1)u0(x) x ∈ Ω ,
ut(x, 0) = (1− µ1)u1(x) x ∈ Ω ,
z(x, ρ, 0) = (1− µ1)f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(3.2)

We call this problem the “shifted” problem.

By Duhamel’s formula, we get:

∀t > 0 , e−µ1tV (t) =
−e−µ1t

1 + µ1
V0 +

Ṽ (t)

1 + µ1
− µ1

1 + µ1

∫ t

0

e−µ1(t−s) Ṽ (s)ds . (3.3)

The first two terms of the right hand side of equation (3.3) tends to zero as t tends to infinity. So we
obtain:

V (t) ≃
∫ t

0

eµ1s Ṽ (s)ds .

We only know at this stage that ‖Ṽ (s)‖D(Ad) tends to zero at least as s−1/2, and thus ‖V (t)‖D(A ) may
tend to zero or blow-up in infinite time. We will illustrate this behavior by numerical examples in 1D in
the last section of this work.

Proof of theorem 3.1. We will employ the following frequency domain theorem for polynomial stability
from [9] (see also [7, 37] for weaker variants) of a C0 semigroup of contractions on a Hilbert space:

Lemma 3.3. A C0 semigroup etL of contractions on a Hilbert space H satisfies

||etLU0||H ≤ C

t
1

θ

||U0||D(L)

for some constant C > 0 and for θ > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (3.4)

and

lim sup
|β|→∞

1

βθ
‖(iβI − L)−1‖L(H) < ∞, (3.5)

where ρ(L) denotes the resolvent set of the operator L.

Then the proof of Theorem 3.1 is based on the following two lemmas.

Lemma 3.4. The spectrum of Ad contains no point on the imaginary axis.

Proof. Since Ad has compact resolvent, its spectrum σ(Ad) only consists of eigenvalues of Ad. We will
show that the equation

AdZ = iβZ (3.6)

with Z = (u, v, w, z)T ∈ D(Ad) and β 6= 0 has only the trivial solution.
By taking the inner product of (3.6) with Z and using

ℜ (< AdZ,Z >H ) ≤ −
∫

Ω

a |v(x)|2 dx−
(

ξ

2τ
− µ

2

) ∫

Γ1

|z(σ, 1)|2 dσ, (3.7)
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we obtain that
v = 0 and z(., 1) = 0.

Next, according to (3.6), we have v =
(
iβ + ξ

2τ + µ
2

)
u ⇒ u = 0, w = γ1(v) = z(., 0) = 0 and z satisfies

−1

τ
zρ −

(
iβ +

ξ

2τ
+

µ

2

)
z = iβz.

Which implies, by integration the above identity, that

∫

Γ1

∫ 1

0

(
−1

τ
zρ −

(
iβ +

ξ

2τ
+

µ

2

)
z

)
z dρdσ =

(
iβ +

ξ

2τ
+

µ

2

)
‖z‖2L2(Γ1×(0,1)) = −1

τ

∫

Γ1

(
|z(σ, 1)|2 − |z(σ, 0)|2

)
dσ = 0.

Then, we can easily see that the only solution of (3.6) is the trivial one.

The second lemma shows that (3.5) holds with L = Ad and θ = 2.

Lemma 3.5. The resolvent operator of Ad satisfies condition (3.5) for θ = 2.

Proof. Suppose that condition (3.5) is false with θ = 2. By the Banach-Steinhaus Theorem (see [10]),
there exists a sequence of real numbers βn → +∞ and a sequence of vectors Zn = (un, vn, wn, zn)

t ∈
D(Ad) with ‖Zn‖H = 1 such that

||β2
n(iβnI − Ad)Zn||H → 0 as n → ∞, (3.8)

i.e.,

βn

(
(iβn +

ξ

2τ
+

µ

2
)un − vn

)
≡ fn → 0 in H1

Γ0
(Ω), (3.9)

βn

(
iβnvn −∆un + (

ξ

2τ
+

µ

2
+ a)vn

)
≡ gn → 0 in L2(Ω), (3.10)

βn

(
(iβn +

ξ

2τ
+

µ

2
)wn +

∂un

∂ν
+ µz(., 1)

)
≡ hn → 0 in L2(Γ1), (3.11)

βn

(
(iβn +

ξ

2τ
+

µ

2
)zn +

1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)) (3.12)

since βn ≤ β2
n.

Our goal is to derive from (3.8) that ||Zn||H converges to zero, thus there is a contradiction.

We first notice that we have

||β2
n(iβnI − Ad)Zn||H ≥ |ℜ

(
〈β2

n(iβnI − Ad)Zn, Zn〉H
)
|. (3.13)

Then, by (3.7) and (3.8),

βn vn → 0, in L2(Ω), βn zn(., 1) → 0, in L2(Γ1), (3.14)

and
un → 0, ∆un → 0 in L2(Ω) ⇒ un → 0 in H1

Γ0
(Ω) . (3.15)

This further leads, by (3.11) and the trace theorem, to

wn → 0 in L2(Γ1). (3.16)

Moreover, since Zn ∈ D(Ad), we have, by (3.16),

zn(., 0) → 0 in L2(Γ1). (3.17)

11



We have ∫

Γ1

∫ 1

0

(
(iβn +

ξ

2τ
+

µ

2

)
zn +

1

τ
∂ρzn) zn dσ dρ → 0 (3.18)

and that ∫

Γ1

∫ 1

0

(
(iβn +

ξ

2τ
+

µ

2

)
zn +

1

τ
∂ρzn) zn dσ dρ =

(iβn +
ξ

2τ
+

µ

2
)

∫

Γ1

∫ 1

0

|zn|2 dρdσ +
1

τ

∫

Γ1

(
|z2n(σ, 1)|2 − |z2n(σ, 0)|2

)
dσ.

Which implies, according to (3.18), (3.17) and (3.14), that

zn → 0 in L2(Γ1 × (0, 1))

and clearly contradicts ‖Zn‖H
= 1.

The two hypotheses of Lemma 3.3 are proved by Lemma 3.4 and Lemma 3.5. Then (3.1) holds. The
proof of Theorem 3.1 is then finished.

4 Changing the damping law

Let us consider now the same system as (1.1) but with a Kelvin-Voigt damping. The system is given by:





utt −∆u− a∆ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− a

∂ut

∂ν
− µut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ).

(4.1)

Which, as above, is equivalent to:




utt −∆u− a∆ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u

∂ν
(x, t)− a

∂ut

∂ν
(x, t)− µz(x, 1, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,
ut(x, 0) = u1(x) x ∈ Ω ,
z(x, ρ, 0) = f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(4.2)

Let the operator Akv defined by:

Akv




u

v

w

z




=




v

∆u+ a∆v

−∂u

∂ν
− a

∂v

∂ν
− µz (., 1)

−1

τ
zρ




.

The domain of Akv is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
× L2(Ω)× L2(Γ1)× L2

(
Γ1;H

1(0, 1)
)
,
∂v

∂ν
∈ L2(Γ1), (4.3)

w = γ1(v) = z(., 0) on Γ1. (4.4)
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Notations:
For c ∈ R, we define:

CΩ(c) = inf
u∈H1

Γ0
(Ω)

‖∇u‖22 + c‖u‖22,Γ1

‖u‖22
(4.5)

CΩ(c) is the first eigenvalue of the operator −∆ under the Dirichlet-Robin boundary conditions:

{
u(x) = 0, x ∈ Γ0

∂u

∂ν
(x) + cu(x) = 0 x ∈ Γ1 .

(4.6)

From Kato’s perturbation theory [29] (see also [30, Theorem 1.3.1]), CΩ(c) is a continuous increasing
function. From Poincaré’s inequality and the continuity of the trace operator γ1, we have CΩ(0) > 0 and
CΩ(c) → −∞ as c → −∞. Thus it exists a unique c⋆ < 0 such that:

CΩ(c
⋆) = 0 . (4.7)

In the following, we fix ξ = µτ in the norm (2.4). We will see in the next result why this choice is well
adapted.

Theorem 4.1. Suppose that a and µ satisfy the following assumption:

µ < |c⋆|a. (4.8)

Then, the operator Akv generates a C0 semigroup of contractions on H . We have, in particular, if
V0 ∈ H , then there exists a unique solution V ∈ C (R+;H ) of problem (4.1). Moreover, if V0 ∈ D (Akv),
then

V ∈ C (R+;D (Akv)) ∩ C1 (R+;H ) .

Proof. To prove Theorem 4.1, we use again the semigroup approach and the Lumer-Phillips’ theorem.

For this purpose, we show firstly that the operator Akv is dissipative.

Indeed, let V = (u, v, w, z)T ∈ D (Akv). By definition of the operator Akv and the scalar product of H ,
we have:

〈AkvV, V 〉
H

=

∫

Ω

∇u.∇vdx+

∫

Ω

v (∆u+ a∆v) dx

+

∫

Γ1

w

(
−∂u

∂ν
− a

∂v

∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫

Γ1

∫ 1

0

zzρdρdσ.

Applying Green’s formula and the compatibility condition w = γ1(v), we obtain:

〈AkvV, V 〉
H

= −µ

∫

Γ1

z (σ, 1)wdσ − a

∫

Ω

|∇v|2 dx− ξ

τ

∫

Γ1

∫ 1

0

zρzdρdx. (4.9)

But we have:

ξ

τ

∫

Γ1

∫ 1

0

zρz(σ, ρ, t) dρ dσ =
ξ

2τ

∫

Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ, t) dρ dσ

=
ξ

2τ

∫

Γ1

(
z2(σ, 1, t)− z2(σ, 0, t)

)
dσ . (4.10)

Thus from the compatibility condition (2.7), we get:

− ξ

τ

∫

Γ1

∫ 1

0

zρz dρ dσ =
ξ

2τ

∫

Γ1

(
v2 − z2(σ, 1, t)

)
dσ .
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Therefore equation (4.9) becomes:

〈AkvV, V 〉
H

= −a

∫

Ω

|∇v|2 dx+
ξ

2τ

∫

Γ1

v2dσ − ξ

2τ

∫

Γ1

∫ 1

0

z2(σ, 1, t)dσ

−µ

∫

Γ1

v(σ, t)z (σ, 1) dσ .
(4.11)

To treat the last term in the preceding equation, Young’s inequality gives:

−
∫

Γ1

v(σ, t)z (σ, 1) dσ ≤ 1

2

∫

Γ1

z2 (σ, 1) dσ +
1

2

∫

Γ1

v2(σ, t)dσ . (4.12)

Therefore, we firstly get:

〈AkvV, V 〉
H

+ a

∫

Ω

|∇v|2 dx−
(

ξ

2τ
+

µ

2

)∫

Γ1

v2dσ +

(
ξ

2τ
− µ

2

)∫

Γ1

z2(σ, 1, t)dσ ≤ 0 .

At this point, as ξ = µτ , the previous inequality becomes:

〈AkvV, V 〉
H

+ a

∫

Ω

|∇v|2 dx− µ

∫

Γ1

v2dσ ≤ 0 .

Denoting now c = −µ

a
, we get:

〈AkvV, V 〉
H

+ a

(∫

Ω

|∇v|2 dx+ c

∫

Γ1

v2dσ

)
≤ 0 .

By definition (4.5), we thus get:

〈AkvV, V 〉
H

+ aCΩ(c)‖v‖22 ≤ 0 . (4.13)

From assumption (4.8), CΩ(c) > 0. This inequality proves that the operator Akvis dissipative. To show
that λI − Akv is surjective for all λ > 0, we easily adapt the proof of Theorem 2.1.

The proof of Theorem 4.1, follows from the Lumer-Phillips’ theorem.

Moreover the semigroup operator etAkv is exponential stable on H . We have the following result.

Theorem 4.2. Suppose that the assumption (4.8) is satisfied. Then, there exist C, ω > 0 such that for
all t > 0 we have ∥∥etAkv

∥∥
L(H )

≤ C e−ωt.

Remark 4.3. We note here that, in this case where the damping operator is sufficiently unbounded for
controlling the delay one, we obtain the exponential stability result.

Note that without internal damping (i.e. if a = 0), the previous model is destabilized for arbitrarily small
delays for every value µ > 0 , see [19]. Thus, the internal damping −a∆ut makes the system robust with
respect to time delays in the boundary condition if the coefficient a is sufficiently large with respect to
µ.

Proof of theorem 4.2. We will employ the following frequency domain theorem for exponential stability
from [47] of a C0 semigroup of contractions on a Hilbert space:

Lemma 4.4. A C0 semigroup etL of contractions on a Hilbert space H satisfies, for all t > 0,

||etL||L(H) ≤ Ce−ωt

for some constant C, ω > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (4.14)

and
lim sup
|β|→∞

‖(iβI − L)−1‖L(H) < ∞, (4.15)

where ρ(L) denotes the resolvent set of the operator L.
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The proof of Theorem 4.2 is based on the following two lemmas.

Lemma 4.5. The spectrum of Akv contains no point on the imaginary axis.

Proof. Since Akv has compact resolvent, its spectrum σ(Akv) only consists of eigenvalues of Akv. We
will show that the equation

AkvZ = iβZ (4.16)

with Z = (u, v, w, z)T ∈ D(Akv) and β 6= 0 has only the trivial solution. System (4.16) writes:

v = iβu (4.17)

∆u+ a∆v = iβv (4.18)

−∂u

∂ν
− a

∂v

∂ν
− µz (., 1) = iβw (4.19)

−1

τ
zρ = iβz (4.20)

Denoting now c = −µ

a
, by taking the inner product of (4.16) with Z, , using the inequality (4.13) we

get:
ℜ (< AkvZ,Z >H ) ≤ −aCΩ(c)‖v‖22 . (4.21)

From assumption (4.8), CΩ(c) > 0 and thus we obtain that v = 0.

Next, according to (4.17), we have u = 0. As w = γ1(v), wa also have w = 0. Moreover as we have
w = z(., 0), we get: z(., 0) = 0.

From (4.19) we also have z(., 1) = 0.

As z satisfies (4.20), we get the following identity:

∫

Γ1

∫ 1

0

−1

τ
zρ z dρdσ = iβ ‖z‖2L2(Γ1×(0,1)) .

By integration by parts we finally get:

iβ ‖z‖2L2(Γ1×(0,1)) = − 1

2τ

∫

Γ1

(
|z(σ, 1)|2 − |z(σ, 0)|2

)
dσ .

As z(σ, 0) = z(σ, 1) = 0, this identity gives z = 0.

Thus the only solution of (4.16) is the trivial one.

Lemma 4.6. The resolvent operator of Akv satisfies condition (4.15).

Proof. Suppose that condition (4.15) is false. By the Banach-Steinhaus Theorem (see [10]), there exists
a sequence of real numbers βn → +∞ and a sequence of vectors Zn = (un, vn, wn, zn)

T ∈ D(Akv) with
‖Zn‖H = 1 such that

||(iβnI − Akv)Zn||H → 0 as n → ∞, (4.22)

i.e.,
(iβnun − vn) ≡ fn → 0 in H1

Γ0
(Ω), (4.23)

(iβnvn −∆un − a∆vn) ≡ gn → 0 in L2(Ω), (4.24)
(
iβnwn +

∂un

∂ν
+ a

∂vn
∂ν

+ µz(., 1)

)
≡ hn → 0 in L2(Γ1), (4.25)

(
iβnzn +

1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)). (4.26)

Our goal is to derive from (4.22) that ||Zn||H converges to zero, thus there is a contradiction.
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We first notice that we have

||(iβnI − Akv)Zn||H ≥ |ℜ (〈(iβnI − Akv)Zn, Zn〉H ) |. (4.27)

Thus by (4.21) and (4.22),
vn → 0 in L2(Ω) .

From (4.23),
un → 0 in L2(Ω) .

But we also have,
∆un → 0 in L2(Ω) and ∆vn → 0 in L2(Ω) .

Thus we firstly obtain:
un → 0 in H1

Γ0
(Ω) and vn → 0 in H1

Γ0
(Ω) . (4.28)

By the trace theorem, we have:
wn = γ(vn) → 0 in L2(Γ1) . (4.29)

Moreover, since Zn ∈ D(Akv), wn = zn(., 0). Thus we get:

zn(., 0) → 0 in L2(Γ1) . (4.30)

Now from (4.25), we also have:
zn(., 1) → 0 in L2(Γ1) . (4.31)

As we have the following identity:

∫

Γ1

∫ 1

0

(iβnzn +
1

τ
∂ρzn) zn dσ dρ = iβ ‖z‖2L2(Γ1×(0,1)) +

1

τ

∫

Γ1

(
|z2n(σ, 1)|2 − |z2n(σ, 0)|2

)
dσ ,

according to (4.26), (4.30) and (4.31) we finally have:

zn → 0 in L2(Γ1 × (0, 1)) . (4.32)

Identities (4.28),(4.29) and (4.32) clearly contradicts the fact that:

∀ n ∈ N , ‖Zn‖H
= 1 .

The two hypotheses of Lemma 4.4 are proved. The proof of Theorem 4.2 is then finished.

Remark 4.7. In the recent work of Nicaise and Pignotti, [40], they studied the existence and stability of
problem (4.1). They obtain a slightly different condition to ensure the existence and stability. Namely,
let us define CP , a sort of Poincaré’s constant, by:

CP = sup
u∈H1

Γ0
(Ω)

‖u‖22,Γ1

‖∇u‖22
.

By using the semigroup approach and the Lumer-Phillips’ theorem they proved the global existence of
the solution and by using an observability inequality they proved the exponential stability under the
condition:

µ <
a

CP
.
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5 Comments and numerical illustrations

To illustrate numerically the results presented in this paper, we present numerical simulations for problem
(1.1) and for the Kelvin-Voigt damping, namely problem (4.1), in 1D. So let us consider Ω = (0, 1) , Γ0 =
{0},Γ1 = {1}.
To solve numerically problem (1.1) (resp. problem (4.1)), we have to consider its equivalent formulation,
namely problem (2.3) (resp. problem (4.2)), which writes in the present case:





utt − uxx + a ut = 0, x ∈ (0, 1), t > 0 ,

u(0, t) = 0, t > 0 ,

utt(1, t) = −ux(1, t)− µz(x, 1, t), t > 0 ,

τzt(1, ρ, t) + zρ(1, ρ, t) = 0, ρ ∈ (0, 1) , t > 0 ,

z(1, 0, t) = ut(1, t) t > 0 ,

u(x, 0) = u0(x) x ∈ (0, 1) ,
ut(x, 0) = u1(x) x ∈ (0, 1) ,
z(1, ρ, 0) = f0(1,−τρ) ρ ∈ (0, 1) .

(5.1)

A 1D formulation of the “shifted” problem (3.2) as well as the Kelvin-Voigt damping problem, problem
(4.2) is of the same type.

As the stability result we have presented in this work, Theorem 3.1, is a stability result for the “shifted”
problem (3.2), we have to perform numerical simulations for both problems: the original one, problem
(1.1) and the “shifted” problem (3.2).

For this sake, to avoid a CFL condition between the mesh size and the time step, we decided to discretize
the different problems by implicit first order in time, and finite difference method in space. For every
simulations, here are the numerical parameters:

τ = 2 , ξ = 2ξ⋆ , ∆x = 1
20 , ∆ρ = 1

20 , ∆t = 0.1
u0(x) = u1(x) = xe10x , f0(1, ρ) = eρe10 .

For every time t > 0, we denote E(t) =
∥∥∥
(
u(., t), ut(., t), ut(1, t), z(1, ., t)

)T∥∥∥
H

. The choice of u0 , u1, f0

ensures a large initial energy.

In Figure 1 and Figure 2, we present the resulting simulation for the original problem and the “shifted”
one.
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(b) Shifted problem

Figure 1: Energy (in -log scale) versus time: influence of µ.
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Figure 2: Energy (in -log scale) versus time: influence of a.

Let us first notice that the convergence rate for the shifted problem is better than the one expected: we
have proved a polynomial decay rate whereas numerically, we observe an exponential decay rate. This
is probably due to the particular case of the dimension 1. Moreover, as it was conjectured in Remark
3.2, the “shifted” problem converges for a large set of parameters a and µ whereas the original problem
does not and even worse, it exhibits an exponential growth.

In Figure 3, we present the simulations for the case of the Kelvin-Voigt damping for which we have
proved that under the condition µ < |c⋆|a, we have an exponential decay rate.

From equations (4.6) and (4.7), the constant c⋆ must satisfy:

{
uxx = 0 , x ∈ (0, 1),
u(0) = 0 , ux(1) + c⋆u(1) = 0 .

Thus we obtain c⋆ = −1. Let us first notice that even though the condition between a and µ is not
fulfilled, we have an exponential decay of the solution. This is also probably due to the particular case
of the dimension 1. Secondly it seems that numerically the convergence rate does not depend on the
parameter µ.
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Figure 3: Energy (in -log scale) versus time.

Acknowledgments. The authors wish to thank Région Rhône-Alpes for the financial support CO-
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