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Abstract 

 

Mental workload is a key factor influencing the occurrence of human error, especially 

during piloting and remotely operated vehicle (ROV) operations, where safety depends on 

the ability of pilots to act appropriately. In particular, excessively high or low mental workload 

can lead operators to neglect critical information. The objective of the present study is to 

investigate the potential of functional Near Infrared Spectroscopy (fNIRS) – a non-invasive 

method of measuring prefrontal cortex activity – in combination with measurements of heart 

rate variability (HRV), to predict mental workload during a simulated piloting task, with 

particular regard to task engagement and disengagement. Twelve volunteers performed a 

computer-based piloting task in which they were asked to follow a dynamic target with their 

aircraft, a task designed to replicate key cognitive demands associated with real life ROV 

operating tasks. In order to cover a wide range of mental workload levels, task difficulty was 

manipulated in terms of processing load and difficulty of control – two critical sources of 

workload associated with piloting and remotely operating a vehicle. Results show that both 

fNIRS and HRV are sensitive to different levels of mental workload; notably, lower prefrontal 

activation as well as a lower LF/HF ratio at the highest level of difficulty, suggest that these 

measures are suitable for mental overload detection. Moreover, these latter measurements 

point towards the existence of a quadratic model of mental workload.  
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1. Introduction 

Remotely operated vehicle (ROV) operations are becoming increasingly prevalent in 

a wide variety of contexts such as border security, intelligence and military operations. 

Undeniably, the use of ROVs in the military has increased tremendously over the last 

decade. As noted by Cooke [1], the term “unmanned” that frequently qualifies ROVs can be 

misleading. Indeed, these systems involve a strong human-in-the-loop component for which 

the capacity could – and should [2][3] – be improved above and beyond the capacity of fully 

automated systems. There is a critical need to improve human-machine interaction within 

ROV systems given that issues relating to human factors are responsible for a large 

proportion of ROV accidents. For instance, a document prepared for the Office of Aerospace 

Medicine in the United-States reports that human factors-related deficiencies are responsible 
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for between 21% and 67% of ROV accidents in the US Army, Navy and Air Force [4]; while 

for accidents in manned flights, this rate rises to 80% [5].  

Descriptive models have been proposed to identify latent causes of accidents [6][7], 

and a large volume of research has highlighted the deleterious effects that high mental 

demands can have on operator performance [8][9][10]. In such conditions, pilots and ROV 

operators must perform several tasks simultaneously, each with different priorities. It is well 

known that humans are cognitively bounded, insofar as human mental resources are 

fundamentally limited [11][12]. Consequently, allocating more resources to a task will 

inevitably limit the amount of resources available for other tasks. Moreover, as these 

environments are highly dynamic, priorities across tasks will be expected to change as the 

mission develops. It is therefore important for the operator to reallocate mental resources 

dynamically according to changes in task priorities [13], but dynamic reallocation poses a 

challenge for the limitations of human cognitive control.  

Excessive mental workload can eventually lead to the phenomenon of cognitive 

tunneling, which can be defined as the inability of the operator to reallocate his/her attention 

from one task to another [14]. Attentional resource reallocation lies at the heart of the 

operator functional state framework [15], where sustained performance is assumed to be 

determined in part by the cognitive potential of the operator in relation to task goals and 

priorities. According to this framework, operators placed in highly demanding tasks will be 

able to sustain a good level of performance as long as the task remains predictable, but will 

fail to perform well in the event of an unexpected change. It is possible that this vulnerability 

period – when the operator may not be able to adapt to changes in task priorities – could be 

detected by assessing his/her functional state, or more precisely, the level of mental 

workload. 

Our approach to tackle research issues related to mental workload in a systematic 

manner is to merge knowledge and methods from cognitive psychology, system engineering 

and neurosciences. This approach known as Neuroergonomics – initially proposed in 1998 

by Parasuraman and progressively developed and refined over the last decade or so 

[16][17][18] – aims to design systems for safer and more efficient operations through the 

understanding of human brain functioning in the workplace. Two key neuroergonomics 

concepts, adaptive automation [19][20][21] and cognitive counter-measures [22], are of 

particular relevance to our research endeavor. Adaptive automation and cognitive counter-

measures are well suited to solving the problem of resource allocation; however, challenges 

in the implementation of these potential solutions still remain. In particular, a critical aspect of 

an adaptive support system is to provide help in a timely and accurate manner [23], 

specifically during periods of high vulnerability. Indeed a key issue is to investigate how 

mental workload and especially mental overload can be predicted in an operational context. 
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A possible approach is to use psychophysiological measurements as these techniques offer 

continuous and objective assessment of the human operator’s state that is complementary to 

classical behavioral performance assessment (e.g., reaction time). The rationale behind the 

use of psychophysiological measures in assessing mental workload is also related to the 

well-documented relationships between behavioral performance and the activity of the 

nervous system. However, the use of behavioral measures alone in automated systems is 

very constrained due to the rare occurrence of the human operator’s overt responses. 

Moreover, the reallocation of cognitive resources may mean that performance remains 

constant, thus limiting the sensitivity of such measures to mental overload. 

The shift from low to high mental workload may be revealed by changes in activity of 

the autonomous nervous system (ANS) and can be associated with higher pupil size [24] or 

heart rate [25]. ANS activity can also be assessed through heart rate variability (HRV) which 

comprises two components, known as sympathetic and parasympathetic nervous systems. 

For instance, Kamath et al. [26] associated low frequency (LF) variability of heart rate with 

blood pressure control, i.e. sympathetic activity; and high frequency (HF) variations with 

respiratory sinus arrhythmia, i.e. parasympathetic activity. On this basis, the study of LF/HF 

ratio of heart rate variability provides a reliable indicator of mental workload [27][28][29].  

Neuroergonomics also promotes the use of various brain imaging techniques, as they 

provide a prediction of mental workload by assessing central nervous system activity. It is 

now well established that mental workload is positively correlated with cerebral activity of 

dedicated brain areas such as the prefrontal cortex (PFC) [30]. For this purpose, functional 

near infrared spectroscopy (fNIRS) is an optical brain monitoring method that measures 

hemodynamic response, based on a modified Beer-Lambert law. It has a good spatial 

resolution (1cm²) and provides a good correlation with fMRI studies [31]. Moreover it is suited 

for both laboratory and field experiments as the technique is easy to use in terms of sensor 

placement, participant mobility, and data collection/analysis. fNIRS has been successfully 

used to detect changes in oxygenated hemoglobin concentration associated with mental 

workload variation in operational contexts such as piloting ROVs [32], airplanes [33], or air 

traffic control tasks [34]. It is already known that fNIRS is sensitive enough to detect a variety 

of cognitive states such as working memory demands [35], emotional stress [36] or response 

inhibition [37][38].  

Detecting a state of mental overload is a key issue for developing adaptive systems 

that have been shown to improve human-machine interactions [22][2]. However, these 

systems should not be based on the assumption that the ANS and central nervous system 

(CNS) reach a maximum or “saturation level” when workload exceeds mental capacity. 

Indeed, some authors postulate  that mental capacity follows a quadratic law [39] similar to 

the Yerkes and Dodson inverted U-shaped curve [40], whereby the drop in performance 
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resulting from task overload is associated with a decrease in dorsolateral PFC (DLPFC) 

activity. Though these results appear promising, there is still debate as to whether this 

cerebral disengagement could also be explained in terms of motivational issues [41]. 

However, this important issue has rarely been addressed from Neuroergonomics and Human 

Factors points of view, as most of the previous studies on mental capacity and 

disengagement used basic working memory tasks to induce mental overload rather than 

more complex and ecological tasks. 

1.1. Present study 

The objective of the present study is to explore CNS and ANS responses when mental 

capacity is exceeded in a realistic, engaging ROV task. In our attempt to reproduce those 

conditions that induce mental overload for pilots and ROV operators, we took care to 

preserve ecological validity whilst using a well-controlled laboratory protocol. We designed a 

simulation of a ROV operation task that specifically involved psychomotor and working 

memory (WM) abilities, as several studies have shown these cognitive functions to be highly 

correlated with complex task performance [34][42][43][44]. Specifically, the volunteers were 

asked to perform a computer-based task in which they had to follow a dynamic target with 

their aircraft under different levels of control difficulty and processing load. In all conditions, 

the participant had to identify the target aircraft amongst five potential distracters by using a 

Stroop-like cue. In order to increase mental demand further, participants – as would be the 

case in real operations – had to respond to an auditory warning signal. Mental workload was 

assessed according to behavioral response (i.e. task accuracy), fNIRS and 

Electrocardiogram (ECG) measurements, and self-report scales.  

 

2. Materials and methods 

Twelve volunteers participated in the study (mean age = 25; SD = 5.25; 10 males). Ten 

were right-handed. The volunteers were fully informed about the experimental protocol, and 

informed consent was obtained before participation. They were given financial compensation 

for their part in the study. 

 The ECG data of one participant was removed from analyses due to problems with 

data collection. All volunteers reported normal or corrected vision. They were all native 

French speakers recruited among students from the ISAE campus in Toulouse, France. 

Participants performed the computer based ROV operation task, with varying levels of 

control difficulty and processing load.  
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2.1.  Task  

The experimental setting was designed to reproduce at a functional level the 

requirements associated with piloting. Two factors (control difficulty and processing load) 

were manipulated to generate different levels of workload. This approach allows the 

reproduction of key features of the real-world task while keeping a high degree of 

experimental control [45]. The computerized simulation involved the control of an aircraft with 

a joystick from a bird’s-eye view.  

The subjects were instructed to follow a target aircraft with the piloted one, by 

minimizing the distance between them. Visual stimuli were presented on a DELL 21" monitor 

placed one meter from the participants. The own aircraft was located at about 24cm from the 

left of the screen, while potential target aircraft were moving approximately 2cm to 4cm from 

the left. The target aircraft was indicated to the subject by a visual cue presented on the 

right-hand side of the screen (approximately 38cm from the left). The cue selection rule was 

inspired by the Stroop paradigm in order to reproduce high-level cognitive functions such as 

inhibition and cognitive control, which are deemed critical in piloting operations [46]. A cue 

consisted of a color name written with red, blue, green or yellow ink. The color name and the 

ink color were pseudo-randomly chosen so that they could either be congruent or 

incongruent. Target aircraft had a color name written on their wing, and participants were 

asked to follow the plane corresponding to the ink color of the given cue. Moreover, 20 

percent of the cues contained a word which was not a color name (e.g., “read”, “grin”…). In 

these cases, the participants were asked to follow the unnamed plane (regardless to the 

color of the ink). A new cue was presented for 1.6 seconds every 8.6 seconds. The interval 

between two presentations is referred to as an “object tracking phase”.  

Participants completed four experimental sessions resulting from the manipulation of 

two levels within two factors: difficulty of control and processing load. There were two 

levels of difficulty of control (easy or hard) manipulated by varying the strength of the 

crosswind (no crosswind in the easy condition, strong crosswind in the hard condition) and 

the inertia of the plane (low vs. high). The processing load was varied in terms of working 

memory, with an N-Back-like sub-task. It has been shown that processing load can be varied 

by manipulating the value of N, which is the number of items to be maintained and 

manipulated in working memory [41]. Subjects had to target the aircraft corresponding to the 

last cue presented (N; low load condition) or the cue before (N-1; high load condition). The 

combination of the two factors yielded a 2 × 2 repeated-measures design with four 

conditions: low load/easy control; low load/hard control; high load/easy control; and high 

load/hard control.  
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During the experimental sessions, participants also had to stop a randomly-initiated 

auditory alarm, by pressing a button on the joystick. Before the start of the experiment, 

subjects were taught to recognize a 2000ms duration, and were asked to stop the alarm 

2000ms after it began. A screen capture of the task is presented in Figure 1. 

 

2.2.  Procedure 

Participants were first trained in the piloting task. The training session consisted of 10 

object tracking phases for each processing load level, and was performed at both the easy 

and difficult levels of control.  

After the training session, participants performed the four experimental sessions 

consecutively, which were counterbalanced across participants. Each session comprised 40 

object-tracking phases and lasted approximately six minutes. During each session, 

hemodynamics of the PFC (i.e. inferred by variations of the oxygenation level) was recorded 

at a sample rate of 2Hz using the functional near infrared spectrometer fNIR100 (Biopac®) 

equipped with 16 optodes, and the acquisition software COBI Studio®. Each optode records 

hemodynamics of the prefrontal cortex in terms of oxygenation level variations in comparison 

to a baseline. Optode localization is shown on Figure 2. Heart rate data was recorded at a 

sample rate of 2048 Hz using the Biopac® electrocardiograph. Participants filled out the 

NASA-TLX (i.e. subjective workload) after each session, and general information concerning 

the participants’ feelings and strategies used were collected at the end of the experiment. 

 

2.3. Data Analyses 

 For each optode, fNIRS data (HbO2 concentration relative to a 10-second baseline) 

was normalized, and mean HbO2 concentrations for each condition were calculated over the 

session, using MatLab®. Visualization of the data was performed using fnirSoft professional 

edition®.  Using ECG data, mean LF/HF Ratio was estimated over each session using Fast 

Fourier Transformation (FFT) of the ECGLAB toolbox for MatLab®. Using the distance 

between the piloted and the target planes, we could determine whether or not the operator 

followed the correct plane; that is, during any particular object tracking phase, when the 

mean distance between the piloted plane and the target exceeded 3.1 times the wingspan of 

the planes, an error would be recorded for that phase. A performance score was then 

computed for each tracking task over the experimental session.  

 Repeated-measures ANOVAs with within subjects factors ‘processing load’ (low vs. 

high) and ‘control difficulty’ (easy vs. hard) were carried out to test whether the effects of 

control difficulty and processing load were statistically significant on the different measures 
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(heart rate variability, HbO2 concentration on each optode, object tracking performance, and 

NASA-TLX for global workload index and for each of the criteria). 

 

3. Results 

3.1. Performance on the aircraft tracking task 

Performance on the object tracking task (success rate of planes followed correctly) is 

shown in Figure 3. A repeated measures ANOVA showed a significant decrease in success 

rate with processing load, F(1,11) = 50.69, p < 0.001, and with control difficulty, F(1,11) = 

5.55, p < 0.05. This effect corresponded to a lower success rate for high processing load and 

for hard control difficulty. Moreover, there was a significant interaction F(1,11) = 4.85 ; p < 

0.05, revealing a decrease in performance with high processing load compared to low, but 

only within the hard control condition. 

 

3.2. Subjective Load 

The ANOVA conducted on the NASA-TLX data revealed significant main effects of 

processing load, F(1, 11) = 25.01, p < .001, and difficulty of control, F(1, 11) = 4.70, p = .053, 

indicating higher perceived load with high processing load and high control difficulty. 

However, the two-way interaction was not significant, F(1, 11) < 1. Mental demand (p < 0.001 

with Bonferroni-Holm correction for multiple testing) and Frustration (p < 0.05) dimensions 

were the most affected by the increase in task difficulty. Figure 4 shows how variations of 

experimental parameters affect perceived mental load. 

 

 

3.3. Mean oxygenation 

A main effect of control difficulty F(1,11) = 5.82 ; p < 0.05 was observed on optode 6, 

showing an increase in the level of HbO2 with an increase in piloting difficulty. A significant 

two-way interaction was also visible on optode 3 F(1,11) = 5.11 ; p < .05, revealing an 

increase in HbO2 concentration for the higher processing load in the easy control condition, 

but a decrease for high processing load in the hard control condition. The result is shown in 

Figure 5 for optode 3, located in the left dorsolateral prefrontal cortex. Although the effect is 

significant only on optode 3, the same tendency of variation is visible on all optodes in the 

right and left dorsolateral prefrontal cortex (see Fig. 6 for the data from all optodes). 
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3.4. Heart rate variability 

Average LF/HF ratio for each session was extracted from ECG data. Figure 7 shows 

average LF/HF ratio under each experimental condition. The ANOVA revealed no main effect 

of control difficulty or processing load (F(1,10) < 0.5 for both factors), but a significant two-

way interaction F(1, 10) = 9.45, p < .05. Within the easy control condition, LF/HF ratio was 

greater with high than low processing load; however, at the high level of control difficulty, 

LF/HF ratio was then lower with the high than the low processing load. This result is 

consistent with the fNIRS results that demonstrated the same pattern; a decrease of average 

HbO2 concentrations for high processing load in the hard control condition. 

 

3.5. Relation between the oxygenation level and performance 

A correlation was computed between the data measured on optode 3 and 

performance on the aircraft tracking task during the hardest session (high processing load 

and high control difficulty), in which a dramatic drop in performance was observed. A 

significant correlation between these measurements (r²=0.52, p < 0.05) suggested that 

subjects with a higher HbO2 ratio performed better on the tracking task. The linear fit is 

shown in figure 8. 

 

 

4. Discussion and Conclusion 

The objective of this study was to investigate mental workload, especially when 

mental demand exceeds cognitive resources. From a methodological point of view, fNIRS 

measurement was compared with subjective self-report and HRV, two well-established 

measures of mental workload. An experimental laboratory task was designed to artificially 

reproduce the mental demand of a real ROV operation.  

 

The first issue of this study was to ensure that our laboratory task was sufficiently 

engaging to elicit different levels of mental demand. Subjective NASA-TLX scores 

demonstrated that subjective mental workload increased across experimental conditions, 

thus from the operators’ perspective there were real differences in terms of frustration and 

mental demand across the different task conditions. Processing load and control difficulty 

both impacted upon aircraft tracking performance. Moreover, results suggest our task 

successfully involved high-level executive functions as changes in oxygenation level of some 

areas of the PFC were observed. First, control difficulty modulated oxygenation level in the 

optode 6 (close to the anterior medial PFC). This result is akin to Ayaz and colleagues’ 



 

10 

studies [32][34] that showed, with identical fNIRS apparatus, that supervising an aircraft’s 

trajectory in an air traffic control task induces anterior medial PFC activation. Though we did 

not find a main effect of processing load on PFC activation, our results revealed that 

interactions exist between subsets of task difficulty as showed by changes in oxygenation 

levels of optode 3 within the left DLPFC.  Again, our findings are similar to previous 

neuroimaging studies showing that this area is particularly sensitive to mental workload in 

controlled WM laboratory tasks [47][48][49][32][34] as well as ecologically valid tasks using 

ROV simulators [50][32].  

Indeed, variation of oxygenation level in optode 3, a part of the left DLPFC, tended to 

follow the inverted U-shaped pattern: HbO2 concentration increased progressively across 

difficulty levels but then decreased significantly during the most difficult condition. This 

finding is particularly interesting given that the DLPFC is considered to be a major anatomical 

correlate of the central executive [51], a region that plays a key role in task supervision and 

cognitive control [52]. This decline in DLPFC activity corresponded to the poorest 

performance, and was associated with the highest subjective mental load and the strongest 

feelings of frustration (during debriefing participants stated that the task in this condition 

could barely be performed). Taken together, these results suggest that the volunteers were 

unable to mobilize cognitive resources despite task demand, and may have faced mental 

overload. The correlation between left DLPFC activity and performance showed that this was 

particularly true for some of the participants, as those with the lowest levels of activation 

exhibited the poorest performance during the hardest experimental condition. This pattern of 

DLPFC lower activation associated with deleterious effects on performance has previously 

been observed using fMRI or EEG during highly demanding [39], stressing [52] and 

emotional conditions [53][54][55]. The pattern revealed with fNIRS is similar to previous 

results obtained with more fundamental cognitive tasks manipulating WM load [56][57]. 

 

  A possible explanation of the pattern observed on hemodynamics is related to the 

role played by memory updating in multitasking [58].  Indeed, as stated by Wickens [59] "the 

resources on which this updating activity depends seem to be limited in their availability, and, 

when deployed in the service of one task, their availability to be of service to other tasks is 

reduced". Along these lines, load sensitive brain areas have been shown to elicit either 

transient or sustained activations over time; a pattern that is often taken to suggest a 

distinction between areas involved in active maintenance and those involved in time-limited 

cognitive activities such as memory updating [60][61][62]. Thus, the possible role of the 

dorsolateral prefrontal cortex in transient activations during multitasking [62] could explain 

the decline of its activity during the most difficult condition in our experiment. However, the 

implication of the DLPFC either in the maintenance of information [60][61] or in updating 
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[62][12] remains uncertain. Further work is required to investigate whether activations 

observed in the DLPFC were induced sustainably or transiently. The observed inverted U-

shaped pattern of DLPFC activity in response to increased mental workload could also be 

explained by the fact that this study manipulated task difficulty to the extent that it exceeded 

participants’ mental resources. Although it could be argued that this apparent disengagement 

reflects a lack of motivation leading the participant to somehow abandon the task [41], in our 

experiment, the volunteers were constantly attempting to adjust the aircraft trajectory even in 

the most difficult condition. Moreover, it is worth noting that HRV, assessed through the 

LF/HF ratio, followed a similar pattern with a significant decrease during the hardest 

condition. This diminished influence of the sympathetic nervous system on the ANS suggests 

reduced catabolic activity and lower mobilization of mental resources to deal with the 

situation [63]. As this ratio is known to be a reliable indicator of mental load [27][28], this 

measure provides supplementary evidence to our fNIRS findings in favor of a deleterious 

mechanism on resource management induced by mental overload. Such a pattern of 

physiological response to mental overload has already been observed on other physiological 

responses such as pupil diameter [64][65], suggesting a change in ANS action to face mental 

overload. Moreover, it tends to confirm that mental overload could result from a lower level of 

both cerebral and ANS activities. Interestingly enough, and although no correlation between 

HRV data and PFC modulation was found here, it is worth noting that such correlations 

between cardiac metrics and prefrontal neuroimaging data have been found previously 

[66][67]. Indeed, these results provide a direct observation of the interactions between the 

PFC and cardiac activity as postulated by previous studies [68][69], although our results do 

not allow us to determine whether these interactions are mediated by a common factor, or 

whether there is  a causal link between neural and cardiac activity. Thus, this study shows 

the usability of fNIRS to conduct experiments and the possibility of using complementary 

behavioral (cognitive) and physiological measurements to derive the operator’s functional 

state. 

 

Ultimately, the fact that high perceived mental load could be associated with a related 

decline of the central and peripheral nervous systems might represent an issue for adaptive 

automation perspectives. Indeed, research on adaptive systems [70] aims to infer the human 

operator’s cognitive state from different measurement techniques and then adapt the nature 

of the interaction to overcome cognitive bottlenecks [71]. In the case of our study, the 

analysis of the level of cardiac and prefrontal activities does not allow us to formally 

discriminate the easiest from the hardest condition. One should also consider that the 

complexity of the link between physiological factors and mental workload, as higher task 

demands are not necessarily associated with a higher mental workload. Similar findings have 
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also demonstrated that mental workload cannot be estimated precisely with the sole 

properties of the task because individual factors (e.g., expertise [34]) or environmental 

factors [28], will impact on the mental effort deployed to perform a given task. Consequently, 

mental workload should be defined in terms of the interaction between the task and the 

individual performing the task [72]. This must be taken into account in the development of 

future adaptive automation by considering other measurements such as behavioral 

performance (e.g., operator’s reaction time and actions on the user interface, eye movement) 

as well as the state of the global system (e.g., failure).  
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APPENDIX : Figures 

 

Figure 1. Screen capture of the task. On the top is the controlled plane. On the left side of the screen, the target 

planes. On the right side of the screen, in the black box, the instruction, consisting of a name written in one of the four colors 

present (red, blue, yellow, green). If the name written is a color-name, the participant is to follow the plane corresponding to the 

color of the ink. If the name written is not a color-name, the participant is to follow the fifth plane, on which no color is present. 

 

 

Figure 2. Optode localization of the Biopac® fNIR100 device. Adapted from fnirSoft® software for NIRS data 

analyses. 
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Figure 3. Performance on the aircraft tracking task across the four experimental conditions. The error bars represent 

the standard error of the mean. 

 

Figure 4. Mean NASA-TLX mental demand scores across the four experimental conditions. The error bars represent 

the standard error of the mean. 
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Figure 5. Normalized mean HbO2 changes across the four experimental conditions on optode 3. The error bars 

represent the standard error of the mean. 

 

 

Figure 6. Normalized oxygenation data for each optode over the four sessions. The decrease in oxygenation during 

the last session, although being significant only at optode 3, is visible on many optodes, especially those in the dorsolateral 

prefrontal cortex (optodes 1, 3, 13 and 15).  
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Figure 7. Average LF/HF Ratio across the four experimental conditions. The error bars represent the standard error 

of the mean. 

 

Figure 8. Correlation between task performance and normalized oxygenation changes on optode 3 under high 

processing load within hard control difficulty. 

 

 

 

 

 

 

 
 


