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Application of Convex Relaxation

to Array Synthesis Problems
Benjamin Fuchs, Member, IEEE.

Abstract— A general procedure to solve efficiently non convex
array synthesis problems is presented. It is based on the SemiDef-
inite Relaxation (SDR) technique. The way to properly relax the
constraints in order to formulate the synthesis of shaped beams,
phase-only arrays and reconfigurable arrays as semidefinite
programming problems is detailed. These so-approximated array
synthesis problems are then convex, easy to implement and
can be efficiently solved using off-the-shelf numerical routines.
The conditions under which the relaxed problems provide the
optimal solution to the original non convex synthesis problems
are specified. Various representative numerical comparisons with
arrays designed by other approaches show the validity of the
proposed method and illustrate its potentialities.

Index Terms— Antenna synthesis, array antennas, shaped
beam, phase-only control, reconfigurable arrays, convex opti-
mization.

I. INTRODUCTION

A
HOST of applications ranging from radar and remote

sensing to communication systems require the design of

efficient antenna arrays. This is the reason why the research

field of array synthesis has received a lot of attention since

the fifties.

Among the array synthesis problems, a large number are

difficult optimization problems because of their non convexity.

Let us cite, for instance, the synthesis of:

- shaped beams where the desired power radiated by the array

is both upper and lower bounded,

- phase-only arrays in which the excitation magnitudes are

known and fixed and only the phases are optimized,

- reconfigurable arrays where various patterns are generated

with common excitation magnitudes.

Many strategies have been proposed to cope with these

non convex optimization problems. Notably, the flexibility of

global optimization strategies has been extensively exploited

[1]–[4] with the known drawback of the computational cost

and without any guarantee regarding the optimality of the

solution. Methods based on projection techniques have also

been successfully applied to synthesize shaped beams [5], [6]

and reconfigurable arrays with phase-only control [7], [8].

Finally, an original approach, that exploits by clever means

the separate synthesis of pencil and shaped beam patterns,

has been recently proposed in [9] to synthesize phase-only

reconfigurable linear arrays.

With the recent advances in convex optimization, the

SemiDefinite Relaxation (SDR) technique has lately shown
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a great significance and relevance on many applications in

signal processing and communications as reviewed in [10].

The concept of SDR allows to relax the constraints of the

original problem in order to formulate it as a convex and

therefore easier to solve optimization problem. The SDR is

thus an approximation technique for difficult optimization

problems. This technique has been very recently successfully

used to synthesize phased arrays with notches in the beam

pattern [11], [12].

In this paper, a general procedure based on the SDR technique

is developed and described to efficiently solve approximately

various non convex array synthesis problems. The way to

apply this powerful and computationally efficient approxi-

mation technique to the synthesis of shaped beams, arrays

with phase-only control and reconfigurable arrays is detailed.

The conditions under which the relaxed problems provide the

optimal solution to the original non convex synthesis problems

are specified. As shown in the numerical examples, it turns out

that the proposed approach retrieves known optimal solutions

in cases where these are known.

This paper is organized as follows. In Section II, the antenna

array notations are introduced and the SDR technique is

explained in the array synthesis context. The way to formulate

the synthesis of shaped beams, arrays with phase-only control

and reconfigurable arrays as convex optimization problems

is detailed in Section III. A set of representative numerical

examples are reported in Section IV to both validate and

illustrate the proposed procedure. Conclusions are drawn in

Section V.

II. PROBLEM FORMULATION AND RESOLUTION

A. Antenna Array

Let us consider an array composed of N elements placed

at locations r⃗n with n = 1, · · · , N . For the sake of clarity, the

problem is described for a one-dimensional pattern synthesis.

The synthesis is performed over the polar angle θ in a fixed

azimuthal plane φ = φ0 that is omitted in the notations.

The extension to a two-dimensional (2-D) pattern synthesis,

i.e. a synthesis over both angular directions θ and φ, is

straightforward. Each element n radiates a pattern gn(θ) in

the direction θ. The far field f(θ) radiated by the array is

then:

f(θ) = a(θ)Hw, (1)

with a(θ) =
[

g1(θ)e
j 2π

λ
r⃗1.r̂(θ) · · · gN (θ)ej

2π

λ
r⃗N .r̂(θ)

]H

where w is the complex (magnitude and phase) excitation

vector, r̂(θ) is the unit vector in the direction θ and .H denotes
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the Hermitian transposition.

Let us introduce the notation fi = f(θi) and ai = a(θi). The

real value version of (1) in the direction θi is then:

[R(fi) I(fi)]
T = Ai x, (2)

with Ai =

[

R(ai
T ) −I(ai

T )
I(ai

T ) R(ai
T )

]

and x =

[

R(w)
I(w)

]

where Ai ∈ R
2×2N , x ∈ R

2N×1, .T is the transpose operator,

R and I stands for the real and imaginary parts respectively.

The power radiated by the array is then:
∣

∣fi
∣

∣

2
= xT Qix, with Qi = AT

i Ai. (3)

Note that in the formulation (3), the power radiated by arbi-

trary arrays, i.e. arrays of any given geometry and composed of

elements with any known radiation patterns, can be considered.

Let us recall that for any real symmetric matrix C and any real

vector x:

xT Cx = Tr(xT Cx) = Tr(CxxT ) (4)

where Tr(A) is the trace (sum of the diagonal coefficients) of

the matrix A. The power (3) radiated by the array becomes:
∣

∣fi
∣

∣

2
= Tr(QiX), with X = xxT ∈ R

2N×2N . (5)

At this step, it is important to observe that X = xxT is

equivalent to X being a symmetric positive semidefinite matrix

(denoted X ≽ 0) of rank one (rank(X) = 1).

B. The concept of SemiDefinite Relaxation

Let us consider a typical array synthesis problem in order to

explain the SDR technique. Many synthesis problems amount

to look for the array excitations x such that the power radiated

by the array is constrained or equivalently |fi|2 belongs to a

set Ci for the directions i = 1, ..., I . With (3), such problem

can be formulated as follows:

find x such that xT Qix ∈ Ci, for i = 1, ..., I. (6)

Using (4) and (5), the problem (6) is equivalent to:

find X such that







Tr(QiX) ∈ Ci, for i = 1, ..., I
X ≽ 0
rank(X) = 1

. (7)

The problem (7) is not convex because of the rank constraint.

By dropping this constraint, we obtain the following relaxation

of (7):

find X such that

{

Tr(QiX) ∈ Ci, for i = 1, ..., I
X ≽ 0

(8)

that is called SemiDefinite Relaxation (SDR) since it is an

instance of semidefinite programming. The convex formulation

(8) is convenient because it can be solved optimally by readily

available software such as CVX [13].

Of course, there is a price to pay in turning the NP-hard

problem (6) into the polynomial-time solvable problem (8).

The main issue is indeed to transform the globally optimal

solution X∗ of the SDR (8) into a feasible point x̃ of the

original synthesis problem (6). If rank(X∗) = 1, then X∗ =
x∗x∗T and x∗ is not only a feasible point but also the optimal

solution of (6). However, standard interior point methods

solving semidefinite programs do not necessarily return a low-

rank solution and, in general, the solution X∗ of (8) is such

as rank(X∗) > 1.

To encourage low-rank solutions, several techniques reviewed

in [14] have been proposed. A well known convex heuristic

is to minimize the trace of X which amounts to minimize the

sum of the eigenvalues of X and therefore its rank. Specifically,

the reweighted minimization algorithm, detailed in [14], can

be used. At each step k, the following convex optimization

problem is solved:

min
Xk

Tr
(

(Xk−1 + δI)−1Xk
)

(9)

subject to

{

Tr(QiX
k) ∈ Ci, for i = 1, ..., I

Xk ≽ 0

where δ can be seen as a small regularization constant, I is

the identity matrix and X0 = I. Nevertheless, the procedure

(9) does not ensure the obtention of a rank one solution X∗

of (8).

When rank(X∗) > 1, one intuitive way to extract a vector x̃

that is feasible for (6) is to apply a rank one approximation

X∗

1 of X∗. The best one, in the least two norm sense, can be

obtained via a eigenvalue decomposition [15] as follows:

X∗

1 = σ1u1u1
T , (10)

where σ1 is the largest eigenvalue of X∗ and u1 is the

corresponding eigen vector. The vector x̃ =
√
σ1u1 is then a

potential solution of (6) provided that it is a feasible solution.

Finally, it is important to point out that even though the

extracted solution x̃ is feasible for (6), there is no guarantee

that it is an optimal solution. For otherwise, it would mean

that we have solved a NP-hard problem in a polynomial time.

III. APPLICATION OF SEMIDEFINITE RELAXATION TO

ARRAY SYNTHESIS PROBLEMS

The SDR technique described in Section II is here applied

to three kinds of non convex array synthesis problems.

A. Shaped Beam Synthesis

The synthesis of shaped beams generally requires to find

the array excitations to generate a power pattern complying

to a given mask. For this mask feasibility problem, the power

radiated by the array is typically:

• upper and lower bounded by u(θ) and l(θ) respectively

over an angular region SB (Shaped Beam),

• upper bounded by an envelope ρ(θ) over the region SL

(SideLobe).

These constraints can be formulated:
{

l(θ) ≤
∣

∣f(θ)
∣

∣

2 ≤ u(θ), for θ ∈ SB
∣

∣f(θ)
∣

∣

2 ≤ ρ(θ), for θ ∈ SL
(11)

which yields respectively after discretization:
{

lm ≤
∣

∣fm
∣

∣

2 ≤ um, for m = 1...,M
∣

∣fq
∣

∣

2 ≤ ρq, for q = 1..., Q
(12)
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where fi = f(θi).
Using (3), the shaped beam synthesis problem becomes:

find x such that







xT Qmx ≥ lm, for m = 1...,M
xT Qmx ≤ um, for m = 1...,M
xT Qqx ≤ ρq, for q = 1..., Q

.

(13)

According to (8), the SDR of (13) is:

find X such that (14)

X ∈ S :







Tr(QmX) ≥ lm, for m = 1...,M
Tr(QmX) ≤ um, for m = 1...,M
Tr(QqX) ≤ ρq, for q = 1..., Q

with X ≽ 0.

The set of constraints S defines the shaped beam problem.

As detailed at the end of Section II-B, the procedure (9) is used

to find a rank one matrix X that satifies (14). If rankX > 1,

the approximation (10) is used to find an excitation vector x̃

that is a feasible solution of the original shaped beam synthesis

problem (13).

B. Phase-Only Synthesis

For the synthesis of arrays with phase-only control, the exci-

tation magnitudes are fixed and known (|wn|2 = αn, for n =
1, ..., N ) while the phases are left free. Let us remind that the

excitation vector x is:

x =
[

R(w1) · · ·R(wN ) I(w1) · · · I(wN )
]T ∈ R

2N . (15)

The excitation magnitudes can be expressed as follows:

αn = |wn|2 = xT Qnx, n = 1, ..., N. (16)

where Qn are N diagonal matrices of dimension 2N × 2N :

Qn(i, i) =







1 if i = n

1 if i = n+N

0 elsewhere

. (17)

Using (4), the excitations magnitudes (16) can be written:

|wn|2 = Tr(QnX) where X ≽ 0 and rank(X) = 1. (18)

The synthesis of an array with phase-only control that radiates

a pattern defined by a set of constraints C is then:

find X such that







Tr(QnX) = αn, n = 1, ..., N
X ∈ C
X ≽ 0 and rank(X) = 1

(19)

where the excitation magnitude αn are set as desired. The set

of constraints C is defined by:

• S in (14) to generate a shaped beam,

• F in (22) of Appendix I to generate a focused beam,

• D in (24) of Appendix II to generate a difference pattern.

To solve (19), the SDR technique is applied i.e. the rank

constraint is dropped. The procedure detailed at the end of

Section II-B is then used to find the excitation vector x solution

of the phase-only synthesis problem.

C. Synthesis of Reconfigurable Array by Phase-Only Control

A single array can be used to radiate more than one

pattern. This array is reconfigurable by phase-only control

when the switch between patterns is carried out by modifying

only the excitation phases. A simple and efficient procedure

to synthesize reconfigurable arrays by phase-only control,

i.e. to determine simultaneously both the common excitation

amplitudes and the various phases, is proposed.

For the sake of simplicity, let us detail the procedure for

a reconfigurability between two patterns. The extension to

more than two patterns is straightforward. Each pattern j is

defined by a set of constraints Cj . The synthesis problem

amounts to look for the excitation vectors x1 and x2 of same

magnitude that generate C1 and C2. Using (16) and (17), the

equality of the excitation magnitudes is enforced by setting

x1
T Qnx1 = x2

T Qnx2 or equivalently:

xT Qn1
x = xT Qn2

x with xT = [x1
T x2

T ] ∈ R
1×4N

where Qn1
and Qn2

are 2N diagonal matrices of dimension

4N × 4N :

Qn1
(i, i) =







1 if i = n

1 if i = n+N

0 elsewhere

and Qn2
(i, i) =







1 if i = n+ 2N
1 if i = n+ 3N
0 elsewhere

.

These constraints can be easily modified in case not all but

only a few excitation magnitudes are common between the

two patterns.

The synthesis of an array that is reconfigurable between C1
and C2 by phase-only control is formulated as follows:

find X such that















Tr(Qn1
X) = Tr(Qn2

X)
X ∈ C1
X ∈ C2
X ≽ 0 and rank(X) = 1

. (20)

The set Ci is either equal to S , F or D to generate a shaped

beam, a focused beam or a difference pattern respectively.

The SDR technique and matrix decomposition described at the

end of Section II-B are then applied to retrieve the excitation

vectors x1 and x2.

IV. NUMERICAL RESULTS

Various examples of shaped beam synthesis and synthesis

of reconfigurable array with phase-only control are presented

to both validate and illustrate the potentialities of the approach

presented in Sections II and III.

A. Shaped Beam Synthesis

1) Sectoral Pattern Synthesis: The synthesis of a shaped

beam with a linear array composed of 20 isotropic elements

that are uniformly spaced (0.45λ) is addressed. The goal is

to achieve a sectoral power pattern with a ripple of ±0.1 dB

in the shaped beam region (SB) defined by |θ| ≤ 40 ◦ and to

minimize the sidelobe level for angles such that |θ| ≥ 50 ◦.

This specific problem has an optimal solution obtained via



4

0 2 4 6 8
0

0.2

0.4

0.6

|w
i|

Element location [ λ]

−1 −0.5 0 0.5 1
−60

−40

−20

0

P
o
w

er
 p

at
te
rn

 [
d
B
]

sin θ

(a) (b)

proposed

approach

[16]

−0.1

0.1

−0.5 0.5

Fig. 1. Sectoral shaped beam synthesis of a 20 element linear array. (a) Far field pattern obtained by the proposed approach (solid line) and by the reference
optimal method [16] in dashed line. (b) Array element excitations obtained by [16] and the proposed approach.

spectral factorization in [16] that is used as a reference to

assess the proposed method. The synthesized far field patterns

and the corresponding excitations are given in Fig. 1(a) and

(b) respectively. The radiation performances obtained by the

proposed approach are very close to the optimal ones (same

sidelobe level and similar shaped beam ripple) even if the

excitations are quite different.

2) Cosecant Pattern Synthesis: The synthesis of a cosecant

beam with a linear array composed of 30 isotropic elements

that are half wavelength spaced is considered. An heuristic

procedure (tabu search algorithm) has been used to find the

array excitations in [1]. The proposed approach also manages

to find a solution that satisfies this stringent far field template.

The far field patterns and array element excitations are plotted

in Fig. 2.

B. Synthesis of Reconfigurable Array by Phase-only Control

1) Focused Beam - Shaped Beam Synthesis: Let us consider

an example of reconfigurable array synthesis that is presented

in [9]. The goal is to determine the complex excitations of

a linear equispaced array composed of 20 half wavelength

spaced isotropic elements. By only changing the phases of the

excitations, the pattern radiated by the array must switch from

a focused to a shaped sectoral beam and vice versa.

The constraints on the power patterns (see the blue dashed

lines plotted in Fig. 3(a)) are the following:

- for the focused beam, a sidelobe level below -27.45 dB for

| sin θ| ≥ 0.15,

- for the sectoral beam, a sidelobe level below -25.5 dB for

| sin θ| ≥ 0.35 and a shaped beam ripple of ±0.43 dB over

| sin θ| ≤ 0.2.

The synthesized far field patterns and array element excita-

tions are plotted in Fig. 3. The proposed approach allows

to determine at once (in less than 30 s on a standard laptop)

both the common excitation magnitudes and different phases

to generate both the focused and shaped beam patterns.

2) Shaped Beam - Shaped Beam Synthesis: Let us consider

an array composed of thirty half wavelength spaced isotropic

elements. The goal is to find the two sets of excitations of

common magnitudes, such that the array can switch between

a sectoral and a cosecant beam by only changing the phases.

In each case, the ripple of the shaped beam is of ±0.5 dB and

the sidelobes are below -15 dB.

The synthesis results of the reconfigurable array by phase-only

control are plotted in Fig. 4. The proposed approach allows to

determine at once both the common excitation magnitudes and

different phases to generate a sectoral and a cosecant beam.

3) Focused Beam (Sum) - Difference Pattern Synthesis:

The synthesis of a reconfigurable linear array composed of

ten half wavelength spaced isotropic elements is addressed.

The requirements provided in the first numerical example of

[18] are followed. Six excitation amplitudes are shared to

switch from a focused beam (also known as sum pattern) to a

difference pattern. The radiating constraints are the following:

- for the sum pattern, a beamwidth (null to null) of 30.4 ◦ and

sidelobes below -24 dB,

- for the difference pattern, a beamwidth of 52 ◦ and sidelobes

below -18.8 dB.

The proposed approach recovers the optimal results given in

[18]. The radiation patterns and excitations are shown in Fig.

5 and Table I respectively.
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Fig. 5. Synthesis of reconfigurable array with common excitation magnitudes:
sum and difference patterns.

V. CONCLUSION

A general procedure has been developed and described to

approximately solve a wide range of difficult, because not
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Fig. 2. Cosecant beam synthesis of a 30 element linear array. (a) Far field pattern obtained by the proposed approach (solid line) and the global optimization
method in [1] (dashed line) with (b) the corresponding array element excitation magnitudes.
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Fig. 3. Synthesis results of reconfigurable array by phase only control: (a) focused beam and sectoral far field radiation pattern with the corresponding
element excitation (b) magnitudes and (c) phases.
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Fig. 4. Synthesis results of reconfigurable array by phase only control: (a) sectoral and cosecant far field radiation pattern with the corresponding element
excitation (b) magnitudes and (c) phases.

convex, array synthesis problems. The constraints of these

problems are relaxed in order to transform the array synthesis

into a convex optimization problem. The way to apply the

convex relaxation to the synthesis of shaped beams, arrays

with phase-only control and reconfigurable array with common

excitation magnitudes is detailed. This powerful approximation

technique, known as semidefinite relaxation technique, pro-

vides, under certain conditions given in the paper, the optimal

solution of the original non convex synthesis problem.

The advantages of the proposed procedure over competing

methods are manifold. First, it is versatile and can deal

with a wide range of synthesis problems with only a small

modification of the constraints as shown in the paper. Second,

the method is easy to implement and there is no parameter to

be tuned. Moreover, it is computationally effective and only

calls for freely available routines. Finally, there is no restriction

regarding the type of array and pattern to be synthesized.

Indeed, arbitrary arrays and any beam patterns (focused or
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TABLE I

NORMALIZED EXCITATIONS FOR THE FOCUSED BEAM (SUM) -

DIFFERENCE PATTERN SYNTHESIS

n wFB wDP

1 0.4388 -0.4388
2 0.5252 -0.5252
3 0.7338 -0.7338
4 0.8993 -0.6906
5 1.0000 -0.2806
6 1.0000 0.2806
7 0.8993 0.6906
8 0.7338 0.7338
9 0.5252 0.5252

10 0.4388 0.4388

shaped beam pattern with arbitrary sidelobe envelope, differ-

ence patterns, etc...) can be handled.
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APPENDIX I

SYNTHESIS OF FOCUSED BEAM PATTERN

The synthesis of a focused beam pattern can be formulated

in a convex way as shown in [19], [20]. This problem amounts

to find the array excitations such that the constraints F are

satisfied:

F :

{

f(θ0)
2 ≥ 1

f(θ)
2 ≤ ρ(θ), for θ ∈ SL

(21)

where θ0 is the main beam direction. The synthesis of a

focused beam pattern amounts to find X such that X ∈ F
with:

F :

{

Tr(Q0X) ≥ 1,
Tr(QqX) ≤ ρq, for q = 1..., Q

(22)

with X ≽ 0 and rank(X) = 1.

APPENDIX II

SYNTHESIS OF DIFFERENCE PATTERN

The synthesis of a difference pattern can be formulated in

a convex way as shown in [21]. This problem amounts to find

the array excitations such that the following constraints are

satisfied:

D :



















∂f(θ)
2

∂θ

∣

∣

∣

∣

∣

θ=θ0

≥ γ

f(θ0)
2
= 0

f(θ)
2 ≤ ρ(θ), for θ ∈ SL

(23)

where γ is a constant to ensure an important slope in the

direction θ0 where the target is (see [21] for more details).

The synthesis of a difference pattern amounts to find X such

that X ∈ D with:

D :







Tr(Qd0
X) ≥ γ′

Tr(Q0X) = 0,
Tr(QqX) ≤ ρq, for q = 1..., Q

(24)

with X ≽ 0 and rank(X) = 1.

where the diagonal matrix Qd0
of dimension 2N×2N is such

that:

Qd0
(i, i) =

{

|r⃗i|, if i = 1, ..., N
|r⃗i−N |, if i = N + 1, ..., 2N

.

REFERENCES

[1] A. Akdagli and K. Guney, ”Shaped-beam pattern synthesis of equally
and unequally spaced linear antenna arrays using a modified tabu search
algorithm,” Microwave Opt. Technol. Lett., vol. 36, no. 1, pp. 16-20, Jan.
2003.

[2] G.K. Mahanti, S. Das, and A. Chakraborty, ”Design of phase-
differentiated reconfigurable array antennas with minimum dynamic
range ratio,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp.
262-264, 2006.

[3] A. Trastoy, Y. Rahmat-Samii, F. Ares, and E. Moreno, ”Two-pattern
linear array antenna: Synthesis and analysis of tolerance,” IEE Proc.-
Microw. Antennas Propag., vol. 151, no. 2, pp. 127-130, 2004.

[4] P. Rocca, G. Oliveri and A. Massa, ”Differential Evolution as applied to
Electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 53,
no. 1, pp. 38-49, Feb. 2011;

[5] O.M. Bucci, G. Franceschetti, G. Mazzarella, and G. Panariello, “Inter-
section approach to array pattern synthesis,” Proc. IEE, vol. 137, Pt. H,
no. 6, pp.349-358, Dec. 1990.

[6] O.M.Bucci, G.D’Elia, G. Mazzarella, and G.Panariello, ”Antenna pattern
synthesis: a new general approach,” Proceedings of the IEEE, vol. 82,
pp. 358-371, March 1994.

[7] O.M. Bucci, G. Mazzarella, and G. Panariello, ”Reconfigurable arrays
by phase-only control,” IEEE Trans. Antennas Propag., vol. 39, no. 7,
pp. 919-925, Jul. 1991.

[8] R. Vescovo, ”Reconfigurability and beam scanning with phase-only
control for antenna arrays,” IEEE Trans. Antennas Propag., vol. 56, no.
6, pp. 1555-1565, 2008.

[9] A.F. Morabito, A. Massa, P. Rocca, and T. Isernia, ”An Effective
Approach to the Synthesis of Phase-Only Reconfigurable Linear Array,”
IEEE Trans. on Antennas and Propagation, vol. 60, no. 8, pp. 3622-3631,
Aug. 2012.

[10] Z.-Q. Luo, W.-K. Ma, A. Man-Cho So, Y. Ye, and S. Zhang, ”Semidef-
inite Relaxation of Quadratic Optimization Problems,” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 20-34, May 2010.

[11] P.J. Kajenski, ”Phase Only Antenna Pattern Notching Via a Semidefinite
Programming Relaxation,” IEEE Trans. on Antennas and Propagation,
vol. 60, no. 5, pp. 2562-2565, May 2012.

[12] P.J. Kajenski, ”Phase-Only Monopulse Pattern Notching Via a Semidef-
inite Programming,” APS, Chicago, 2012.

[13] CVX Research, Inc. CVX: Matlab software for disciplined convex
programming, version 2.0 beta. http://cvxr.com/cvx, September 2012.

[14] M. Fazel, H. Hindi, and S. Boyd, ”Rank Minimization and Applica-
tions in System Theory,” Proc. American Control Conference, Boston,
Massachusetts, June 2004.

[15] G. Strang, ”Introduction to Linear Algebra,” Wellesley Cambridge Press,
4th edition, 2009.

[16] S.-P. Wu, S.P. Boyd, and L. Vandenberghe, “FIR filter design via
spectral factorization and convex optimization,” Chapter 5 in Applied
and Computational Control, Signals and Circuits, B. Datta, ed., vol. 1,
pp. 215-245, 1998.

[17] C.L. Dolph, ”A current distribution for broadside arrays which optimizes
the relationship between beam width and sidelobe level,” Proc. IRE, vol.
34, pp.335-348, June 1946.

[18] A.F. Morabito and P. Rocca, ”Optimal Synthesis of Sum and Difference
Patterns with Arbitrary Sidelobes subject to Common Excitations Con-
straints,” IEEE Antennas and Wireless Propag. Letters, vol. 9, pp.623-
626, 2010.

[19] H. Lebret and S. Boyd, ”Antenna pattern synthesis via convex optimiza-
tion,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 526-531, March
1997.

[20] O. M. Bucci, L. Caccavale and T. Isernia, ”Optimal far-field focusing of
uniformly spaced array subject to arbitrary upper bounds in non target
directions,” IEEE Trans. Antennas Propag., vol. 50, no. 11, pp. 1539-
1554, Nov. 2002.

[21] O.M. Bucci, M.D’Urso, and T. Isernia, ”Optimal synthesis of difference
patterns subject to arbitrary sidelobe bounds by using arbitrary array
antennas,” IEE Proc. Microw. Antennas Propag., vol. 152, no. 3, pp.
129-137, June 2005.



7

Benjamin Fuchs (S’06-M’08) received the M.S.
and electrical engineering degrees in 2004 from the
National Institute of Applied Science of Rennes,
France. He received the Ph.D. degree in 2007 from
the University of Rennes 1, France, and was during
that period a visiting scholar at the University of
Colorado at Boulder, USA. In 2009, he joined the
Institute of Electronics and Telecommunications of
Rennes (IETR) as a researcher at the Centre National
de la Recherche Scientifique (CNRS). He has spent
three years (2008 as postdoctoral research fellow and

2011-2012 on leave from CNRS) at the Swiss Federal Institute of Technology
of Lausanne (EPFL) in Switzerland.
His research interests include millimeter-wave antennas, focusing devices (lens
antennas) and array synthesis methods.


