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INTRODUCTION

In a design process, the modeling of electromechanical devices commonly involves precisely determining the forces acting on ferromagnetic materials. For a rigid motion, only the knowledge of the global force is necessary, however, for a device with deformable material, it is essential to know the local force distribution. A classical method to numerically solve such problems is the finite element one (FEM), but for devices with a huge volume of free space compared with the active structure or with a high size ratio between the geometric objects, problems of accuracy and convergence to the solution can be present [START_REF] Rakotoarison | Formal sensitivity computation of magnetic moment method[END_REF]. In such case, integral methods are attractive alternatives [START_REF] Trowbridge | Integral equations in electromagnetics[END_REF].

Integral formulations of the magnetostatic problem are particularly advantageous for the numerical solution of open-boundary problems, which include ferromagnetic materials, because only the active regions containing these materials need to be discretized. This is particularly useful for problems with a lot of air compared with active regions, such as Mag-MEMS devices [START_REF] Cugat | Magnetic micro-actuators and systems (magmas)[END_REF]. In this case, integral methods lead to high accuracies for field computations [START_REF] Kettunen | Volume integral equations in non-linear 3-d magnetostatics[END_REF]. A volume integral method (VIM) using the magnetic scalar potential is used.

The computation of the magnetic force can be conducted by different methods [START_REF] Ren | Comparison of different force calculation methods in 3d finite element modelling[END_REF]: Maxwell's tensor, virtual works, equivalent currents or charges, eggshell method [START_REF] Henrotte | The eggshell approach for the computation of the electromagnetic forces in 2d and 3d[END_REF], and so on. These methods provide global magnetic forces that converge to the same value in spite of different densities, some of which are improbable [START_REF] Vandevelde | A survey of magnetic force distributions based on different magnetization models and on the virtual work principle[END_REF]. The virtual work method is more general [START_REF] Bossavit | Virtual power principle and maxwell's tensor: which comes first?[END_REF] and provides good results in the framework of the finite element method [START_REF] Ren | Local force computation in deformable bodies using edge elements[END_REF]. Few works deal with magnetic forces in the framework of the integral formulations, and when this is done, they are restricted to the computation of global forces [START_REF] Hantila | Force evaluation formula for integral methods of magnetic field computation[END_REF]. So, an adaptation of the virtual work principle to the VIM is proposed.

This paper presents in the first part a magnetostatic formulation in the framework of VIM . The second part is dedicated to the adaptation of the virtual work principle to this formulation. In the linear case, a local force calculation method based on local application of virtual work principle is also proposed. The last one presents the results obtained with two applications.

VOLUME INTEGRAL METHOD

Let us consider the following magnetostatic problem (Figure 1). A three-dimensional simply connected region f is filled with isotropic ferromagnetic material characterized by the known magnetic susceptibility , such as

M D .kHk/H; ( 1 
)
where M is the magnetization and H the magnetic field. Primary sources of magnetic field in which currents flow are associated to the region j . Both regions, f and j , are in free space 0 so that these regions do not overlap, D f [ j [ 0 . We note the boundary between the ferromagnetic material f and the free space 0 . As the simply connected region f contains no current sources and according to the Maxwell's equations, the magnetic field H derives from a magnetic scalar potential în the region f :

H D r ˆ: (2) 
The source magnetic field H 0 also derives from a magnetic scalar potential ˆ0:

H 0 D r ˆ0: (3) 
The following volume integral equation using the total scalar potential ˆ [START_REF] Kalimov | Application of a hybrid integrodifferential method for analysis of thin magnetic shields[END_REF] is considered :

ˆ.r/ 1 4 Z f M.r 0 / .r r 0 / jr r 0 j 3 d 0 D ˆ0.r/; 8r 2 f ; (4) 
where r and r 0 are respectively the coordinates of the computation and integration points. For notational convenience, the dependency of variables and functions on computation and integration points is often omitted.

In accordance with the advantage of the VIM, only the domain f is meshed. A tetrahedral mesh is used, and the potential ˆis approximated by first-order nodal shape functions:

ˆD X i ˆi ˛i ; (5) 
where ˆi and ˛i are respectively the degree of freedom (DOF) of the potential ˆand the first-order nodal shape function associated with the mesh node i. In the linear case, Equation ( 4) is solved using a collocation method at mesh nodes [START_REF] Han | Integral equation method using total scalar potential for the simulation of linear or nonlinear 3D magnetostatic field with open boundary[END_REF]. It leads to the system of algebraic equations:

.OEI C OEA. //ˆD ˆ0;

with

.I / ij D ı ij ; (7) 
.A. // ij D 1 4

Z f .r 0 / r ˛j .r 0 / .r i r 0 / jr i r 0 j 3 d 0 ; (8) 
where r i is the coordinates of the mesh node i, and ˆand ˆ0 are the vectors of DOFs associated respectively to the potentials ˆand ˆ0. In the nonlinear case, a fixed point scheme is used on Equation (4) [START_REF] Carpentier | Resolution of nonlinear magnetostatic problems with a volume integral method using the magnetic scalar potential[END_REF].

If the domain f is not simply connected, a cut is used to split it into simply connected domains. A drawback of the VIM is the obtention of a full interaction matrix (8) making the resolution of problems that require fine meshes difficult. That is why compression techniques could be applied to avoid this limitation [START_REF] Greengard | A fast algorithm for particle simulations[END_REF][START_REF] Bebendorf | Adaptive low-rank approximation of collocation matrices[END_REF]. Moreover the computation of the interaction matrix (8) requires precautions for the evaluation of the integral I 1 on each element [START_REF] Carpentier | Resolution of nonlinear magnetostatic problems with a volume integral method using the magnetic scalar potential[END_REF]:

I 1 .r/ D Z e S
.r r 0 / jr r 0 j 3 d 0 ;

where e is the domain of the element e and S is a uniform vector corresponding to r ˛i , which are uniform on each mesh element according to the first-order discretization (5) and the tetrahedral mesh. When the computation point r is closed to the integration point r 0 , an analytical formula [START_REF] Rubeck | Analytical calculation of magnet systems: magnetic field created by charged triangles and polyhedra[END_REF] is considered to evaluate (9); otherwise, a numerical integration scheme with Gauss points is used.

In order to compute the source potential ˆ0, the minimization problem associated to the equation (3) is considered:

min ˆ0 .H 0 C r ˆ0/ 2 ; ( 10 
)
where H 0 can be computed analytically [START_REF] Urankar | Vector potential and magnetic field of current-carrying finite arc segment in analytical form, part i: filament approximation[END_REF]. In the domain f , the potential ˆ0 is approximated with first-order nodal shape functions similar to Equation [START_REF] Ren | Comparison of different force calculation methods in 3d finite element modelling[END_REF]. A FEM is used on the weak formulation associated to the problem [START_REF] Hantila | Force evaluation formula for integral methods of magnetic field computation[END_REF]. It leads to the resolution of a system of algebraic equations:

OEDˆ0 D C; (11) 
with

.D/ ij D Z f r ˛i r ˛j d ; (12) 
.

C / i D Z f r ˛i H 0 d : (13) 

VIRTUAL WORK PRINCIPLE

The magnetostatic problem is solved using the previous VIM. The vectors of DOFs ˆand ˆ0 are then known and verify respectively relations [START_REF] Henrotte | The eggshell approach for the computation of the electromagnetic forces in 2d and 3d[END_REF] and [START_REF] Kalimov | Application of a hybrid integrodifferential method for analysis of thin magnetic shields[END_REF]. The susceptibility is computed using the magnetic behavior law (1).

Application on a magneto-mechanical system

Let us consider that the source field is created by a coil without resistance. According to the virtual work principle, the application of energy conservation law to a magneto-mechanical system without losses [START_REF] Woodson | Electromechanical Dynamics, Part II: Fields, Forces and Motion[END_REF] gives

‰ dI D d! co mag C F du; ( 14 
)
where I is the electric current in the coil, ‰ the magnetic flux through the coil section, ! co mag the magnetic co-energy, F the magnetic force, and u a virtual displacement of the system.

The magnetic co-energy is defined by

! co mag D Z ÂZ H 0 B dH Ã d : (15) 
By using the continuity of the normal component of the magnetic induction through the interface and vector identities, the expression of the magnetic co-energy ( 15) can be written as [START_REF] Stratton | Electromagnetic Theory[END_REF]]

! co mag D ! co ferro C ! 0 ; (16) 
where

! co ferro D 1 2 Z f  M B 0 H B C 2 Z H 0 B dH à d ; (17) 
! 0 D 1 2 Z H 0 B 0 d : (18) 
The interest to use this decomposition [START_REF] Rubeck | Analytical calculation of magnet systems: magnetic field created by charged triangles and polyhedra[END_REF] for the co-energy ! co mag is that the integration domain of the term ! co ferro is only the ferromagnetic material and that the term ! co 0 depends only of the current source. When the current I is kept constant during the displacement u, the component in the direction u of the magnetic force, F u , can be computed by

F u D d! co mag du ˇI : (19) 
To simplify the notation, the condition of the coil current is not noted. As the energy ! 0 (18) is independent of the displacement u, Equation ( 19) becomes:

F u D d! co ferro du : (20) 
Three virtual displacements u x , u y , and u ´are respectively taken as the three directions of the problem basis .x; y; z/. The magnetic force can then be expressed:

F D d! co ferro du x x C d! co ferro du y y C d! co ferro du ´z: (21)

Global magnetic force computation

The virtual displacement u is applied on a piece of the ferromagnetic domain f provided that the mesh is not distorted. It means that this piece must be surrounded by the free space. The application of the virtual work principle (21) allows computing the global magnetic force acting on this piece. The derivative of the co-energy ! co ferro [START_REF] Urankar | Vector potential and magnetic field of current-carrying finite arc segment in analytical form, part i: filament approximation[END_REF] with respect to the displacement u can be written:

d! co ferro du D 1 2 Z f  M dB 0 du C dM du B 0 C B dH du dB du H à d : (22) 
The computation of each term of Equation ( 22) is detailed in the succeeding texts. As the mesh is not distorted, the shape functions are not modified by the displacement:

d˛i du D 0; 8i: (23) 
Computation of dB 0 du : The derivation of the source induction field B 0 with respect to the displacement u can be written:

dB 0 .r/ du D 0 r H 0 .r/ dr du : (24) 
The gradient of the magnetic field created by the inductors r H 0 can be computed analytically for simple geometries [START_REF] Urankar | Vector potential and magnetic field of current-carrying finite arc segment in analytical form, part i: filament approximation[END_REF]. For more complicate inductor geometries, a finite difference method can be used. The term dr du is equivalent to the direction of the virtual displacement in the moved piece and to the zero vector elsewhere.

Computation of dB 0

du : With Equations ( 2), ( 23) and the discretization (5) of the potential ˆ, it can be written as dH du

D X i dˆi du r ˛i : (25) 
Let us note dd u the vector of the derivative of the DOFs of the potential ˆwith respect to the displacement u. The derivation of the system of algebraic equations [START_REF] Henrotte | The eggshell approach for the computation of the electromagnetic forces in 2d and 3d[END_REF] 

The matrix h @OEA. /@ ˆˇu i is expressed

 @OEA. /@ ˆˇu à ij D Z f dM dˆj r i r 0 Á jr i r 0 j 3 d 0 (28)
The derivation of the behavior law (1) with respect to the DOFs of the potential ˆgives

dM dˆj D dM dH dH dˆj D dM dH r ˛j : (29) 
Using relation (29), Equation (28) becomes

 @ OEA. / @ˆˇu à ij D Z f dM dH r ˛j .r i r 0 / jr i r 0 j 3 d 0 : (30) 
The matrix (30) is equivalent to the matrix [START_REF] Bossavit | Virtual power principle and maxwell's tensor: which comes first?[END_REF] where the susceptibility is replaced by the incremental susceptibility dM dH defined by  dM dH

à ij D ı ij .kHk/ C H i H j kHk d d kHk .kHk/: (31) 
Let a be the integrand of the interaction matrix terms (8), such as

.A/ ij D Z f a r ˛j ; r i ; r 0 d 0 ; (32) 
with a r ˛j ; r i ; r 0 D r ˛j .r i r 0 / jr i r 0 j 3 :

(33)
As the mesh is not distorted by the virtual displacement u, the derivative of Equation ( 32) can enter the integral to obtain

 @ OEA. / @u ˇˆÃ ij D Z f @a r ˛j ; r i ; r 0 @u ˇˆd 0 : (34) 
The function a must be derived with respect to the virtual displacement u keeping constant the vector of the DOFs. This last condition is equivalent to keep constant the first parameter of the function r ˛j . So, the chain rule is applied to the derivative of Equation (33) and leads to @a r ˛j ; r i ; r 0 @u ˇˆD @a r ˛j ; r i ; r 0 @r i ˇˆ;r 0 dr i du C @a r ˛j ; r i ; r 0 @r 0 ˇˆ;r i dr 0 du :

The terms dr i du and dr 0 du are equivalent to the direction of the virtual displacement in the moved piece and to the zero vector elsewhere.

The computation of term (34) requires the evaluation of the integral I 2 , such as

I 2 .r/ D Z e 3 
.S .r r 0 // .r r 0 / jr r 0 j 5 S jr r 0 j 3 d 0 ;

(36

)
where S is a uniform vector [START_REF] Ren | Local force computation in deformable bodies using edge elements[END_REF]. The integral (36) is computed by a numerical integration scheme with Gauss points because when the terms dr du and dr 0 du are not zero, the computation point r is generally distant from the integration point r 0 .

Finally, the vector dd u is computed by resolution of the system of algebraic equations:

 OEI C Ä A  dM dH à à dd u D dˆ0 du @ OEA. / @u ˇˆˆ: (37) 
Computation of dˆ0 du : Taking into account condition (23), the vector dˆ0 du is the solution of the derivation of the system of algebraic equations [START_REF] Kalimov | Application of a hybrid integrodifferential method for analysis of thin magnetic shields[END_REF] 

where dB dH is the incremental susceptibility similar to (31). To conclude this section, the proposed application of the virtual work principle to compute the global magnetic force required the resolution of both systems of algebraic equations ( 38) and (37). This computation can be conducted efficiently when a Newton-Raphson (NR) method is used to solve the problem (4). Indeed, the matrix OEI C A dM dH on the left hand side of the system (37) is then equivalent to the Jacobian matrix during the last iteration of the NR method. Moreover, the matrices on the left hand side of both systems (38) and ( 11) are the same. In this case, the resolution processes could be kept modifying only the right hand members.

Local magnetic force computation

Only the linear case is considered in this section. In order to compute the local magnetic force, the virtual work principle is applied at the mesh node level [START_REF] Ren | Local force computation in deformable bodies using edge elements[END_REF] (Figure 2). The virtual displacement u n is applied at the mesh node n. In this case, the mesh is distorted implying that condition (23) is not verified. Let F n u be the component of the nodal magnetic force F n in the direction of the virtual displacement u n . It is obtained by

F n u D d! co ferro du n D X e2 f d! co e du n ; (42) 
where ! co e is the value of the co-energy ! co ferro at the mesh element e. According to expression [START_REF] Urankar | Vector potential and magnetic field of current-carrying finite arc segment in analytical form, part i: filament approximation[END_REF] and the assumption of linear case, the co-energy ! co e at each mesh element is then written as

u n n u n n Figure 2.
Local application of the virtual work principle (2D mesh example).

! co e D 1 2

Z e M B 0 d : (43) 
The integrals are computed using the change of basis between the physical mesh element and the reference element described in Figure 3. The function G e is the transformation from the reference element of domain O to the e th physical mesh element of domain e , and J e is its Jacobian. Let us note with ' O' a function expressed on the basis .O x; O y; O z/ of the reference element. Because a tetrahedral mesh is used, the gradients of the shape functions are independent of integration points. By using the change of basis, its derivative with respect to the nodal displacement u n can be computed on an element e by d r ˛i

j e du n D dJ T e du n O r O ˛i ; 8i: (44) 
So, Equation ( 43) is equivalent to

! co e D 1 2 Z O M B 0 jJ e j d : (45) 
Let F n;e u be the contribution of the mesh element e to the component of the nodal magnetic force F n u , such as

F n u D X e F n;e u (46) 
with

F n;e u D 1 2 
Z O ÄÂ M dB 0 du n C dM du n B 0 Ã jJ e j C .M B 0 / djJ e j du n d : (47) 
The computation of each term of equation ( 47) are detailed below. Those of dJ T e du n and djJ e j du n are obvious.

Computation of dB 0 du n : By using the change of basis (Figure 3), the derivative of the source induction field B 0 with respect to the nodal displacement u n can be computed on an element e by With Equation ( 2) and the discretization (5) of the potential ˆ, we have

dH du n D X i  dˆi du n r ˛i C ˆi dr ˛i du n à : (50)
where the derivatives of the gradients of the shape functions dr ˛i du n are obtained by relation (44). Finally, the dˆi du n are computed by resolution of the system of algebraic equations:

.OEI C OEA. // dd u n D dˆ0 du n @OEA. / @u n ˇˆˆ: (51) dˆ0 du n is the vector of the derivative of the DOFs of the potential ˆ0 with respect to the nodal displacement u n , and its computation is detailed in the next paragraph. The derivative of the interaction matrix @OEA. / @u n ˇˆmust consider the mesh distortion. The analytical formula can not be used to compute the integral (36) when the computation point r is a node of the integration element [START_REF] Electrostatique | Tome 1: Les Distributions[END_REF]. In this case, a finite difference method can be used:

@ OEA. ; r n / @u n ˇˆ OEA. ; r n C pe u / OEA. ; r n pe u / 2p ; ( 52 
)
where p is the step of the method, and e u is the direction of the virtual displacement u n applied on the mesh node n of coordinates r n .

Computation of dˆ0 du n : The vector dˆ0 du n is the solution of the derivation of the system of algebraic equations [START_REF] Kalimov | Application of a hybrid integrodifferential method for analysis of thin magnetic shields[END_REF] with respect to the nodal displacement u n :

OED dˆ0 du n D dC du n d OED du n ˆ; (53) 
where

 dC du n à i D X e Z O Ä dJ T e du n O r O ˛i H 0 C r ˛i r H 0 dG e du n à jJ e j C r ˛i H 0 djJ e j du n d ; (54)  dOED du n à ij D X e Z O Ä dJ T e du n O r O ˛i r ˛j C r ˛i dJ T e du n O r O ˛j à jJ e j C r ˛i r ˛j djJ e j du n d : (55)
Once the nodal magnetic forces (46) are computed, the magnetic force density f is obtained by a linear interpolation from its expression f n at the mesh node n:

f n D F n 0 @ X e2E n V e E e 1 A 1 ; (56) 
where V e and E e are respectively the volume and the number of nodes of the mesh element e, and E n is the element set containing the node n.

To conclude this section, the proposed local application of the virtual work principle to compute the nodal magnetic force required the resolution of both systems of algebraic equations ( 53) and (51) for each mesh node and for each direction. Considering the linear case, the matrices on the left hand side of both systems (53) and (51) are respectively the same as those of both systems [START_REF] Kalimov | Application of a hybrid integrodifferential method for analysis of thin magnetic shields[END_REF] and [START_REF] Henrotte | The eggshell approach for the computation of the electromagnetic forces in 2d and 3d[END_REF]. In this case, the resolution processes could be kept modifying only the right hand member.

APPLICATIONS

Hollow sphere

Let us consider a hollow ferromagnetic sphere with a linear magnetic behavior and placed in a magnetic field generated by a circular coil (Figure 4). The ferromagnetic domain is meshed using 9812 tetrahedral elements. The previous VIM ( 4) is used to solve this first application for which an analytical solution can be found [START_REF] Ren | Comparison of different force calculation methods in 3d finite element modelling[END_REF]. The computed magnetostatic field distribution is presented in Figure 5. The virtual work principle (46) is applied to compute the nodal magnetic forces for three different meshes (1924, 4614, and 9812 elements), and the results are given in Figure 5. Considering the rotational symmetry with respect to the axis z, the exploitation can be made on an arbitrary section resulting from a cut plane including the axis z. The normal surface force densities computed on the outer surface of the sphere by relation ( 56) is compared with the analytical solution (Figure 6).

The results show a good concordance between the simulations and the analytical solution for the local magnetic forces, which validates the local application of the virtual work principle in the framework of the VIM and in the linear case. The average computation times for each magnetic nodal force are 1:9, 5:3, and 11:2 s (Dell desktop computer with Intel Core 2 Duo E8400 3GHz CPU (Dell Computer Round Rock, Texas, USA)) using respectively the meshes with 1924, 4614, and 9812 elements. The computation times are provided for information only, because the source code is not optimized. The computation of a magnetic nodal force is time consuming because of the assembly of the matrix @OEA. / @u n ˇˆon the right hand side of the system (51). The memory requirements are mainly dedicated to the storage of the interaction matrix OEA. / of the system (51).

Contactor

Let us consider the contactor described by the Figure 7.

Linear case: The magnetic behavior law of the ferromagnetic material is linear ( D 999), and the computation of local magnetic forces is investigated. The previous VIM (4) and the FEM with the software FLUX3D [START_REF] Cedrat | Flux3[END_REF] are used to solve this problem. The virtual work principle (46) is applied to compute the nodal magnetic forces (Figure 8). The surface force density is computed along the segment AB by relation (56) and by the virtual work principle in the framework of the FEM for three different meshes (3914, 6253, and 18108 elements), and the results are given in the Figure 9.

For both methods, the results are inaccurate at the extremities of the segment AB and when the computation points pass in the air gap. The first effect is due to the geometric singularities. The causes of the second effect may be inaccuracies in the computation of the direction of the surface magnetic force density, especially its tangential component, which is negligible compared with its normal component. These inaccuracies are most important with the FEM because the discretization of the air gap is poor with the considered meshes. The VIM does not require the mesh of the free space; however, the range of these inaccuracies is larger because this method is based on interactions between all magnetized elements. Nevertheless, the results of both methods seem to converge to the same values and validate the proposed formulation. Its main drawback is heavy computation time due to great number of system resolutions (53) and (37). where J s D 1:8 T, and r D 2500. The global magnetic force acting on the top piece of the contactor is investigated. The virtual work principle is then associated to a displacement of the entire top piece of the contactor. The FEM with first-order and second-order discretizations and the VIM are applied.

Taking into account the symmetry of the problem, only the force component along the axis z is considered, the others being zero. The evolutions of the computed global magnetic force in function of the number of mesh elements in the contactor are compared in Figure 10. The reference value is obtained by the FEM [START_REF] Coulomb | A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness[END_REF] with a second-order discretization and a fine mesh (185,000 mesh elements in the contactor) and is 36:64 N along the axis results show that the virtual work principle applied to the VIM provides computed global magnetic forces that converge relatively quickly toward a value. However, this convergence is much faster with a FEM and a second-order discretization. Moreover, the relative error the value 36:64 N and the results by the VIM less than 3% for a mesh with around 35; 000 elements. Nevertheless, the limitation of the full interaction matrix [START_REF] Bossavit | Virtual power principle and maxwell's tensor: which comes first?[END_REF] does not allow to increase the number of mesh elements with the VIM; however, this represents a mesh with several hundreds of thousands of elements with FEM, which requires the air mesh. The computation times for the nonlinear resolution with the NR method and for the global magnetic force are given in Table I. The computation of the global magnetic force is time consuming because of the assembly of the matrix @OEA. / @u ˇˆon the right hand side of the system (37) and the computation of the gradient of the source magnetic field r H 0 using a finite difference method at each Gauss point in order to numerically integrate the terms (48) and (54). The memory requirements are mainly dedicated to the storage of the matrices A dM dH and @OEA. / @u ˇˆof system (37).

CONCLUSION

The application of virtual work principle to compute the magnetic force densities has been adapted to the framework of the VIMs for which the air is not meshed. It is an attractive alternative to the FEM for devices that contain a huge volume of free space. The proposed formulation gives accurate results to compute local and global magnetic forces respectively in the linear and nonlinear cases. Its implementation could be improved especially to avoid the use of finite differences. The perspectives are to use compression techniques to avoid the storage limitation of the full interaction matrix and to extend the local magnetic force computation to the nonlinear case. The proposed approach could also be advantageously used in the framework of a magneto-mechanical coupling in which the same mesh is used to solve the magnetic and mechanical parts.
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 10 Figure 10. Results for the computed global magnetic force acting of the top piece of the contactor.

  and its computation is detailed in the next paragraph. The chain rule in the second derivative of

									with respect to the displacement
	u gives							
		dd	u	C	dOEA. /d u	D	dˆ0 du	:	(26)
	Equation (26) leads to							
	dOEA. /d u	D	@OEA. /@ ˆˇu dd	u	C	@u @OEA. /	ˇˆˆ:

dˆ0 du is the vector of the derivative of the DOFs of the potential ˆ0 with respect to the displacement u,

  with respect to the displacement u:

									OED		dˆ0 du	D	dC du	;	(38)
	where	Â	dC du	à i	D	Z	f	r ˛i	dH 0 du	d D		Z		f	r ˛i .r/ r H 0 .r/	dr du	d :	(39)
	Computation of dM du and dB du The chain rule applied to the computation of dM du and dB du leads to
									dM du	D	dM dH	dH du	(40)
	and															
									dB du		D	dB dH	dH du	;

Table I .

 I Computation times (personal computer with Intel Xeon E5-2690 2.9GHz CPU).

	Number of mesh elements	1795 2620 3436 4986 7566 12,785 24,508
	Resolution with NR method (s)	71	103	157	390	708	2085	7266
	Global magnetic force (s)	19	33	41	57	76	171	445
	NR, Newton-Raphson.