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SUMMARY

Magnetic forces are computed in the scope of magnetostatic problems solved by a volume integral method. This
method uses the range interactions between magnetizable elements and is particularly well suited to compute
the fields without meshing the air domain. This paper proposes an adaptation of the virtual work principle to
the framework of the volume integral method in order to compute the magnetic forces. First, its application for
electromagnetic devices in the nonlinear case allows to compute the global magnetic force. Second, its local
application in the linear case provides a magnetic force density. 3D numerical examples are given, and the results
are compared with the analytical solution and the finite element method. Copyright © 2013 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In a design process, the modeling of electromechanical devices commonly involves precisely deter-
mining the forces acting on ferromagnetic materials. For a rigid motion, only the knowledge of the
global force is necessary, however, for a device with deformable material, it is essential to know the
local force distribution. A classical method to numerically solve such problems is the finite element
one (FEM), but for devices with a huge volume of free space compared with the active structure or with
a high size ratio between the geometric objects, problems of accuracy and convergence to the solution
can be present [1]. In such case, integral methods are attractive alternatives [2].

Integral formulations of the magnetostatic problem are particularly advantageous for the numerical
solution of open-boundary problems, which include ferromagnetic materials, because only the active
regions containing these materials need to be discretized. This is particularly useful for problems with a
lot of air compared with active regions, such as Mag-MEMS devices [3]. In this case, integral methods
lead to high accuracies for field computations [4]. A volume integral method (VIM) using the magnetic
scalar potential is used.

The computation of the magnetic force can be conducted by different methods [5]: Maxwell’s tensor,
virtual works, equivalent currents or charges, eggshell method [6], and so on. These methods provide
global magnetic forces that converge to the same value in spite of different densities, some of which
are improbable [7]. The virtual work method is more general [8] and provides good results in the
framework of the finite element method [9]. Few works deal with magnetic forces in the framework of
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the integral formulations, and when this is done, they are restricted to the computation of global forces
[10]. So, an adaptation of the virtual work principle to the VIM is proposed.

This paper presents in the first part a magnetostatic formulation in the framework of VIM . The
second part is dedicated to the adaptation of the virtual work principle to this formulation. In the
linear case, a local force calculation method based on local application of virtual work principle is also
proposed. The last one presents the results obtained with two applications.

2. VOLUME INTEGRAL METHOD

Let us consider the following magnetostatic problem (Figure 1). A three-dimensional simply con-
nected region �f is filled with isotropic ferromagnetic material characterized by the known magnetic
susceptibility �, such as

M D �.kHk/H; (1)

where M is the magnetization and H the magnetic field. Primary sources of magnetic field in which
currents flow are associated to the region �j . Both regions, �f and �j , are in free space �0 so that
these regions do not overlap,� D �f [�j [�0. We note � the boundary between the ferromagnetic
material�f and the free space�0. As the simply connected region�f contains no current sources and
according to the Maxwell’s equations, the magnetic field H derives from a magnetic scalar potential ˆ
in the region �f :

H D �rˆ: (2)

The source magnetic field H0 also derives from a magnetic scalar potential ˆ0:

H0 D �rˆ0: (3)

The following volume integral equation using the total scalar potential ˆ [11] is considered :

ˆ.r/ �
1

4�

Z
�f

M.r0/ � .r � r0/

jr � r0j3
d�0 D ˆ0.r/; 8r 2 �f ; (4)

where r and r0 are respectively the coordinates of the computation and integration points. For nota-
tional convenience, the dependency of variables and functions on computation and integration points is
often omitted.

In accordance with the advantage of the VIM, only the domain �f is meshed. A tetrahedral mesh
is used, and the potential ˆ is approximated by first-order nodal shape functions:

ˆ D
X
i

ˆi˛i ; (5)

where ˆi and ˛i are respectively the degree of freedom (DOF) of the potential ˆ and the first-order
nodal shape function associated with the mesh node i .

Figure 1. Description of the magnetostatic problem.



In the linear case, Equation (4) is solved using a collocation method at mesh nodes [12]. It leads to
the system of algebraic equations:

.ŒI �C ŒA.�/�/ˆ D ˆ0; (6)

with

.I /ij D ıij ; (7)

.A.�//ij D
1

4�

Z
�f

�.r0/
r˛j .r0/ � .ri � r0/
jri � r0j3

d�0; (8)

where ri is the coordinates of the mesh node i , and ˆ and ˆ0 are the vectors of DOFs associ-
ated respectively to the potentials ˆ and ˆ0. In the nonlinear case, a fixed point scheme is used on
Equation (4) [13].

If the domain�f is not simply connected, a cut is used to split it into simply connected domains. A
drawback of the VIM is the obtention of a full interaction matrix (8) making the resolution of problems
that require fine meshes difficult. That is why compression techniques could be applied to avoid this
limitation [14,15]. Moreover the computation of the interaction matrix (8) requires precautions for the
evaluation of the integral I1 on each element [13]:

I1.r/ D
Z
�e

S �
.r � r0/
jr � r0j3

d�0; (9)

where �e is the domain of the element e and S is a uniform vector corresponding to �r˛i , which
are uniform on each mesh element according to the first-order discretization (5) and the tetrahedral
mesh. When the computation point r is closed to the integration point r0, an analytical formula [16] is
considered to evaluate (9); otherwise, a numerical integration scheme with Gauss points is used.

In order to compute the source potential ˆ0, the minimization problem associated to the equation
(3) is considered:

min
ˆ0

�
.H0 C rˆ0/

2
�
; (10)

where H0 can be computed analytically [17]. In the domain �f , the potential ˆ0 is approximated
with first-order nodal shape functions similar to Equation (5). A FEM is used on the weak formulation
associated to the problem (10). It leads to the resolution of a system of algebraic equations:

ŒD�ˆ0 D C; (11)

with

.D/ij D

Z
�f

r˛i � r˛j d�; (12)

.C /i D �

Z
�f

r˛i �H0 d�: (13)

3. VIRTUAL WORK PRINCIPLE

The magnetostatic problem is solved using the previous VIM. The vectors of DOFsˆ andˆ0 are then
known and verify respectively relations (6) and (11). The susceptibility is computed using the magnetic
behavior law (1).



3.1. Application on a magneto-mechanical system

Let us consider that the source field is created by a coil without resistance. According to the virtual
work principle, the application of energy conservation law to a magneto-mechanical system without
losses [18] gives

‰ dI D �d!co
mag C F � du; (14)

where I is the electric current in the coil, ‰ the magnetic flux through the coil section, !co
mag the

magnetic co-energy, F the magnetic force, and u a virtual displacement of the system.
The magnetic co-energy is defined by

!co
mag D

Z
�

�Z H

0

B � dH
�

d�: (15)

By using the continuity of the normal component of the magnetic induction through the interface �
and vector identities, the expression of the magnetic co-energy (15) can be written as [19]

!co
mag D !

co
ferro C !0; (16)

where

!co
ferro D

1

2

Z
�f

�
M � B0 �H � BC 2

Z H

0

B � dH
�

d�; (17)

!0 D
1

2

Z
�

H0 � B0 d�: (18)

The interest to use this decomposition (16) for the co-energy !co
mag is that the integration domain of the

term !co
ferro is only the ferromagnetic material and that the term !co

0 depends only of the current source.
When the current I is kept constant during the displacement u, the component in the direction u of

the magnetic force, Fu, can be computed by

Fu D
d!co

mag

du

ˇ̌̌
ˇ
I
: (19)

To simplify the notation, the condition of the coil current is not noted. As the energy !0 (18) is
independent of the displacement u, Equation (19) becomes:

Fu D
d!co

ferro

du
: (20)

Three virtual displacements ux , uy , and u´ are respectively taken as the three directions of the problem
basis .x; y; z/. The magnetic force can then be expressed:

F D
d!co

ferro

dux
xC

d!co
ferro

duy
yC

d!co
ferro

du´
z: (21)

3.2. Global magnetic force computation

The virtual displacement u is applied on a piece of the ferromagnetic domain �f provided that the
mesh is not distorted. It means that this piece must be surrounded by the free space. The application of



the virtual work principle (21) allows computing the global magnetic force acting on this piece. The
derivative of the co-energy !co

ferro (17) with respect to the displacement u can be written:

d!co
ferro

du
D
1

2

Z
�f

�
M �

dB0
du
C

dM
du
� B0 C B �

dH
du
�

dB
du
�H
�

d�: (22)

The computation of each term of Equation (22) is detailed in the succeeding texts. As the mesh is not
distorted, the shape functions are not modified by the displacement:

d˛i
du
D 0; 8i: (23)

Computation of dB0
du : The derivation of the source induction field B0 with respect to the displacement

u can be written:

dB0.r/
du

D �0rH0.r/
dr
du
: (24)

The gradient of the magnetic field created by the inductors rH0 can be computed analytically for
simple geometries [17]. For more complicate inductor geometries, a finite difference method can be
used. The term dr

du is equivalent to the direction of the virtual displacement in the moved piece and to
the zero vector elsewhere.

Computation of dB0
du : With Equations (2), (23) and the discretization (5) of the potential ˆ, it can be

written as
dH
du
D �

X
i

dˆi
du
r˛i : (25)

Let us note dˆ
du the vector of the derivative of the DOFs of the potential ˆ with respect to the dis-

placement u. The derivation of the system of algebraic equations (6) with respect to the displacement
u gives

dˆ

du
C

dŒA.�/�ˆ

du
D

dˆ0
du

: (26)

dˆ0
du is the vector of the derivative of the DOFs of the potential ˆ0 with respect to the displacement

u, and its computation is detailed in the next paragraph. The chain rule in the second derivative of
Equation (26) leads to

dŒA.�/�ˆ

du
D
@ŒA.�/�ˆ

@ˆ

ˇ̌
ˇ̌
u

dˆ

du
C
@ŒA.�/�

@u

ˇ̌
ˇ̌
ˆ

ˆ: (27)

The matrix
h
@ŒA.�/�ˆ
@ˆ

ˇ̌̌
u

i
is expressed

�
@ŒA.�/�ˆ

@ˆ

ˇ̌̌
ˇ
u

�
ij

D �

Z
�f

dM
dˆj

�

�
ri � r

0

�
jri � r0 j3

d�0 (28)

The derivation of the behavior law (1) with respect to the DOFs of the potential ˆ gives

dM
dˆj

D
dM
dH

dH
dˆj

D �
dM
dH
r˛j : (29)



Using relation (29), Equation (28) becomes

�
@ ŒA.�/�ˆ

@ˆ

ˇ̌̌
ˇ
u

�
ij

D

Z
�f

dM
dH
r˛j �

.ri � r0/
jri � r0j3

d�0: (30)

The matrix (30) is equivalent to the matrix (8) where the susceptibility � is replaced by the incremental
susceptibility dM

dH defined by

�
dM
dH

�
ij

D ıij�.kHk/C
HiHj

kHk
d�

d kHk
.kHk/: (31)

Let a be the integrand of the interaction matrix terms (8), such as

.A/ij D

Z
�f

a
�
�r˛j ; ri; r0

	
d�0; (32)

with

a
�
�r˛j ; ri; r0

	
D �r˛j �

.ri � r0/
jri � r0j3

: (33)

As the mesh is not distorted by the virtual displacement u, the derivative of Equation (32) can enter the
integral to obtain

�
@ ŒA.�/�

@u

ˇ̌
ˇ̌
ˆ

�
ij

D

Z
�f

@a
�
�r˛j ; ri ; r0

	
@u

ˇ̌̌
ˇ̌
ˆ

d�0: (34)

The function a must be derived with respect to the virtual displacement u keeping constant the vector
of the DOFs. This last condition is equivalent to keep constant the first parameter of the function �r˛j .
So, the chain rule is applied to the derivative of Equation (33) and leads to

@a
�
�r˛j ; ri ; r0

	
@u

ˇ̌̌
ˇ̌
ˆ

D
@a
�
�r˛j ; ri ; r0

	
@ri

ˇ̌̌
ˇ̌
ˆ;r0

dri
du
C
@a
�
�r˛j ; ri ; r0

	
@r0

ˇ̌̌
ˇ̌
ˆ;ri

dr0

du
: (35)

The terms dri
du and dr0

du are equivalent to the direction of the virtual displacement in the moved piece and
to the zero vector elsewhere.

The computation of term (34) requires the evaluation of the integral I2, such as

I2.r/ D
Z
�e

3
.S � .r � r0// .r � r0/

jr � r0j5
�

S
jr � r0j3

d�0; (36)

where S is a uniform vector (9). The integral (36) is computed by a numerical integration scheme with
Gauss points because when the terms dr

du and dr0

du are not zero, the computation point r is generally
distant from the integration point r0.

Finally, the vector dˆ
du is computed by resolution of the system of algebraic equations:

�
ŒI �C



A

�
dM
dH

���
dˆ

du
D

dˆ0
du
�
@ ŒA.�/�

@u

ˇ̌̌
ˇ
ˆ

ˆ: (37)



Computation of dˆ0
du : Taking into account condition (23), the vector dˆ0

du is the solution of the
derivation of the system of algebraic equations (11) with respect to the displacement u:

ŒD�
dˆ0
du
D

dC
du
; (38)

where �
dC
du

�
i

D �

Z
�f

r˛i �
dH0

du
d� D �

Z
�f

r˛i .r/ � rH0.r/
dr
du

d�: (39)

Computation of dM
du and dB

du The chain rule applied to the computation of dM
du and dB

du leads to

dM
du
D

dM
dH

dH
du

(40)

and

dB
du
D

dB
dH

dH
du
; (41)

where dB
dH is the incremental susceptibility similar to (31).

To conclude this section, the proposed application of the virtual work principle to compute the
global magnetic force required the resolution of both systems of algebraic equations (38) and (37).
This computation can be conducted efficiently when a Newton–Raphson (NR) method is used to solve
the problem (4). Indeed, the matrix

�
ŒI �C

�
A
�

dM
dH

	�	
on the left hand side of the system (37) is then

equivalent to the Jacobian matrix during the last iteration of the NR method. Moreover, the matrices
on the left hand side of both systems (38) and (11) are the same. In this case, the resolution processes
could be kept modifying only the right hand members.

3.3. Local magnetic force computation

Only the linear case is considered in this section. In order to compute the local magnetic force, the
virtual work principle is applied at the mesh node level [9] (Figure 2). The virtual displacement un

is applied at the mesh node n. In this case, the mesh is distorted implying that condition (23) is
not verified. Let Fnu be the component of the nodal magnetic force Fn in the direction of the virtual
displacement un. It is obtained by

F nu D
d!co

ferro

dun
D

X
e2�f

d!co
e

dun
; (42)

where !co
e is the value of the co-energy !co

ferro at the mesh element e. According to expression (17) and
the assumption of linear case, the co-energy !co

e at each mesh element is then written as

un
n

un n

Figure 2. Local application of the virtual work principle (2D mesh example).



!co
e D

1

2

Z
�e

M � B0 d�: (43)

The integrals are computed using the change of basis between the physical mesh element and the
reference element described in Figure 3. The function Ge is the transformation from the reference
element of domain O� to the eth physical mesh element of domain �e , and Je is its Jacobian. Let us
note with ‘ O’ a function expressed on the basis .Ox; Oy; Oz/ of the reference element. Because a tetrahedral
mesh is used, the gradients of the shape functions are independent of integration points. By using the
change of basis, its derivative with respect to the nodal displacement un can be computed on an element
e by

d r˛i j�e
dun

D
dJ�Te
dun

Or Ǫ i ; 8i: (44)

So, Equation (43) is equivalent to

!co
e D

1

2

Z
O�

M � B0jJej d�: (45)

Let F n;eu be the contribution of the mesh element e to the component of the nodal magnetic force F nu ,
such as

F nu D
X
e

F n;eu (46)

with

F n;eu D
1

2

Z
O�


�
M �

dB0
dun
C

dM
dun
� B0

�
jJej C .M � B0/

djJej

dun

�
d�: (47)

The computation of each term of equation (47) are detailed below. Those of dJ�Te
dun and djJe j

dun are obvious.

Computation of dB0
dun : By using the change of basis (Figure 3), the derivative of the source induction

field B0 with respect to the nodal displacement un can be computed on an element e by

dB0
dun

ˇ̌̌
ˇ
�e

D �0rH0

dGe
dun

: (48)

Computation of dM
dun : In the linear case, dM

dun can be written as

dM
dun
D �

dH
dun

: (49)

x y

z

x y

z

^

^ ^

Figure 3. The change of basis between the physical and reference tetrahedral elements.



With Equation (2) and the discretization (5) of the potential ˆ, we have

dH
dun
D �

X
i

�
dˆi
dun
r˛i Cˆi

dr˛i
dun

�
: (50)

where the derivatives of the gradients of the shape functions dr ˛i
dun are obtained by relation (44). Finally,

the dˆi
dun are computed by resolution of the system of algebraic equations:

.ŒI �C ŒA.�/�/
dˆ

dun
D

dˆ0
dun
�
@ŒA.�/�

@un

ˇ̌̌
ˇ
ˆ

ˆ: (51)

dˆ0
dun is the vector of the derivative of the DOFs of the potential ˆ0 with respect to the nodal displace-
ment un, and its computation is detailed in the next paragraph. The derivative of the interaction matrix
@ŒA.�/�
@un

ˇ̌̌
ˆ

must consider the mesh distortion. The analytical formula can not be used to compute the

integral (36) when the computation point r is a node of the integration element [20]. In this case, a
finite difference method can be used:

@ ŒA.�; rn/�
@un

ˇ̌̌
ˇ
ˆ

�
ŒA.�; rn C peu/� � ŒA.�; rn � peu/�

2p
; (52)

where p is the step of the method, and eu is the direction of the virtual displacement un applied on the
mesh node n of coordinates rn.

Computation of dˆ0
dun : The vector dˆ0

dun is the solution of the derivation of the system of algebraic
equations (11) with respect to the nodal displacement un:

ŒD�
dˆ0
dun
D

dC
dun
�

d ŒD�

dun
ˆ; (53)

where

�
dC
dun

�
i

D �
X
e

Z
O�


�
dJ�Te
dun

Or Ǫ i �H0 C r˛i � rH0

dGe
dun

�
jJej C r˛i �H0

djJej

dun

�
d�; (54)

�
dŒD�

dun

�
ij

D
X
e

Z
O�


�
dJ�Te
dun

Or Ǫ i � r˛j C r˛i �
dJ�Te
dun

Or Ǫj

�
jJej C r˛i � r˛j

djJej

dun

�
d�: (55)

Once the nodal magnetic forces (46) are computed, the magnetic force density f is obtained by a
linear interpolation from its expression fn at the mesh node n:

fn D Fn

0
@X
e2En

Ve

Ee

1
A
�1

; (56)

where Ve and Ee are respectively the volume and the number of nodes of the mesh element e, and En
is the element set containing the node n.

To conclude this section, the proposed local application of the virtual work principle to compute the
nodal magnetic force required the resolution of both systems of algebraic equations (53) and (51) for
each mesh node and for each direction. Considering the linear case, the matrices on the left hand side
of both systems (53) and (51) are respectively the same as those of both systems (11) and (6). In this
case, the resolution processes could be kept modifying only the right hand member.



4. APPLICATIONS

4.1. Hollow sphere

Let us consider a hollow ferromagnetic sphere with a linear magnetic behavior and placed in a mag-
netic field generated by a circular coil (Figure 4). The ferromagnetic domain is meshed using 9812
tetrahedral elements. The previous VIM (4) is used to solve this first application for which an analytical
solution can be found [5]. The computed magnetostatic field distribution is presented in Figure 5. The
virtual work principle (46) is applied to compute the nodal magnetic forces for three different meshes
(1924, 4614, and 9812 elements), and the results are given in Figure 5. Considering the rotational sym-
metry with respect to the axis z, the exploitation can be made on an arbitrary section resulting from a
cut plane including the axis z. The normal surface force densities computed on the outer surface of the
sphere by relation (56) is compared with the analytical solution (Figure 6).

The results show a good concordance between the simulations and the analytical solution for the
local magnetic forces, which validates the local application of the virtual work principle in the frame-
work of the VIM and in the linear case. The average computation times for each magnetic nodal
force are 1:9, 5:3, and 11:2 s (Dell desktop computer with Intel Core 2 Duo E8400 3GHz CPU
(Dell Computer Round Rock, Texas, USA)) using respectively the meshes with 1924, 4614, and 9812
elements. The computation times are provided for information only, because the source code is not

Figure 4. Description of the hollow sphere.

Figure 5. Computed magnetic field and force density.

Figure 6. Results for the normal component of the computed surface magnetic force densities on the outer surface
of the sphere.



optimized. The computation of a magnetic nodal force is time consuming because of the assembly of

the matrix @ŒA.�/�
@un

ˇ̌̌
ˆ

on the right hand side of the system (51). The memory requirements are mainly

dedicated to the storage of the interaction matrix ŒA.�/� of the system (51).

4.2. Contactor

Let us consider the contactor described by the Figure 7.

Linear case: The magnetic behavior law of the ferromagnetic material is linear (� D 999), and the
computation of local magnetic forces is investigated. The previous VIM (4) and the FEM with the
software FLUX3D [21] are used to solve this problem. The virtual work principle (46) is applied to
compute the nodal magnetic forces (Figure 8). The surface force density is computed along the segment
AB by relation (56) and by the virtual work principle in the framework of the FEM for three different
meshes (3914, 6253, and 18108 elements), and the results are given in the Figure 9.

For both methods, the results are inaccurate at the extremities of the segment AB and when the com-
putation points pass in the air gap. The first effect is due to the geometric singularities. The causes of
the second effect may be inaccuracies in the computation of the direction of the surface magnetic force
density, especially its tangential component, which is negligible compared with its normal component.
These inaccuracies are most important with the FEM because the discretization of the air gap is poor
with the considered meshes. The VIM does not require the mesh of the free space; however, the range
of these inaccuracies is larger because this method is based on interactions between all magnetized
elements. Nevertheless, the results of both methods seem to converge to the same values and validate
the proposed formulation. Its main drawback is heavy computation time due to great number of system
resolutions (53) and (37).

Nonlinear case: The magnetic behavior law of the ferromagnetic material is nonlinear such as

kM.kHk/k D
2Js

�0�
arctan

�
�.�r � 1/�0 kHk

2Js

�
; (57)
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Figure 7. Description of the contactor.
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Figure 8. Nodal magnetic forces.
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(a) Finite element method.

-50 0 50
0

0.5

1

1.5

2

2.5

3
x 104

N
or

m
al

 c
om

po
ne

nt
 o

f
-50 0 50
0

200

400

600

800

1000

3914 elements
6253 elements
18108 elements

3914 elements
6253 elements
18108 elements

(b) Volume integral method

Figure 9. Results for the computed surface magnetic force density along the segment AB.

(a) Comparison with the finite element method. (b) Relative error with the reference value.

Figure 10. Results for the computed global magnetic force acting of the top piece of the contactor.

where Js D 1:8 T, and �r D 2500. The global magnetic force acting on the top piece of the contactor
is investigated. The virtual work principle is then associated to a displacement of the entire top piece
of the contactor. The FEM with first-order and second-order discretizations and the VIM are applied.
Taking into account the symmetry of the problem, only the force component along the axis z is con-
sidered, the others being zero. The evolutions of the computed global magnetic force in function of the
number of mesh elements in the contactor are compared in Figure 10. The reference value is obtained
by the FEM [22] with a second-order discretization and a fine mesh (185,000 mesh elements in the
contactor) and is 36:64 N along the axis z.

The results show that the virtual work principle applied to the VIM provides computed global mag-
netic forces that converge relatively quickly toward a value. However, this convergence is much faster
with a FEM and a second-order discretization. Moreover, the relative error between the reference value
36:64 N and the results provided by the VIM is less than 3% for a mesh with around 35; 000 elements.



Table I. Computation times (personal computer with Intel Xeon E5-2690 2.9GHz CPU).

Number of mesh elements 1795 2620 3436 4986 7566 12,785 24,508
Resolution with NR method (s) 71 103 157 390 708 2085 7266
Global magnetic force (s) 19 33 41 57 76 171 445

NR, Newton–Raphson.

Nevertheless, the limitation of the full interaction matrix (8) does not allow to increase the number of
mesh elements with the VIM; however, this represents a mesh with several hundreds of thousands of
elements with FEM, which requires the air mesh. The computation times for the nonlinear resolution
with the NR method and for the global magnetic force are given in Table I. The computation of the

global magnetic force is time consuming because of the assembly of the matrix @ŒA.�/�
@u

ˇ̌
ˇ
ˆ

on the right

hand side of the system (37) and the computation of the gradient of the source magnetic field rH0

using a finite difference method at each Gauss point in order to numerically integrate the terms (48)
and (54). The memory requirements are mainly dedicated to the storage of the matrices

�
A
�

dM
dH

	�
and

@ŒA.�/�
@u

ˇ̌̌
ˆ

of system (37).

5. CONCLUSION

The application of virtual work principle to compute the magnetic force densities has been adapted
to the framework of the VIMs for which the air is not meshed. It is an attractive alternative to the
FEM for devices that contain a huge volume of free space. The proposed formulation gives accurate
results to compute local and global magnetic forces respectively in the linear and nonlinear cases. Its
implementation could be improved especially to avoid the use of finite differences. The perspectives
are to use compression techniques to avoid the storage limitation of the full interaction matrix and to
extend the local magnetic force computation to the nonlinear case. The proposed approach could also
be advantageously used in the framework of a magneto-mechanical coupling in which the same mesh
is used to solve the magnetic and mechanical parts.
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