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BREGMAN SUPERQUANTILES. ESTIMATION METHODS AND

APPLICATIONS

T. LABOPIN-RICHARD, F. GAMBOA, A. GARIVIER, AND B. IOOSS

Abstract. In this work, we extend some quantities introduced by Rockafellar to
the case where the proximity between real numbers is measured by using a Bregman
divergence. This leads to the definition of the Bregman superquantile. Axioms of a
coherent measure of risk discussed previously by Rockafellar are studied in the case of
Bregman superquantile. Furthermore, we deal with asymptotic properties of a Monte
Carlo estimator of the Bregman superquantile. Several numerical tests confirm the
theoretical results and an application illustrates the potential interests of the Bregman
superquantile.

1. Introduction

1.1. Aim and scope. The aim of this article is to define and to study properties and
estimation procedures for Bregman extension of the superquantile defined in [25] (see
also [18], [21] and references therein). In the introduction we first recall the necessary
conditions for a measure of risk to be coherent. Further in Section 2 we present the
superquantile as a partial response to this problem. We also introduce the Bregman
superquantile and study axioms of a coherent measure of risk for this quantity. In Section
3 we seek to estimate this Bregman superquantile, we introduce a plug-in estimator and
study its convergence and asymptotic normality. Some numerical simulations are shown
in Section 4. An application on real data of radiological exposure is given in Section 5.
All the proofs are postponed to section 6.

1.2. Coherent measures of risk. Let X be a real-valued random variable and let FX
be its cumulative distribution function. We define for u ∈]0, 1[, the quantile function

F−1X (u) := inf{x : FX(x) ≥ u}.
A usual way to quantify the risk associated with X is to consider, for a given number

α ∈]0, 1[ close to 1, its lower quantile qXα := F−1X (α).
Nevertheless, the quantile is not a sub-additive function of X, a major property in

some applications (e.g finance, see [2]). Thus Rockafellar introduces in [22] the new
quantity called therein superquantile that satisfies this property. The superquantile is
defined by

Qα = E(X|X ≥ qα) = E(X|X ≥ F−1X (α)) = E

(
X1X≥F−1

X (α)

1− α

)
.
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Notice that this quantity is also called conditional value at risk in older references
([25], [24], [21]).

Sub-additivity is not the sole interesting property for a measure of risk (for example
for financial application). Following Rockaffelar in [22] we define:

Definition 1.1. Let R be a measure of risk that is a numerical function defined on
random variables and X and X ′ be two real-valued random variables. We say that R is
coherent if, and only if, it satisfies the five following properties :

i) Constant invariance : let C ∈ R, if X = C (a.s.) then R(C) = C.
ii) Homogeneity : ∀λ > 0, R(λX) = λR(X).
iii) Subaddidivity : R(X +X ′) ≤ R(X) +R(X ′).
iv) Non decreasing : If X ≤ X ′ (a.s.) then R(X) ≤ R(X ′).
v) Closeness : Let (Xh)h∈R be a collection of random variables.

If R(Xh) ≤ 0 and lim
h→0
||Xh −X||2 = 0 then R(X) ≤ 0.

The superquantile is a coherent measure of risk (see [17], [16], [1]).

2. Bregman superquantiles

In this section the aim is to build a general measure of risk that satisfies some of
the regularity axioms stated in Definition 1.1. These quantities will be built by using a
dissimilarity measure beetween real numbers, the Bregman divergence (see [5]).

2.1. Bregman divergence, mean and superquantile. In this section we first recall
the definition of the Bregman mean of a probability measure µ (see [4]) and define
the measure of risk that we will study. To begin with, we recall the definition of the
Bregman divergence that will be used to build the Bregman mean. Let γ be a strictly
convex function, R-valued on R. As usual we set

domγ := {x ∈ R : γ(x) < +∞}.

For sake of simplicity we assume that domγ is a non empty open set and that γ is a closed
proper differentiable function on the interior of domγ (see [19]). From now we always
consider function γ satisfying this assumption. The Bregman divergence dγ associated
to γ (see [5]) is a function defined on domγ × domγ by

dγ(x, x′) := γ(x)− γ(x′)− γ′(x′)(x− x′) , (x, x′ ∈ domγ).

The Bregman divergence is not a distance as it is not symmetric. Nevertheless, as it is
non negative and vanishes, if and only if, the two arguments are equal, it quantifies the
proximity of points in domγ. Let us recall some classical examples of such a divergence.

• Euclidean. γ(x) = x2 on R, we obviously obtain, for x, x′ ∈ R,

dγ(x, x′) = (x− x′)2.

• Geometric. γ(x) = x ln(x)− x+ 1 on R∗+ we obtain, for x, x′ ∈ R∗+,

dγ(x, x′) = x ln
x

x′
+ x′ − x.
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• Harmonic. γ(x) = − ln(x) + x− 1 on R∗+ we obtain, for x, x′ ∈ R∗+,

dγ(x, x′) = − ln
x

x′
+
x

x′
− 1.

Let µ be a probability measure whose support is included in domγ and that does not
weight the boundary of domγ. Assume further that γ′ is integrable with respect to µ.
Following [4], we first define the Bregman mean as the unique point b in the support of
µ satisfying

(1)

∫
dγ(b, x)µ(dx) = min

m∈domγ

∫
dγ(m,x)µ(dx).

In fact, we replace the L2 minimization in the definition of the mathematical classical
expectation by the minimization of the Bregman divergence. Existence and unique-
ness come from the convexity properties of dγ with respect to its first argument. By
differentiating it is easy to see that

b = γ
′−1
[∫

γ′(x)µ(dx)

]
.

Hence, coming back to our three previous examples, we obtain the classical mean in the
first example (Euclidean case), the geometric mean (exp

∫
ln(x)µ(dx)), in the second one

and the harmonic mean ([
∫
x−1µ(dx)]−1), in the third one. Notice that, as the Bregman

divergence is not symmetric, we have to pay attention to the definition of the Bregman
mean. Indeed, we have∫

dγ(x,E(X))µ(dx) = min
m∈domγ

∫
dγ(x,m)µ(dx).

We turn now to the definition of our new measure of risk.

Definition 2.1. Let α ∈]0, 1[, the Bregman superquantile Q
dγ
α is defined by

Q
dγ
α := γ′−1

(
E(γ′(X)|X ≥ F−1X (α))

)
= γ′−1

[
E

(
γ′(X)1X≥F−1

X (α)

1− α

)]
.

In words Q
dγ
α satisfies (1) taking for µ the distribution of X conditionally to

X ≥ F−1X (α). We now denote Qdγα the Bregman superquantile of the law X when there

is no ambiguity and Qdγα (X) if we need to distinguish Bregman superquantile of different
laws.

2.2. Coherence of Bregman superquantile. The following proposition gives some
conditions under which the Bregman superquantile is a coherent measure of risk.

Proposition 2.1. Fix α in ]0, 1[.

i) Any Bregman superquantile always satisfies the properties of constant invariance
and non decreasing.
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ii) The Bregman superquantile associated to the function γ is homogeneous, if and
only if,
γ′′(x) = βxδ for some real numbers β > and δ (as γ is convex, if the support

of γ is strictly included in R+,∗ there is no condition on δ but if not, δ is an even
number).

iii) If γ′ is concave and sub-additive, then subadditivity and closeness axioms both
hold.

The proof of this proposition, like all the others, is differed to Section 5.
To conclude, under some regularity assumptions on γ, the Bregman superquantile is

a coherent measure of risk. Let us take some examples.

2.2.1. Examples and counter-examples.

• Example 1 : x 7→ x2 satisfies all the hypothesis but it is already known that
the classical superquantile is sub-addtive.
• Example 2 : The Bregman geometric and harmonic functions satisfies the

assumptions i) and ii). Moreover, their derivatives are respectively x 7→ γ′(x) =
ln(x) and x 7→ γ′(x) = x−1

x which are concave but sub-additive only on [1,+∞[.
Then the harmonic and geometric functions satisfy iii) not for all pairs of random
variables but only for pairs (X,X ′) such that, denoting Z := X +X ′ we have

min
(
qXα (α), qX

′
α (α), qZα (α)

)
> 1.

• Counter-example 3 : The sub-additivity is not true in the general case. In-
deed, let γ(x) = exp(x) and assume that X ∼ U ([0, 1]).

E(γ′(X)1X≥F−1
X (α)) =

∫ 1

α
exp(x)dx = e− exp(α).

Then

R(X) = ln

(
e− exp(α)

1− α

)
.

Moreover,

E
(
γ′(λX)1λX≥F−1

λX(α)

)
=

∫ 1

α
exp(λx)dx =

exp(λ)− exp((α)λ)

λ
.

So

R(λX) = ln

(
exp(λ)− exp((α)λ)

λ(1− α)

)
.

For α = 0.95 and λ = 2, we obtain

R(2X)− 2R(X) = R(X +X)− (R(X) +R(X)) = 0.000107 > 0,

and subadditivity fails.
We can also notice that for λ = 4
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R(4X)

4R(X)
= 1, 000321,

and the homogeneity is not true. It is coherent with the Proposition 2.1 since
the derivative of γ does not fulfill the assumption.

3. Estimation of the Bregman superquantile

In this section the aim is to make estimation of the Bregman superquantile. We in-
troduce a Monte Carlo estimator and study its asymptotics properties. Under regularity
assumptions on the functions γ and F−1X , the Bregman superquantile is consistent and
asymptotically Gaussian. All along this section, we consider a function γ satisfying our
usual properties and a real-valued random variable X such that γ′(X)1X≥0 is integrable.

3.1. Monte Carlo estimator. Assume that we have at hand (X1, . . . , Xn) an i.i.d

sample with same distribution as X. If we wish to estimate Q
dγ
α , we may use the

following empirical estimator :

Q̂
dγ
α = γ

′−1

 1

1− α

 1

n

n∑
i=bnαc+1

γ′(X(i))

 ,
where X(1) ≤ X(2) ≤ · · · ≤ X(n) is the re-ordered sample built with (X1, . . . , Xn).

3.2. Asymptotics. We give a theorem which study the asymptotic behaviour of the
Bregman superquantile. The following assumptions will be used in our next theorem.

H1) γ is twice differentiable, and the derivative of
(
γ′ ◦ F−1X

)
that we denote by lγ

satisfies lγ = o
(
(1− t)−2

)
and is non-decreasing when t goes to 1−.

H2) γ is three times differentiable, and the second derivative of
(
γ′ ◦ F−1X

)
that we

denote Lγ satisfies Lγ = O ((1− t)−mL) and is non decreasing and when t goes
to 1−.

Theorem 3.1. Let 1
2 < α < 1 and X be a real-valued random variable such that the

cumulative function FX is absolutely continuous and the density function fX is strictly
non-negative on its support. Let (X1, . . . Xn) be an independant sample with the same
distribution as X.

i) Under assumption H1), the estimator Q̂
dγ
α is consistent in probability.

ii) Under assumption H2), the estimator Q̂
dγ
α is asymptotically normal :

√
n

(
Q̂
dγ
α −Qdγα (X)

)
=⇒ N

0,
σ2γ(

γ′′
(
Qdγα (X)

))2
(1− α)2

 ,

where

σ2γ :=

∫ 1

α

∫ 1

α

(min(x, y)− xy)

fZ(F−1Z (x))fZ(F−1Z (y))
dxdy.

and Z := γ′(X).
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Remark 3.1. Easy calculations show that we have the following equalities

lγ :=
γ′′ ◦ F−1X

fX ◦ F−1X

,

Lγ :=

(
γ′′′ ◦ F−1X )×

(
fX ◦ F−1X

)
−
(
f −X ′ ◦ F−1X

)
× (γ′′ ◦ F−1X

)(
fX ◦ F−1X

)3
and

fZ =
fX ◦ γ′−1

γ′′ ◦ γ′−1
.

Remark 3.2. The second part of the theorem shows the asymptotic normality of the
Bregman superquantile empirical estimator. We can then use the Slutsky’s lemma to find

confident intervals. Indeed, since our estimator Q̂dγα := γ′−1

(n(1− α))−1
n∑

i=bnαc+1

Z(i)


is consistent, we also have

√
n(

γ′′ ◦ Q̂dγα
) (Q̂dγα −Qdγα (X)

)
=⇒ N

(
0,

σ2γ
(1− α)

)
.

To prove Theorem 3.1 we use the results on the asymptotic properties of the su-
perquantile. For sake of completness we will show these properties. As a matter of fact
we have

(2) Qdγα (X) = γ′−1
(
Qα(γ′(X)

)
.

Indeed, as γ′
(
F−1
(γ′)−1(Z)

(α)
)

= F−1Z (α), so that

E
(
γ′(X)1X>F−1

X (α)

)
= E

(
Z1Z>F−1

Z (α)

)
.

Hence, we will first prove the following proposition on the asymptotic behavior of
the superquantile Monte Carlo estimator (which is equivalent to deal with the Bregman
superquantile when the function γ equals to identity). Then, we apply this proposition
to the sample (Z1, . . . Zn) where Zi := γ′(Xi). We conclude by applying the continuous
map theorem for the consistency and the delta-method for the asymptotic normality
(see for example [27]), both with the regular function γ′−1.

For the next proposition we need the two following assumptions.

H3) The derivative of the quantile function F−1X denoting l satisfies l = o((1− t)−2)
and is non-decreasing when t goes to 1−.

H4) The second derivative of the quantile function that we denote L satisfies L =
O ((1− t)−mL) for an 1 < mL <

5
2 and is non decreasing when t goes to 1−.

Proposition 3.1. Let 1
2 < α < 1, and X be a real-valued random variable such that the

cumulative function FX is absolutely continuous and the density function fX is strictly
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non-negative on its support.Let (X1, . . . Xn) be an independent sample with the same
distribution as X.

i) Under H3), the estimator Q̂α := ((1− α)n)−1
n∑

i=bnαc

X(i) of QXα is consistent in

probability.

ii) Under H4), the estimator Q̂α is asymptotically normal

√
n

 1

n(1− α)

n∑
i=bnαc+1

X(i) −Qα

 =⇒ N
(

0,
σ2

(1− α)2

)
,

where

σ2 :=

∫ 1

α

∫ 1

α

(min(x, y)− xy)

f(F−1(x))f(F−1(y))
.

3.3. Examples of asymptotic behaviors for the classical superquantile. Our
assumptions are easy to check in practice. Let us show some examples of the asymptotic
behaviour of the superquantile by using the exponential distribution of parameter 1 and
the Pareto distribution.

3.3.1. Exponential distribution. In this case, we have on R+
∗ f(t) = exp(−t),

F (t) = 1− exp(−x). Then F−1(t) = − ln(1− t).
• Consistency :

l(t) = (1− t)−1 = o
(
(1− t)−2

)
(when t 7→ 1−) and l is non decreasing near 1

so that the estimator of the superquantile is consistent.
• Asymptotic normality :

L(t) = (1 − t)−2 = O ((1− t)−mL) (t 7→ 1−) for 2 < mL < 5
2 and L is non-

decreasing near 1. So the asymptotic normality holds.

3.3.2. Pareto law. Here, we consider the Pareto law of parameter a > 0 : on R+
∗ ,

F (t) = 1− x−a, f(t) = ax−a−1, and F−1(t) = (1− t)
−1
a .

• Consistency :

l(t) = (a(1 − t)−1−
1
a ) thus, l(t) = o

(
(1− t)−2

)
(when t 7→ 1−) as soon as

a > 1. Then, l is non-decreasing near 1. The consistency is true.
• Asymptotic normality :

L(t) = C(a)(1− x)−
1
a
−2 thus, as soon as a > 2, there exists 3

2 < mL <
5
2 such

that L(t) = O
(

1
(1−t)δ

)
(when t 7→ 1−) and L is non decreasing around 1. The

asymptotic normality is true if and only if a > 2.

3.4. Examples of asymptotic behaviour of the Bregman superquantile. Let
us now study the same examples for the Bregman superquantile. For the exponential
distribution, the conclusion is the same. However, for the Pareto distribution, we can
find a function γ such that the estimator of the Bregman superquantile is asymptotically
normal without any condition on a. So, the Bregman superquantile is a more interesting
measure of risk than the superquantile.
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3.4.1. Exponential law. Let us show the example of the exponential distribution and the
harmonic Bregman function. We have γ′(x) = (x− 1)x−1 and F−1(x) = − ln(1− t). So
that

F−1Z (t) = 1 +
1

ln(1− t)
,

• Consistency. In this case, we have,

lγ(t) =
1

(1− t)(ln(1− t))2
.

So, lγ is non decreasing near 1 and o
(
(1− t)−2

)
(when t 7→ 1−).

The estimator Q̂dγα is consistent.
• Asymptotical normality.

Lγ(t) =
(ln(1− t))2 + 2 ln(1− t)

(1− t)2(ln(1− t))4
,

Then Lγ is non decreasing near 1 and O ((1− t)−mL) (when t 7→ 1−), for 2 <
mL <

5
2 .

Our estimator is asymptotically Gaussian.

3.4.2. Pareto law. Let us now study the case of the Pareto law with the geometric

Bregman function. We have F−1(t) = (1− t)
−1
a and γ′(t) = ln(t). Then

F−1Z (t) = −1

a
ln(1− t).

• Consistency.

lγ(t) =
1

a

1

1− t
= o

(
1

(1− t)2

)
,

and the non-decreasing is true. The estimator is consistent.
• Asymptotic normality.

Lγ(t) =
1

a

1

(1− t)2
= O

(
(1− t)−mL

)
,

for 2 < mL <
5
2 .

The estimator is consistent and normally asymptotic for every a > 0.

4. Numerical simulations

Our numerical tests consist in simulating values from a known theoretical distribu-
tion and computing the 0.95-quantiles and superquantiles. For each estimated quantity,
the reference value is given via a 106-size random sample and a convergence study is
performed from a 1000-size sample to a 105 size sample (with a step of 500). In order
to annihilate the effect of randomness, 50 repetitions of each numerical experiment are
made. Then, we compute

• The mean value of the 50 estimations to be compared to the reference value,
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• The standard deviation of the 50 estimations. It allows to compute an experi-
mental 95%-confidence interval (CI) to be compared to the theoretical 95%-CI
(given by the central limit theorem).

Each is composed of four plots of convergence for the following quantities: quantile (up
left), classical superquantile (up right), geometrical superquantile (bottom left) and har-
monic superquantile (bottom right). Each superquantile convergence plot is composed
of the following curves: Reference value (dotted black line), mean estimated values (red
circles), theoretical 95%-CI (dashed black line) and experimental 95%-CI (solid blue
line).

Figure 1 gives the results for an exponential distribution of parameter λ = 1. As
predicted by the theory (see Section 3.3), for the three different superquantiles, the
consistency is verified while the experimental CI perfectly fits the theoretical CI (given
by the central limit theorem).

Figure 1. Numerical convergence test for the exponential distribution.

We then test the Pareto distribution (see Section 3.3) with three different shape pa-
rameters: a = 0.5, a = 1.5 and a = 2.5. Figures 2 (a = 0.5), 3 (a = 1.5) and 4 (a = 2.5)
give the convergence results. For the geometrical and harmonic superquantiles, as pre-
dicted by the theory (see Section 3.3), the consistency of the Monte Carlo estimation is
verified while the experimental CI perfectly fits the theoretical CI (asymptotic normal-
ity). For the classical superquantile, we distinguish three different behaviors:

• No consistency for a = 0.5 (Figure 2) (theory predicts consistency only if a > 1),
• Consistency but no asymptotic normality for a = 1.5 (Figure 3) (theory predicts

asymptotic normality only if a > 2),
• Consistency and asymptotic normality for a = 2.5 (Figure 4),
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Figure 2. Numerical convergence test for the Pareto distribution (a = 0.5).

Figure 3. Numerical convergence test for the Pareto distribution (a = 1.5).

5. Applications to a nuclear safety exercise

GASCON is a software developed by CEA (French Atomic Energy Commission) to
study the potential chronological atmospheric releases and dosimetric impact for nuclear
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Figure 4. Numerical convergence test for the Pareto distribution (a = 2.5).

facilities safety assessment [13]. It evaluates, from a fictitious radioactive release, the
doses received by a population exposed to the cloud of radionuclides and through the
food chains. It takes into account the interactions that exist between humans, plants
and animals, the different pathways of transfer (wind, rain, . . . ), the distance between
emission and observation, and the time from emission.

As GASCON is relatively costly in computational time, [13] have built metamodels (of
polynomial form) of GASCON outputs in order to perform uncertainty and sensitivity
analysis. As in [14], we focus on one output of GASCON, the annual effective dose
in 129I received in one year by an adult who lives in the neighborhood of a particular
nuclear facility. Instead of the GASCON software, we will use here the metamodel of
this output which depends on 10 input variables, each one modelled by a log-uniform
random variable (bounds are defined in [13]). The range of the model output stands
on several decades (10−14 to 10−11 Sv/year) as shown by Figure 5 which represents the
histogram (in logarithmic scale) of 106 simulated values.

For this kind of numerical simulation exercises, we can be typically interested by safety
criteria as 95%-quantile and its associated superquantiles. The idea is to compare these
values to regulatory limits or to results coming from other scenarios or from other tools.
In practice, the number of simulations performed with the GASCON model is several
hundreds. Table 1 gives the estimated values of the quantile and superquantiles for
1000 metamodel simulations. Figure 6 shows the relative errors (computed by averaging
1000 different estimations) which are made when estimating the superquantiles using
3 different Bregman divergences and with different sampling sizes. We observe that
geometrical and harmonic superquantiles are clearly more precise than the classical one.
Using such measures is therefore more relevant when performing comparisons.
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Figure 5. Distribution of the GASCON output variable.

Table 1. Estimated values of 95%-quantile and 95%-superquantiles for
1000 simulations.

Quantile Classical Geometrical Harmonic
superquantile superquantile superquantile

1.304× 10−13 4.769× 10−13 3.316× 10−13 2.637× 10−13

6. Proofs

6.1. Proof of the Proposition 2.1 : coherence of the Bregman superquantile.

Proof. Proof of i) :
First we obviously have R(C) = γ′−1(γ′(C)) = C.
Let us show the non decreasing property. We first show that the superquantile is

non-decreasing. Then, (2) and the monotony of γ′−1 and γ will allow us to conclude. In
[16] it is shown that the Superquantile of the law of X satisfy

Qα = min
a∈R
{a+

1

1− α
E
(
[X − a]+

)
} = qα +

1

1− α
E
(
[X − qα]+

)
.

Let X and X ′ be two random variables such that X ≤ X ′ (a.s.). Using the previous
results we have

Qα(X) ≤ qα(X ′) +
1

1− α
E
([
X − qα(X ′)

]+)
.

Then the monotony of the function x 7→ (x− c)+ when c is fixed gives

Qα(X) ≤ qα(X ′) +
1

1− α
E
([
X ′ − qα(X ′)

]+)
= Qα(X ′).
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Figure 6. Evolution of the relative errors (mean square error divided
by the reference value) on the estimated superquantiles in function of
the sample size. In black: classical superquantile; in red: geometrical
superquantile; in blue: harmonic superquantile. The reference value has
been calculated with 107 simulations.

Proof of ii) :
For every (measurable) function f , we denote

Eα[f(X)] = E[f(X)|X ≥ F−1X (α)].

Let X and X ′ be two real-valued random variable. The Bregman superquantile associ-
ated to γ is

γ′−1
(
Eα[γ′(X)]

)
.

According to Definition 1.1, it is homogeneous if, for every λ > 0,

γ′−1
(
Eα[γ′(λX)]

)
= λγ′−1

(
Eα[γ′(X)]

)
.

As γ′ and x 7→ (γ′(x) − γ′(1))/γ′′(1) yield the same superquantiles, one may assume
without loss of generality that γ′(1) = 0 and that γ′′(1) = 1
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First, it is easy to check that the condition given is sufficient. For simplicity, we write
φ = γ′. If φ(x) = (xβ − 1)/β, then φ−1(y) = (1 + βy)1/β and

φ−1 (Eα[φ(λX)]) =

(
1 + βEα

[
(λX)β − 1

β

]) 1
β

= λ
(
Eα
[
Xβ
])1/β

= λ

(
1 + βEα

[
Xβ − 1

β

]) 1
β

= λφ−1 (Eα[φ(X)]) .

If φ(x) = ln(x), then φ−1(y) = exp(y) and

φ−1 (Eα[φ(λX)]) = exp (Eα (ln(λX)))

= exp (Eα (ln(λ)) + Eα (ln(X)))

= λ exp (Eα (ln(X)))

= λφ−1 (Eα[φ(X)]) .

For the other implication, let y > 0. Let Y be a random variable with distribution P
such that, denoting a = y∧1, P(du) = αa−11[0,a](u)du+(1−α)pδy+(1−α)(1−p)δ1. Its

quantile of order α is F−1Y (α) = a. The conditional distribution of Y given Y ≥ F−1Y (α)
is (1− p)δ1 + pδy, and Eα[φ(Y )] = (1− p)φ(1) + pφ(y). The homogeneity property and
the assumption φ(1) = 0 imply that

φ−1 ((1− p)φ(λ) + pφ(λy)) = λφ−1 (pφ(y)) .

By assumption, the expressions on both sides are smooth in p and y. Taking the deriv-
ative in p at p = 0 yields

φ(λy)− φ(λ)

φ′(λ)
= λ

φ(y)

φ′(1)
,

and hence, as φ′(1) = 1,

φ(λy)− φ(λ) = λφ′(λ)φ(y) .

By differentiating with respect to y, one gets

(3) φ′(λy) = φ′(λ)φ′(y) .

Let ψ be defined on R by ψ(z) = ln (φ′(exp(z))). One readily checks that Equation (3)
yields

ψ (ln(y) + ln(λ)) = ψ (ln(y)) + ψ (ln(λ)) .

This equation holds for every y, λ > 0. This is well known to imply the linearity of ψ:
there exists a real number β such that for all z ∈ R,

ln
(
φ′(exp(z))

)
= ψ(z) = βz .
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Thus, φ′(exp(z)) = exp(β exp(z)), that is φ′(y) = yβ for all y > 0. For α = −1, one
obtains φ(y) = ln(y). Otherwise, taking into account the constraint φ(1) = 0, this yields

φ(y) =
y1+β − 1

1 + β
.

Proof of iii) :
Let X and X ′ be two real-valued random variable. Since γ is convex, γ′ is non-

decreasing. So, to deal with expectation, it is the same thing to show the subadditivity
or that

γ′
(
R(X +X ′)

2

)
≤ γ′

(
R(X) +R(X ′)

2

)
.

We set S := X +X ′. Using the concavity of γ, we have

γ′
(
R(X) +R(X ′)

2

)
≤ 1

2

[
γ′
(
R(X)

)
+ γ′

(
R(X ′)

)]
=

1

2(1− α)
E
(
γ′(X)1X≥qXα + γ′(X ′)1X′≥qX′α

)
.

But

γ′
(
R(S)

2

)
=

1

2(1− α)
E
(
γ′(S)1S≥qSα

)
.

So we want to show that

E
(
γ′(X)1X≥qXα + γ′(X ′)1X′≥qX′α

− γ′(S)1S≥qSα

)
≥ 0.

The sud-additivity hypothesis allows us to use the same argument as in [2] for the
classical superquantile :

E
(
γ′(X)1X≥qXα + γ′(X ′)1X′≥qX′α

− γ′(S)1S≥qSα

)
≥ E

(
γ′(X)1X≥qXα + γ′(X ′)1X′≥qX′α

− γ′(X)1S≥qSα − γ
′(X ′)1S≥qSα

)
≥ γ′(qXα )E

(
1X≥qXα − 1S≥qSα

)
+ γ′(qX

′
α )E

(
1X′≥qX′α

− 1S≥qSα

)
= 0.

Finally, we show the closeness under the same assumption as just before. Let be
(Xh)h > 0 satisfying the hypothesis. By subadditivity we have

R(X) ≤ R(Xh) +R(Xh −X) ≤ 0 +R(Xh −X).

Then denoting Yh = Xh −X, it is enough to show that

Yh −→
L2, n→+∞

0 =⇒ R(Yh) −→
n→+∞

0



16 T. LABOPIN-RICHARD, F. GAMBOA, A. GARIVIER, AND B. IOOSS

to conclude. Thanks to the concavity of γ′ we can use Jensen inequality

γ′−1

E
(
γ′(Yh)1Yh≥F−1

Y (α)

)
1− α

 ≤ E
(
Yh1Yh≥F−1

Yh
(α)

)
1− α

.

We conclude with Cauchy-Schwartz inequality

E
(
Yh1Yh≥F−1

Yh
(α)

)
1− α

≤ E((Yh)2)
1
2

E
(

12
Yh≥FY−1

h
(α)

) 1
2

1− α
= ||Yh||2

√
1− α −→

h→0
0.

�

6.2. Proof of Proposition 3.1 : asymptotic behavior of the plug-in estimator
of the superquantile.

6.3. Mathematical tools. We first give some technical or classical results that we will
use in the forthcoming proofs.

6.3.1. Ordered statistics and Beta function. Let us recall some results of ordered statis-
tics (see [11]). Let (Yi)i=1...n+1 be an independent sample having the standard exponen-
tial distribution. It’s well known that

(4) U(i) :=

i∑
j=1

Yj

n+1∑
j=1

Yj

−1

has the same distribution as the ith ordered statistics of an i.i.d sample of size n
uniformly distributed on [0, 1], that is Beta distribution of parameters i and n − i + 1
denoted B(i, n− i+ 1). It is also known that this equality in law holds

X(i)
L
= F−1(U(i)).

Recall that the B(a, b) distribution has the following density

fB(a,b)(x) =
xa−1(x− 1)b−1

B(α, β)
, a, b > 0

where

(5) B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)

Γ(a+ b)
.

A classical property of the Beta function is

(6) ∀(x, y) ∈ R+, B(x+ 1, y) =
x

x+ y
B(x, y).

Generalizing the definition of the factorials, we set for n ∈ N∗
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(
n− 1

2

)
! :=

(
n− 1

2

)(
n− 1− 1

2

)
. . .

(
1

2

)
,

we have for i ∈ N∗, n ≥ i+ 2

(7) B(i, n− i− 5

2
+ 1) =

(i− 1)!
(
n− i− 2− 1

2

)
!(

n− 2− 1
2

)
!

,

(8)

(
n− 1

2

)
! =

(2n)!

(2n)2n!
.

Indeed, equation (7) comes directly from the definition (5) and to see the equation
(8), we fix k = 1

2 and notice that

2n(n− k)! = (2n− 1)(2n− 3) . . . 3× 1 =
(2n)!

2n(2n− 2) . . . 6× 4× 2
=

(2n)!

2nn!
.

6.3.2. Technical lemma.

Lemma 6.1. Let δ > 1. Then n−1
n−1∑

i=bnαc

(1− i

n+ 1
)−δ = O(

√
n) if and only if δ ≤ 3

2 .

Proof. Let δ > 1. We have to characterize the δ for which

n−
3
2

n−1∑
i=bnαc

(1 − i

n+ 1
)−δ is bounded when n goes to infinity. We set j := n + 1 − i.

The sum becomes

n−
3
2

n+1−bnαc∑
i=2

(
j

n+ 1

)δ
∼

n→+∞
nδ−

3
2

n+1−bnαc∑
i=2

1

jδ
∼

n→+∞
nδ−

3
2 ζ(δ),

where ζ denote the Zeta function. The conclusion of the lemma holds.
Finally, our problem is equivalent to characterize the set of δ which are superior than

1 and such that nδ−
1
2 is bounded. This set is clearly ]1, 32 ].

�

6.3.3. A corollary of Lindenberg-Feller theorem. To prove the asymptotic normality, we
use a central limit theorem which is a corollary of the Lindeberg-Feller theorem (see
lemma 1 in [8]).

Proposition 6.1. Let (Y1, . . . , Yn) be an independent sample of exponential variables of
parameter 1 and (αj,n)j≤n, n≥2 be a triangle array of real numbers.

If Qn = n−1
n∑
j=1

αj,n(Yj − 1) and σ2n = 1
n

n∑
j=1

α2
j,n, then

√
nQn
σn

=⇒ N (0, 1)

if and only if max1≤j≤n |αj,n| = o(n
1
2σn).
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If furthermore σn converges in probability to σ then by Slutsky’s lemma

√
nQn =⇒ N (0, σ2).

6.4. Proof of i) of Theorem 3.1 : consistency of the plug-in estimator.

Proof. We aim to show consistency of the estimator.

1

(1− α)n

n∑
i=bnαc

X(i).

Let us first notice that

Qα =
E
(
X1X≥F−1

X (x)(α)

)
1− α

=

∫
R x1X≥F−1

X (α)fX(x)dx

1− α
=

∫ 1
α F

−1
X (y)dy

1− α
.

Thus, we need to show that

1

n

n∑
i=bnαc

X(i) −
∫ 1

α
F−1X (y)dy −→

n→+∞
0 a.s.

In the sequel we omit the index X in F−1X because there is no ambiguity. Let us introduce
the two following quantities.

An =
1

n

n∑
i=bnαc

X(i) −
1

n

n∑
i=bnαc

F−1
(

i

n+ 1

)
,

and

Bn =
1

n

n∑
i=bnαc

F−1
(

i

n+ 1

)
−
∫ 1

α
F−1(y)dy.

An converges to 0 in L1. Indeed, denoting by Fn the empirical cumulative distribution
function, we have X(i) = F−1n

(
i
n

)
and

E (|An|) = E

∣∣∣∣∣∣ 1n
n∑

i=bnαc

F−1n

(
i

n+ 1

)
− F−1

(
i

n+ 1

)∣∣∣∣∣∣


≤ 1

n

n∑
i=bnαc

E
(∣∣∣∣F−1n

(
i

n+ 1

)
− F−1

(
i

n+ 1

)∣∣∣∣) .

We know by recalling 6.3.1 that X(i) = F−1n

(
i

n+1

)
is distributed like the ith ordered

statistic of a uniform sample. Thus, defining U(i) with law B(i, n+ 1− i), it holds that,

E (|An|) = E
(∣∣∣F−1 (U(i)

)
− F−1

(
i

n+ 1

) ∣∣∣) .
By the mean value theorem, there exists wn(i) ∈]U(i),

i
n+1 [ such that for n large enough:
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(9)

E
(∣∣∣F−1n

(
i

n+1

)
− F−1

(
i

n+1

) ∣∣∣) ≤ E

(∣∣∣U(i) − i
n+1

∣∣∣ 1

f
(
F−1(wn

(i)
)
)
)

≤
√

Var(U(i))

√√√√√E

( 1

f
(
F−1(wn

(i)
)
)
)2


≤
√

i(n−i+1)
(n+1)2(n+2)

max

√√√√E

[(
1

f(F−1( i
n+1))

)2
]
,

√√√√E

[(
1

f(F−1(U(i)))

)2
] .

Indeed, l (the derivative of F−1) in non decreasing in the neighborhood of 1. Let us
now deal with the two terms in the maximum. As l = o((1 − t)2) in the neighborhood
of 1, for ε > 0, there exists N such that for n ≥ N and i ∈ [bnαc, n]√√√√E

[(
1

f(F−1(U(i))

)2
]
≤ ε E

[
1

(1− U(i))4

]

=
ε

B(i, n+ 1− i)

∫ 1

0
xi−1(1− x)n+1−i−4dx.

However, we have

√
i(n− i+ 1)

(n+ 1)2(n+ 2)

√√√√√E

( 1

f
(
F−1(U(i))

))2
 =

√
i(n− i+ 1)(i− 1)!

B(i, n+ 1− i)(n− 4− (i− 2)) . . . (n− 4)(n+ 1)2(n+ 2)

∼
n→+∞

ε√
n

1√
i

n+1

(
1− i

n+1

) 3
2

.

The second term of (9) can be calculated in the same way√√√√√E

( 1

f(F−1)( in)

)2
 ≤ ε E[ 1

(1− i
n)4

]
∼

n→+∞

ε√
n

√
i

n+1(
1− i

n+1

) 3
2

.

Finally, the two sums

Pn,1 = ε
1

n

n∑
i=bnαc

1

√
n
√

i
n+1

(
1− i

n+1

) 3
2

, and Pn,2 = ε
1

n

n∑
i=bnαc

√
i

n+1

√
n
(

1− i
n+1

) 3
2

converge to 0 when n goes to infinity thanks to Lemma 6.1.
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So, An converges in L1 to 0 when n goes to infinity, then it converges to 0 in probability.

Let us study the term Bn = 1
n

∑n
i=bnαc F

−1
(

i
n+1

)
−
∫ 1
α F

−1(y)dy to show its a.s

convergence to 0.

Remark 6.1. To begin with, it is easy to show the convergence when the sum and
the integral are truncated at 1 − ε, ∀0 < ε < 1 (convergence of a Riemann sum for a
continuous functions).

Let us fix ε > 0. We split the forthcoming sum in two parts denoting the first part
S1
n and the second part S2

n.

1

n+ 1

bn(1−ε)c∑
i=bnαc

F−1(
i

n+ 1
) +

1

n+ 1

n−1∑
bn(1−ε)c+1

F−1(
i

n+ 1
) := S1

n + S2
n.

Since the quantile function is non-decreasing on [α, 1], we have :

∫ bn(1−ε)c
n+1

bnαc−1
n+1

F−1(t)dt+

∫ n−1
n+1

bn(1−ε)c
n+1

F−1(t)dt

≤ 1

n+ 1

bn(1−ε)c∑
i=bnαc

F−1(
i

n+ 1
) +

1

n+ 1

n−1∑
bn(1−ε)c+1

F−1(
i

n+ 1
)

≤
∫ bn(1−ε)c

n+1

bnαc
n+1

F−1(t)dt+

∫ n
n+1

bn(1−ε)c
n+1

F−1(t)dt.

In the previous inequality, we denote C1
n the lower-bound of S1

n and D1
n its upper-

bound. We use the same notation for S2
n with indexes 2. Then, we have :

(C1
n − S1

n) + (C2
n −D2

n) ≤ (S2
n −D2

n) ≤ (D1
n − S1

n)

Let us show that C2
n−D2

n converge to 0, to conclude (the convergence of D1
n−S1

n and
C1
n − S1

n to 0 is true thanks to the Remark 6.1).
As in the neighborhood of 1 l(t) = o

(
(1− t)−2

)
, we also have F−1(t) = o

(
(1− t)−1

)
.

Then, for ε > 0, there exist N such that for n ≥ N :

C2
n −D2

n = −
∫ n

n+1

n−1
n+1

F−1(t)dt ≤ ε
∫ n

n+1

n−1
n+1

1

1− t
dt = ε ln (2) .

Finally, S2
n −D2

n converges to 0 a.s. So that, the same holds for Bn.
We have shown that An + Bn converge to 0 in probability. So under our hypothesis,

the superquantile is consistent in probability.

Remark 6.2. Using the same arguments, we can show that under stronger hypothesis

on the quantile function F−1(t) = o

(
1

(1−t)
1
2

)
(that is the case in ii) of Proposition 3.1),

we have
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−
∫ n

n+1

n−1
n+1

F−1(t)dt ≤ ε
∫ n

n+1

n−1
n+1

1

(1− t)
1
2

dt = ε− 2(1−
√

2)
1√
n
.

Then

√
n

 1

n

n∑
i=bnαc

F−1(
i

n+ 1
)−

∫ 1

α
F−1(y)dy

 −→
n→+∞

0.

We will use this result in the next part.

�

6.4.1. Proof of ii) of Proposition 3.1 : asymptotic normality of the plug-in estimator.
Let us prove the asymptotic normality of the estimator of the superquantile. To begin
with, we can make some technical remarks.

Remark 6.3. The assumption on L implies that there exists ml <
3
2 and mF−1 < 1

2

such that l(t) = O ((1− t)−ml), and F−1(t) = O
(
(1− t)−mF−1

)
. It also implies that in

the neighborhood of 1, L(t) = o
(

(1− t)−
5
2

)
.

Proof. The proof stands in three steps. First we reformulate and simplify the problem
and apply the Taylor Lagrange formula. Then, we show that the second order term
converges to 0 in probability. In the third step, we identify the limit of the first order
term.

Step 1 : Taylor-Lagrange formula

Let us first omit α−1. We have to study the convergence in distribution of

√
n

 1

n

n∑
i=bnαc

X(i) −
∫ 1

α
F−1(y)dy

 .

We have already noticed (Remarks 6.2 and 6.3) that

√
n

 1

n

n∑
i=bnαc

F−1(
i

n+ 1
)−

∫ 1

α
F−1(y)dy

 −→
n→+∞

0.

Thus, Slutsky’s lemma, allows us to study only the convergence in law of

√
n

 1

n

n∑
i=bnαc

X(i) −
1

n

n∑
i=bnαc

F−1
(

i

n+ 1

) .
The quantile function F 1 is C2 so that we may apply the order 1 Taylor-Lagrange

formula. Using the same argument in the proof of i), we introduce U(i) a random
variable distributed as a B(i, n+ 1− i). Considering an equality in law we then have
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√
n

 1

n

n∑
i=bnαc+1

[
X(i) − F−1(

i

n+ 1
)

] =
L
√
n

 1

n

n∑
i=bnαc+1

(
U(i) −

i

n+ 1

)
1

f
(
F−1( i

n+1)
)


+
1√
n

n∑
i=bnαc+1

[∫ U(i)

i
n+1

f ′(F−1(t))

(f(F−1(t)))3
(
U(i) − t

)
dt

]
.

Let us call
√
nQn the first-order term and Rn the second-order one.

Step 2 : The second-order term converges to 0 in probability

Let us show that Rn converge to 0 in probability. Thanks to Markov’s inequality, we
have

P(Rn > ε) ≤ 1

ε
√
n

n∑
i=bnαc+1

E

(∣∣∣∣∣
∫ U(i)

i
n+1

L(t)(U(i) − t)dt

∣∣∣∣∣
)
.

Since the function L is non decreasing in the neighborhood of 1, for n large enough,
we have

P(Rn > ε) ≤ 1

ε
√
n

n∑
i=bnαc+1

E

(
max

(∣∣L(U(i))
∣∣ , ∣∣∣∣L(

i

n+ 1
)

∣∣∣∣) ∫ U(i)

i
n+1

(
U(i) − t

)
dt

)

=
1

ε
√
n

n∑
i=bnαc+1

E

max

(∣∣L(U(i))
∣∣ , ∣∣∣∣L(

i

n+ 1
)

∣∣∣∣)
(
U(i) − i

n+1

)2
2

 .

As before, we study the two terms in the maximum separately. First, using the
variance of the Beta distribution,

1

ε
√
n

n∑
i=bnαc+1

∣∣∣∣L(
i

n+ 1
)

∣∣∣∣E

(
U(i) − i

n+1

)2
2

 =
1

ε
√
n

n∑
i=bnαc+1

∣∣∣∣L(
i

n+ 1
)

∣∣∣∣ i(n+ 1− i)
2(n+ 1)2(n+ 2)

.

But according to Remark 6.3, our assumption on L gives that for ε′, there exists an
integer N such that for n ≥ N , for i ∈ [bnαc, n],
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P(Rn > ε) ≤ 1

ε
√
n

n∑
i=bnαc+1

∣∣∣∣L(
i

n+ 1
)

∣∣∣∣ i(n+ 1− i)
2(n+ 1)2(n+ 2)

≤ ε′

2ε
√
n(n+ 2)

n∑
i=bnαc+1

i
n+1

(
1− i

n+1

)
(

1− i
n+1

) 5
2

=
ε′

2ε
√
n(n+ 2)

n∑
i=bnαc+1

i
n+1(

1− i
n+1

) 3
2

.

Further the convergence to 0 when n goes to infinity of the first term in the maximum
holds thanks to the Lemma 6.1.

We have now to deal with the second term in the maximum. Using our assumptions,
we have, for ε′ and n large enough,

1

ε
√
n

n∑
i=bnαc+1

E

∣∣L(U(i))
∣∣
(
U(i) − i

n+1

)2
2

 ≤ ε′

2ε
√
n

n∑
i=bnαc+1

E


(
U(i) − i

n+1

)2
(
U(i) − 1

) 5
2

 .

As U(i) has a Beta distribution, we can write that,

E


(
U(i) − i

n+1

)2
(
U(i) − 1

) 5
2

 =
1

B(i, n+ 1− i)

∫ 1

0
xi−1(1− x)n−i−

5
2

(
x− i

n+ 1

)2

dx

=
1

B(i, n+ 1− i)

(∫ 1

0
xi+1(1− x)n−i−

5
2dx− 2

i

n+ 1

∫ 1

0
xi(1− x)n−i−

5
2dx

+

(
i

n+ 1

)2 ∫ 1

0
xi−1(1− x)n−i−

5
2

)
.

Let us call this last quantity Iin. To have n− i− 5
2 + 1 non negative, we cut the sum

and deal only with the terms for i from bnαc to n− 2. Then, we obtain :
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Iin =
1

B(i, n+ 1− i)

(∫ 1

0
xi+1(1− x)n−i−

5
2dx− 2

i

n+ 1

∫ 1

0
xi(1− x)n−i−

5
2dx

+ (
i

n+ 1
)2
∫ 1

0
xi−1(1− x)n−i−

5
2

)
=

1

B(i, n+ 1− i)

(
B(i+ 2, n− i− 5

2
+ 1)− 2

i

n+ 1
B

(
i+ 1, n− i− 5

2
+ 1

)
+ (

i

n+ 1
)2B

(
i, n− i− 5

2
+ 1

)
.

So that using (6) we obtain

Iin =
1

B(i, n+ 1− i)

(
B

(
i+ 2, n− i− 5

2
+ 1

)
− 2

i

n+ 1
B

(
i+ 1, n− i− 5

2
+ 1

)
+ (

i

n+ 1
)2B

(
i, n− i− 5

2
+ 1

)
=
B
(
i, n− i− 5

2 + 1
)

B(i, n+ 1− i)

( i(i+ 1)

(n− 5
2 + 2)(n− 5

2 + 1)

− 2
i2

(n− 5
2 + 1)(n+ 1)

i(i+ 1)

(n− 5
2 + 2)(n− 5

2 + 1)
+ (

i

n+ 1
)2

i(i+ 1)

(n− 5
2 + 2)(n− 5

2 + 1)

)
.

Let Ein be such that Iin =
B(i,n−i− 5

2
+1)

B(i,n+1−i) Ein. Expanding Eni gives when n goes to infinity

Eni ∼
1

n

i

n+ 1

(
1− i

n+ 1

)
.

Let us study the term
B(i,n−i− 5

2
+1)

B(i,n+1−i) . Using (5) and (8), we obtain

B
(
i, n− i− 5

2 + 1
)

B(i, n+ 1− i)
=

n!(
n− 2− 1

2

)
!

(
n− i− 2− 1

2

)
!

(n− i)!

=
n(n− 1)

(n− i− 1)(n− i)
(2(n− i− 2))!((n− 2)!)222i

((n− i− 2)!)2(2(n− 2))!

Since each i can be written as i = bnβc with β < 1, n− i goes to infinity when n goes
to infinity and we can apply the Stirling formula:
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(2(n− i− 2))!

((n− i− 2)!)2
∼

n→+∞

√
2(n− i− 2)2π

(
2(n−i−2)

e

)2(n−i−2)
2π(n− i− 2)

(
n−i−2
e

)n−i−2
∼

n→+∞

22(n−i−2)√
π(n− i− 2)

.

Likewise,

(2(n− 2))!

((n− 2)!)2
∼

n→+∞

22(n−2)√
π(n− 2)

.

Then, when n goes to infinity

B
(
i, n− i− 5

2 + 1
)

B(i, n+ 1− i)
∼

n→+∞

1

(1− i
n+1)

5
2

.

Hence we obtain

Ini ∼
n→+∞

1

n

i
n+1

(1− i
n+1)

3
2

.

Finally, for n large enough, we have

Ini ≤ 2
1

n

i
n+1

(1− i
n+1)

3
2

.

and thanks to our assumptions on L, for ε′ and n large enough, we have

1

ε
√
n

n−2∑
i=bnαc+1

E

∣∣L(U(i))
∣∣
(
U(i) − i

n+1

)2
2

 ≤ ε′

2ε
√
n

n−2∑
i=bnαc+1

E

(U(i) − i
n+1)2(

U(i) − 1
) 5

2


≤ ε′

ε
√
n

1

n

n−2∑
i=bnαc+1

i
n+1(

1− i
n+1

) 3
2

.

To conclude the second term in the maximum converges to 0 thanks the Lemma 6.1.

Remark 6.4. The terms for i = 1 and i = n− 1 are of leaser order of the sum, so they
converge to 0 too.

Finally, the remaining term Rn converges to 0 in probability so we can now focus on
the first order term.

Step 3 : Identification of the limit
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Our goal is to find the limit of
√
nQn. Let us reorganize the expression of Qn to have

a more classical form (sum of independent random variables) and to allow the use of the
Proposition 6.1.

Denoting by

Ȳ =

n+1∑
j=1

Yj

n+ 1
,

we have thanks to (4)

Qn =
1

n

n∑
i=bnαc+1


i∑

j=1

Yj

n+1∑
j=1

Yj

− i

n+ 1

 l(
i

n+ 1
)

=
1

n

n∑
j=1




Yj

n+1∑
j=1

Yj

− 1

n+ 1


∑

i=sup(bnαc+1,j)

l(
i

n+ 1
)


=

n+ 1
n+1∑
j=1

Yj

1

n(n+ 1)

bnαc+1∑
j=1

(Yj − Ȳ )

n∑
i=bnαc+1

l(
i

n+ 1
)

+

n∑
j=bnαc+2

(Yj − Ȳ )

n∑
i=j

l(
i

n+ 1
)

 .

where we have permuted the two sums. The law of large numbers gives that

n+1

n+1∑
j=1

Yj

−1 converges a.s to 1 when n goes to infinity. Then, thanks to Slutsky’s

lemma, we only need to study

1

n(n+ 1)

bnαc+1∑
j=1

(Yj − Ȳ )

n∑
i=bnαc+1

l(
i

n+ 1
)

+

n∑
j=bnαc+2

(Yj − Ȳ )

n∑
i=j

l(
i

n+ 1
)

 .

We set ∀j ≤ n, Gnj :=
n∑
i=j

l(
i

n+ 1
), Gnn+1 := 0, Hn :=

n∑
j=bnαc+2

Gj . Then
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Qn =
1

n(n+ 1)

bnαc+1∑
j=1

(
(n− bnαc)Gnbnαc+1 −H

n

n+ 1

)
Yj +

n+1∑
bnαc+2

(
Gnj −

Hn

n+ 1
+Gnbnαc+1

−1− bnαc
n+ 1

)
Yj


=

1

n(n+ 1)

[ bnαc+1∑
j=1

(
(n− bnαc)Gnbnαc+1 −H

n

n+ 1

)
(Yj − 1)

+

n+1∑
bnαc+2

(
Gnj −

Hn

n+ 1
+Gnbnαc+1

−1− bnαc
n+ 1

)
(Yj − 1)

]
,

because

1

n(n+ 1)

bnαc+1∑
j=1

(
(
n− bnαc)Gnbnαc+1 −H

n

n+ 1

)
+

n+1∑
bnαc+2

(
Gnj −

Hn

n+ 1
+Gnbnαc+1

−1− bnαc
n+ 1

)
=

1

n(n+ 1)

[(
Gnbnαc(n− bnαc)−H

n

n+ 1

)
(bnαc+ 1)

+

(
Gnbnαc(−1− bnαc)

n+ 1
(n− bnαc)− Hn

n+ 1
(n− bnαc) +Hn

)]
= 0.

Finally, we obtain

Qn =
1

n(n+ 1)

[ bnα+1∑
j=1

(
(n− bnαc)Gnbnαc+1 −H

n

n+ 1

)
(Yj − 1)

+

n+1∑
bnαc+2

(
Gnj −

Hn

n+ 1
+Gnbnαc+1

−1− bnαc
n+ 1

)
(Yj − 1)

]

=
1

n+ 1

n+1∑
j=1

αj,n(Yj − 1),

where

αj,n =

(
(n− bnαc)Gnbnαc+1 −H

n

n(n+ 1)

)
, ∀j ≤ bnαc+ 1

and

αj,n =

(
Gnj (n+ 1)−Hn −Gnbnαc+1(1 + bnαc)

n(n+ 1)

)
, ∀j ≥ bnαc+ 2.
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Let us check the assumptions of the Proposition 6.1. To begin with, let us show that
σ2n converges. We have

σ2n =
1

n+ 1

n+1∑
j=1

α2
j,n

=
bnαc+ 1

n+ 1

[
(n− bnαc)Gnbnαc+1 −H

n

n(n+ 1)

]2

+
1

n+ 1

n+1∑
j=bnαc+2

(
Gnj (n+ 1)

n(n+ 1)

)2

+ 2
1

n+ 1

n+1∑
j=bnαc+2

Gnj (n+ 1)(−Hn −Gnbnαc+1(1 + bnαc))
n2(n+ 1)2

+
1

n+ 1

n+1∑
j=bnαc+2

(
−Hn −Gnbnαc+1(1 + bnαc)

n(n+ 1)

)2

.

Let us work with the two terms which depend on Gnj . The first term can be expanded
as

1

n+ 1

n+1∑
j=bnαc+2

(
Gnj (n+ 1)

n(n+ 1)

)2

=
1

n2(n+ 1)

n+1∑
j=bnαc+2

(
Gnj

)2

=
1

n2(n+ 1)

n+1∑
j=bnαc+2

 n∑
i=j

l

(
i

n+ 1

)2

=
1

n(n+ 1)

n+1∑
i1=bnαc+2

n+1∑
i2=bnαc+2

(
−1 + (i1 ∧ i2)− bnαc

n+ 1

)
l

(
i1

n+ 1

)
l

(
i2

n+ 1

)
.

The second term may be rewritten as

2
1

n+ 1

n+1∑
j=bnαc+2

Gnj (n+ 1)(−Hn −Gnbnαc+1(1bnαc))
n2(n+ 1)2

= −2
(Hn)2

n2(n+ 1)2
−2

(1 + bnαc)
(n+ 1)2n2

HnGnbnαc+1.

Finally,
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σ2n =
bnαc+ 1

n+ 1

[
(n− bnαc)Gnbnαc+1 −H

n

n(n+ 1)

]2

+
1

n(n+ 1)

n+1∑
i1=bnαc+2

n+1∑
i2=bnαc+2

(
−1

n+ 1
+

min(i1, i2)

n+ 1
− bnαc
n+ 1

)
l(

i1
n+ 1

)l(
i2

n+ 1
)

− 2
(Hn)2

n2(n+ 1)2
− 2

(1 + bnαc)
(n+ 1)3n2

HnGnbnαc+1 +
n− bnαc − 1

n+ 1

(
Hn +Gnbnαc+1(1 + bnαc)

n(n+ 1)

)2

.

Let us first notice that, if we denote

Kn =
n+1∑

i1=bnαc+2

n+1∑
i2=bnαc+2

min(i1, i2)

n+ 1
l

(
i1

n+ 1

)
l

(
i2

n+ 1

)
and

Tn =
n∑

i=bnαc

i

n
l

(
i

n+ 1

)
then

Hn = nTn − (bnαc+ 1)Gnbnαc+1.

So that

σ2n ∼
n→+∞

α
(Gn − Tn)2

n2
+
Kn − α(Gn)2

n2
− −2(Tn − αGn)2

n2
− 2

α(GnTn − α(Gn)2)

n2
+

(1− α)(Tn)2

n2

∼
n→+∞

Kn − (Tn)2

n2
.

Let us show that this last quantity converges to σ2 =
∫ 1
α

∫ 1
α

min(x,y)−xy
f(F−1(x))f(F−1(y))

< ∞.

Indeed it is a generalized Rieman sum. First, we show that the function

g : (x, y) 7→ min(x, y)− xy
f(F−1(x))f(F−1(y))

is integrable on ]α, 1[×]α, 1[. Indeed, around 1,

g(x, y) = O

(
min(x, y)− xy

(1− x)ml(1− y)ml

)
which is integrable on this domain because for β close to 1∫ β

α

∫ β

α

min(x, y)− xy
(1− x)ml(1− y)ml

dxdy ∼ C(α)β(1− β)
−2
ml

+3
.

and ml <
3
2 .
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Remark 6.5. Here, we need that L(t) = O ((1− t)−mL) with mL <
5
2 instead of L(t) =

o
(

(1− t)−
5
2

)
. Indeed, when mL = 5

2 and so ml = 3
2 the integral is not finite.

As we have already seen, the results on Riemann’s sum in dimension 2, give by the

continuity of the function (x, y) 7→ min(x,y)−xy
f(F−1(x))f(F−1(y))

that for all β < 1 :

σ2n,β :=
1

n2

bnβc∑
i1=bnαc

bnβc∑
i1=bnαc

min(i1,i2)
n − i1i2

n2

f(F−1
(

i1
n+1

)
)f(F−1

(
i2
n+1

)
)
−→

∫ β

α

∫ β

α

min(x, y)− xy
f(F−1(x))f(F−1(y))

dxdy.

We have to study the remaining part of the sum to conclude. Let us fix β close to 1
and deal with

r2n,β :=
1

n2

n+1∑
i1=bnβc

n+1∑
i1=bnβc

min(i1,i2)
n − i1i2

n2

f
(
F−1

(
i1
n+1

))
f
(
F−1

(
i2
n+1

)) .
In this case, the monotony will allow us to conclude with the Lebesgue theorem. First

of all, let us notice that

r2n,β =

∫ 1

β

∫ 1

β
g

(
bnxc
n

,
bnyc
n

)
dxdy.

Then, we aim to permute integration and limit.

1) Let (x, y) be fixed in [β, 1[×[β, 1[ and n. Then

g

(
bnxc
n

,
bnyc
n

)
−→ g(x, y)

by continuity. And g is integrable on [β, 1[×[β, 1[ as we saw before.

2) Let (x, y) be fixed in [β, 1[×[β, 1[ and n. Let us denote xn = bnxc
n and yn = bnyc

n .
By hypothesis

g

(
bnxc
n

,
bnyc
n

)
≤ C min(xn, yn)− xnyn

(1− xn)ml(1− yn)ml
.

By separating the two cases and using monotony we obtain that

g

(
bnxc
n

,
bnyc
n

)
≤ Ch(x, y)

where

h : (x, y) 7→ min(x, y)

(1−min(x, y))ml (1−max(x, y)ml−1)

is integrable on [β, 1[×[β, 1[.

Then, the Lebesgue theorem allows us to permute integration and limit so that, we
have shown that σ2n −→ σ2and the first assumption of Proposition 6.1 holds.

Let now deal with the second assumption about the maximum of the αi,n.
For j ≤ bnαc+ 1, we have
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αj,n =
(n− bnαc+ 1)Gnbnαc+1 −H

n

n(n+ 1)
.

Using the previous computations, for n large enough we have

(αj,n)2

nσ2n
∼

n→+∞

(Gnbnαc+1 −
Tn

n )2

Kn − T 2
n
n2

1

n
,

But the convergence(
Kn −

(
Tn

n

))2
n4

−→
n→+∞

∫ 1

α

∫ 1

α
(min(x, y)− xy)l(x)l(y)dxdy

implies the convergence

(Gn − Tn

n )2

n4
−→

n→+∞

∫ 1

α
(1− x)l(x)dx.

Indeed

∫ 1

α

∫ 1

α
(min(x, y)−xy)l(x)l(y)dxdy =

∫ 1

α

∫ 1

α
(y(1−x))l(x)l(y)dxdy+

∫ 1

α
xl(x)

∫ 1

x
(1−y)l(y)dydx.

So that,

(αj,n)2

nσ2n
∼

n→+∞

C

n
−→

n→+∞
0

when n goes to infinity. If j ≥ bnαc+ 2 the same property holds as

αj,n =
(n+ 1)Gnj −Hn −Gnbnαc(nαc+ 1)

n(n+ 1)
∼

n→+∞

(n+ 1)Gjn − Tn

n2
.

Hence, we may apply Proposition 6.1 and conclude that

√
nQn =⇒ N (O, σ2).

where σ2 =
∫ 1
α

∫ 1
α (min(x, y)− xy)l(x)l(y)dxdy. Finally, just multiply by (1− α)−1 to

get the final result.

Step 4 : Conclusion
The Slutsky lemma allows to conclude using the results of steps 1 and 3.

�
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7. Conclusion

The superquantile was introduced because the usual quantile was not subadditive.
This quantity is interesting because it satisfies the axioms of a coherent measure of
risk. In this paper, we have introduced a new coherent measure of risk with the help
of the Bregman divergence associated to a strictly convex function γ. Those Bregman
superquantiles are then rich tools because of the diversity of the functions γ that can
be chosen according to the problem we study. Moreover, we have introduced a Monte
Carlo estimator of the Bregman superquantile which is statistically powerful thanks to
the strictly convex (and so settling) function γ.

The theoretical properties obtained in this paper are confirmed on several numerical
test cases. More precisely, geometrical and harmonic superquantiles are more robust
than the classical superquantile. This robustness is particularly important in in finance
and risk assessment studies. For instance, in risk assessment, when dealing with real
data, geometrical and harmonic statistics have been proved to be more relevant than
classical statistics. For example [7] prove the usefulness of the geometrical mean and
variance for the analysis of air quality measurements. As an illustration, we have applied
the geometrical and harmonic superquantiles on real data coming from a radiological
impact code used in the nuclear industry.

Further studies will try to apply these criteria in probabilistic assessment of physi-
cal components reliability using numerical simulation codes [12]. However, Monte Carlo
estimators are no longer applicable in this context and efficient estimators have to be de-
veloped. Ideas involving response surface technique should be developed (see for example
[6] for quantile estimation and [3] for rare event probability estimation).
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