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BREGMAN SUPERQUANTILES. ESTIMATION METHODS AND

APPLICATIONS

F. GAMBOA, A. GARIVIER, B. IOOSS, AND T. LABOPIN-RICHARD

Abstract. In this work, we extend some quantities introduced in [16] to the case
where the proximity between real numbers is measured by using a Bregman divergence.
This leads to the definition of the Bregman superquantile. Axioms of a coherent
measure of risk discussed in [13] are studied in the case of Bregman superquantile.
Furthermore, we deal with asymptotic properties of a Monte Carlo estimator of the
Bregman superquantile.

Introduction

The aim of this article is to define and to study properties and estimation procedures
for Bregman extension of the superquantile defined in [16] (see also [15], [14] and ref-
erences therein). We first recall the necessary conditions for a measure of risk to be
coherent and present the superquantile as a partial response to this problem. In section
2, we introduce the Bregman superquantile and study axioms of a coherent measure of
risk for this quantity. In Section 3 we are interested in estimating this Bregman su-
perquantile, we introduce a plug-in estimator and study its consistent and asymptotic
normality. All the proofs are differed to Section 5.

1. Coherent measures of risk

Let X be a real-valued random variable and let FX be its cumulative distribution
function. We denote for u ∈]0, 1[, the quantile function

F−1
X (u) := inf{x : FX(x) ≥ u}.

A usual way to quantify the risk associated with X is to consider, for a given number
α ∈]0, 1[ close to 1, its lower quantile qα := F−1

X (α).
But quantile is not sub-additive, a property considered important in some applications

(e.g finance, see [2]). Thus Rockafellar introduces in [13] a new quantity called therein
superquantile that satisfies this property. The superquantile is defined by :

Qα = E(X|X ≥ qα) = E(X|X ≥ F−1
X (α)) = E

(

X1X≥F−1
X (α)

1− α

)

Sub-additivity is not the sole interesting property for a measure of risk (for example
for financial application). Following Rockaffelar in [13] we define :
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Definition 1.1. Let R be a measure of risk and X and X ′ be two real-valued ran-
dom variables. We say that R is coherent if, and only if, it satisfies the five following
properties :

i) Constant invariant : let C ∈ R, If X = C (a.s.) then R(C) = C.
ii) Homogeneity : ∀λ > 0, R(λX) = λR(X).
iii) Subaddidivity : R(X +X ′) ≤ R(X) +R(X ′).
iv) Non decreasing : If X ≤ X ′ (a.s.) then R(X) ≤ R(X ′).
v) Closeness : Let (Xh)h∈R be a collection of random variables.

If R(Xh) ≤ 0 and lim
h→0

||Xh −X||2 = 0 then R(X) ≤ 0.

2. Bregman superquantiles

In this section the aim is to build a general measure of risk that satisfies some of
the regularity axioms stated in Definition 1.1. These quantities will be built by using a
dissimilarity measure beetween real numbers, the Bregman divergence.

2.1. Bregman divergence, mean and superquantile. In this section we first recall
the definition of the Bregman mean of a probability measure µ (see [3]) and define the
measure of risk that we will study. To begin with, we recall the definition of the Bregman
divergence that is used to build the Bregman mean. Let γ be a strictly convex function,
R-valued on R. As usual we set

domγ := {x ∈ R : γ(x) < +∞}.
For sake of simplicity we assume that domγ is a non empty open set and that γ is
closed proper and differentiable on the interior of domγ (see [12]). From now we always
consider function γ satisfying this hypothesis. The Bregman divergence dγ associated to
γ (see [4]) is a function defined on domγ × domγ by

dγ(x, x
′) := γ(x)− γ(x′)− γ′(x′)(x− x′) ; (x, x′ ∈ domγ).

The Bregman divergence is not a distance as it is not symmetric. Nevertheless, as it is
non negative and vanishes, if and only if, the two arguments are equal, it quantifies the
proximity in domγ. Let us recall some classical examples of such a divergence.

• Euclidean. γ(x) = x2 on R, we obviously obtain, for x, x′ ∈ R,

dγ(x, x
′) = (x− x′)2.

• Geometric. γ(x) = x log(x)− x+ 1 on R
∗
+ we obtain, for x, x′ ∈ R

∗
+,

dγ(x, x
′) = x log

x

x′
+ x′ − x.

• Harmonic. γ(x) = − log(x) + x− 1 on R
∗
+ we obtain, for x, x′ ∈ R

∗
+,

dγ(x, x
′) = − log

x

x′
+
x

x′
− 1.

Let µ be a probability measure whose support is included in domγ such that
µ(domγ\domγ) = 0 and γ′ is integrable with respect to µ. Following [3], we first

define the Bregman mean as the unique point b in the support of µ satisfying
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(1)

∫

dγ(b, x)µ(dx) = min
m∈domγ

∫

dγ(m,x)µ(dx).

In fact, we replace the L2 minimization in the definition of the mathematical expec-
tation by the minimization of the Bregman divergence. Existence and uniqueness come
from the convexity properties of dγ with respect to its first argument. By differentiating
it’s easy to see that

b = γ
′−1

[∫

γ′(x)µ(dx)

]

.

Hence, coming back to our three previous examples, we obtain the classical mean in the
first example (Euclidean case), the geometric mean (exp

∫

log(x)µ(dx)), in the second
one and the harmonic mean ([

∫

x−1µ(dx)]−1), in the third one. Notice that, as the
Bregman divergence is not symmetric, we have to pay attention to the definition of the
Bregman mean. Indeed, we have

∫

dγ(x,E(X))µ(dx) = min
m∈domγ

∫

dγ(x,m)µ(dx).

We turn now to the definition of our new measure of risk.

Definition 2.1. Let α ∈]0, 1[, the Bregman superquantile Q
dγ
α is defined by

Q
dγ
α := γ′−1

(

E(γ′(X)|X ≥ F−1
X (α))

)

= γ′−1

[

E

(

γ′(X)1X≥F−1
X (α)

1− α

)]

.

In words Q
dγ
α satisfies (1) taking for µ the distribution of X conditionally to

X ≥ F−1
X (1 − α). We now denote Qdγ

α the Bregman superquantile of the law X when

there is no ambiguity and Qdγ
α (X) if we need to distinguish Bregman superquantile of

different laws.

2.2. Coherence of Bregman superquantile. The following proposition gives some
conditions under which the Bregman superquantile is a coherent measure of risk.

Proposition 2.2. Fix α in ]0, 1[.

i) Any Bregman superquantile always satisfies the properties of constant invariance
and non decreasing.

ii) The Bregman superquantile associated to γ is homogeneous if and only if γ′(x) =
ln(x) or γ′(x) = (xβ − 1)/β for some β 6= 0.

iii) If γ′ is concave and sub-additive, then subadditivity and closeness axioms both
hold.

The proof of this proposition, like all the others, is differed in Section 5.
To conclude, under some regularity assumptions on γ, the Bregman superquantile is

a coherent measure of risk. Let us take some examples.
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2.2.1. Examples and counter-examples.

• Example 1 : x 7→ x2 satisfies all the hypothesis but it’s already known that the
classical superquantile is sub-addtive.

• Example 2 : The Bregman geometric and harmonic functions satisfies the hy-
pothesis i and ii. Moreover, their derivatives are x 7→ γ′(x) = log(x) and
x 7→ γ′(x) = x−1

x which are concave but sub-additive only on [1,+∞[. Then
the harmonic and geometric functions satisfy iii not for every couple of random
variables but only for couples (X,X ′) such that, denoting Z := X +X ′ we have

min
(

qXα (α), qX
′

α (α), qZα (α)
)

> 1

• Counter-example 3 : The sub-additivity is not true in the general case. Indeed,
let γ(x) = exp(x) be our convex function and let us consider the uniform law on
[0, 1].

E(γ′(X)1X≥F−1
X (α)) =

∫ 1

α
exp(x)dx = e− exp(α).

Then

R(X) = log

(

e− exp(α)

1− α

)

.

Moreover

E

(

γ′(λX)1λX≥F−1
λX

(α)

)

=

∫ 1

α
exp(λx)dx =

exp(λ)− exp((α)λ)

λ
.

So

R(λX) = log

(

exp(λ)− exp((α)λ)

λ(1− α)

)

.

For α = 0.95 and λ = 2, we obtain

R(2X) − 2R(X) = R(X +X)− (R(X) +R(X)) = 0.000107 > 0,

and the subadditivity is not true.
We can also notice that for λ = 4

R(4X)

4R(X)
= 1, 000321

and the homogeniety is not true. It’s coherent with our proposition since the
derivative of γ = exp is not one of those presented in ii) of proposition 2.2.
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3. Estimation and asymptotics of the Bregman superquantile

In this section the aim is to make estimation of the Bregman superquantile. We in-
troduce a Monte Carlo estimator and study its asymptotics properties. Under regularity
assumptions on the functions γ and F−1

X , the Bregman superquantile is consistent and
asymptotically gaussian. All along this section, we consider a function γ satisfying our
usual properties and a real-valued random variable X such that γ′(X) is right-integrable.

3.1. Monte Carlo estimator. Assume that we have at hand (X1, . . . ,Xn) an i.i.d

sample with same distribution as X. If we wish to estimate Q
dγ
α , we may use the

following empirical estimator :

ˆ
Q

dγ
α = γ

′−1





1

1− α





1

n

n
∑

i=⌊nα⌋+1

γ′(X(i))









where X(1) ≤ X(2) ≤ · · · ≤ X(n) is the re-ordered sample built with (X1, . . . ,Xn).

3.2. Asymptotics. In this section, we present the following theorem which study the
asymptotic behaviour of the Bregman superquantile.

Theorem 3.1. Let α ∈]0, 1[ be close to 1 and X be a real-valued random variable. Let
(X1, . . . Xn) be an independant sample with the same distribution as X.

i) We assume that γ is twice differentiable and that the cumulative function FX

is C1 on ]0, 1[. We note fX the density and we suppose that fX > 0 on its
support. We moreover suppose that the derivative of γ′ ◦ F−1

X that we denote lγ
is non-decreasing and o

(

(1− t)−2
)

in the neighborhood of 1.

Then the estimator γ′−1



((1− α)n)−1
n
∑

i=⌊nα⌋

γ′
(

X(i)

)



 is consistent.

ii) Strongly, we assume that γ is three times differentiable, the cumulative ditribution
function FX is C2, fX > 0 on its support and the second derivative of γ′ ◦ F−1

X

that we denote Lγ is non decreasing and O ((1− t)−mL) for an 1 < mL <
5
2 , in

the neighborhood of 1. Then the estimator is asymptotically normal

√
n



γ′−1





1

n(1− α)

n
∑

i=⌊nα⌋+1

γ′(X(i))



−Qdγ
α (X)



 =⇒ N
(

0,
σ2γ

(γ′′ ◦ γ′−1 (Qα(γ′(X))))2 (1− α)

)

where

σ2γ :=

∫ 1

α

∫ 1

α

(min(x, y)− xy)

fZ(F
−1
Z (x))fZ(F

−1
Z (y))

,

denoting Z := γ′(X).

Remark 3.2. Easy calculations show that we have the following equalities

lγ :=
γ′′ ◦ F−1

X

fX ◦ F−1
X
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,

Lγ :=

(

γ′′′ ◦ F−1
X )×

(

fX ◦ F−1
X

)

−
(

f −X ′ ◦ F−1
X

)

× (γ′′ ◦ F−1
X

)

(

fX ◦ F−1
X

)3

and

fZ =
fX ◦ γ′−1

γ′′ ◦ γ′−1
.

The second part of the theorem shows the asymptotic normality of the Bregman
superquantile. We can then use the Slutsky’s lemma to find confident interval. Indeed,

since our estimator
ˆ
Qdγ

α := γ′−1



(n(1− α))−1
n
∑

i=⌊nα⌋+1

Z(i)



 is consistent

√
n

(

γ′′ ◦ ˆ
Qdγ

α

)

(

ˆ
Qdγ

α −Qdγ
α (X)

)

=⇒ N
(

0,
σ2γ

(1− α)

)

Then to prove this theorem we use results on the asymptotic behavior of the su-
perquantile. We have the fundamental link between this two quantities

(2) Qdγ
α (X) = γ′−1

(

Qα(γ
′(X)

)

.

Indeed, as γ′
(

F−1
(γ′)−1(Z)

(α)
)

= F−1
Z (α), we have

E

(

γ′(X)1X>F−1
X (α)

)

= E

(

Z1Z>F−1
Z (α)

)

.

To prove our theorem, we first prove the following proposition on the asymptotic be-
havior of the superquantile (which is equivalent to deal with the Bregman superquantile
with the function γ equals to identity). Then, we apply this proposition to the sample
(Z1, . . . Zn) where Zi := γ′(Xi). We conclude by applying the continuous map theorem
for the consistency and the delta-method for the asymptotic normality (both with the
regular function γ′−1).

Proposition 3.3. Let αbe ∈]0, 1[ close to 1 and X be a real-valued random variable
right integrable. Let (X1, . . . Xn) be an independant sample with the same distribution
as X.

i) We assume that the cumulative function FX is C1 on ]0, 1[. We note fX the
density and we suppose that fX > 0 on its support. We moreover suppose that
the derivative of the quantile function F−1

X denoting l is non-decreasing and
o((1 − t)−2 in the neighborhood of 1.

Then, the estimator ((1− α)n)−1
n
∑

i=⌊nα⌋

X(i) of Q
X
α is consistent.

ii) Strongly, we assume that the cumulative ditribution function FX is C2, fX > 0
on its support and the second derivative of the quantile function that we denote
L is non decreasing and O ((1− t)−mL) for an 1 < mL <

5
2 , in the neighborhood

of 1. Then the estimator is asymptotically normal
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√
n





1

n(1− α)

n
∑

i=⌊nα⌋+1

X(i) −Qα



 =⇒ N
(

0,
σ2

1− α

)

where

σ2 :=

∫ 1

α

∫ 1

α

(min(x, y)− xy)

f(F−1(x))f(F−1(y))
.

3.3. Examples of asymptotic behavior for the classical superquantile. Our hy-
pothesis are easy to check in practice. Let us show examples of the asymptotic behaviour
of the superquantile : the exponential distribution of parameter 1 and the Pareto distri-
bution.

3.3.1. Exponential distribution. In this case, we have on R
+
∗ f(t) = exp(−t),

F (t) = 1− exp(−x). Then F−1(t) = − ln(1− t).

• Consistency :
In the neighborhood of 1, l(t) = (1− t)−1 = o

(

(1− t)−2
)

and l is non decreas-
ing then the superquantile is consistent.

• Asymptotic normality :
In the neighborhood of 1, L(t) = (1− t)−2 = O ((1− t)−mL) for 2 < mL <

5
2

and L is non-decreasing . Then the theorem of asymptotic normality is true.

3.3.2. Pareto law. Here, we consider the Pareto law of parameter a > 0 : on R
+
∗ ,

F (t) = 1− x−a, f(t) = ax−a−1, and F−1(t) = (1− t)
−1
a .

• Consistency :

l(t) = (a(1 − t)−1− 1
a ) thus, n the neighborhood of 1 l(t) = o

(

(1− t)−2
)

as
soon as a > 1. Then, l is non-decreasing near 1. The consistency is true.

• Asymptotically gaussian :

L(t) = C(a)(1− x)−
1
a
−2 thus, as soon as a > 2, there exists 3

2 < mL <
5
2 such

that L(t) = O
(

1
(1−t)δ

)

in the neighborhood of 1 and L is non decreasing around

1. The asymptotic normality is true if and only if a > 2.

3.4. Examples of asymptotic behaviour of the Bregman superquantile. Let
us now study the same examples for the Bregman superquantile. For the exponential
distribution, the conclusion is the same. Nevertheless, we can find a function γ such that
the estimator of the Bregman superquantile is asymptotically normal without conditions
on a. In this sens, the Bregman superquantile is a more interesting measure of risk than
the superquantile.

3.4.1. Exponential law. Let us show the example of the exponential distribution and the
geometric Bregman function. We have γ′(x) = (x − 1)x−1 and F−1(x) = − ln(1 − t).
Then

F−1
Z (t) = 1 +

1

ln(1− t)
,
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• Consistency. In this case, we have,

lγ(t) =
1

(1− t)(ln(1− t))2
.

So in the neighborhood of 1, lγ is non decreasing and o
(

(1− t)−2
)

.
The estimator is consistent.

• Asymptotically normality.

Lγ(t) =
(ln(1− t))2 + 2 ln(1− t)

(1− t)2(ln(1− t))4
,

Then in the neighborhood of 1 Lγ is non decreasing and O ((1− t)−mL), for
2 < mL <

5
2 .

Our estimator is asymptotically gaussian.

3.4.2. Pareto law. Let us now study the case of the Pareto law with the harmonic Breg-

man function. We have F−1(t) = (1− t)
−1
a and γ′(t) = ln(t). Then

F−1
Z (t) = −1

a
ln(1− t).

• Consistency.

lγ(t) =
1

a

1

1− t
= o

(

1

(1− t)2

)

and the non-decreasinf is true. The estimator is consistent.
• Asymptotical normality.

Lγ(t) =
1

a

1

(1− t)2
= O

(

(1− t)−mL
)

,

for 2 < mL <
5
2 .

The estimator is consistent and normally asymptotic for every a > 0.

4. Proofs

4.1. Proof of the proposition 2.2 : coherence of the Bregman superquantile.

Proof. For the first part of the point i), we obviously have R(C) = γ′−1(γ′(C)) = C.
Let us show non decreasing property. We first show that the superquantile is non-

decreasing. Then, (2) and the monotony of γ′−1 and γ will allow us to conclude. [11]
shows that the Superquantile of the law of X satisfy :

Qα = min
a∈R

{a+ 1

1− α
E
(

[X − a]+
)

} = qα +
1

1− α
E
(

[X − qα]
+)

Let X and X ′ be two random variables such that X ≤ X ′ (a.s.). Using the previous
results we have

Qα(X) ≤ qα(X
′) +

1

1− α
E

(

[

X − qα(X
′)
]+
)

.

Then the monotony of the function x 7→ (x− c)+ when c is fixed gives
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Qα(X) ≤ qα(X
′) +

1

1− α
E

(

[

X ′ − qα(X
′)
]+
)

= Qα(X
′).

Let us now deal with ii). For every (measurable) function f , we denote

Eα[f(X)] = E[f(X)|X ≥ F−1
X (α)].

Let X and X ′ be two real-valued random variable. The Bregman superquantile associ-
ated to γ is:

γ′−1
(

Eα[γ
′(X)]

)

.

According to definition 1.1, it is homogeneous if, for every λ > 0,

γ′−1
(

Eα[γ
′(λX)]

)

= λγ′−1
(

Eα[γ
′(X)]

)

.

As γ′ and x 7→ (γ′(x) − γ′(1))/γ′′(1) yield the same superquantiles, one may assume
without loss of generality that γ′(1) = 0 and that γ′′(1) = 1

First, it is easy to check that the condition given is sufficient. For simplicity, we write
φ = γ′. If φ(x) = (xβ − 1)/β, then φ−1(y) = (1 + βy)1/β and

φ−1 (Eα[φ(λX)]) =

(

1 + βEα

[

(λX)β − 1

β

])

1
β

=
(

Eα

[

(λX)β
])1/β

= λ
(

Eα

[

Xβ
])1/β

= λ

(

1 + βEα

[

Xβ − 1

β

])

1
β

= λφ−1 (Eα[φ(X)]) .

If φ(x) = ln(x), then φ−1(y) = exp(y) and

φ−1 (Eα[φ(λX)]) = exp (Eα (ln(λX)))

= exp (Eα (ln(λ)) + Eα (ln(X)))

= λ exp (Eα (ln(X)))

= λφ−1 (Eα[φ(X)]) .

For the other implication, let x > 0. Let X be a random variable with distribution P

such that, denoting a = x∧1, P(du) = αa−11[0,a](u)du+(1−α)pδx+(1−α)(1−p)δ1. Its
quantile of order α is F−1

X (α) = a. The conditional distribution of X given X ≥ F−1
X (α)

is (1− p)δ1 + pδx, and Eα[φ(X)] = (1− p)φ(1) + pφ(x). The homogeneity property and
the assumption φ(1) = 0 imply that

φ−1 ((1− p)φ(λ) + pφ(λx)) = λφ−1 (pφ(x)) .
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By assumption, the expressions on both sides are smooth in p and x. Taking the deriv-
ative in p at p = 0 yields

φ(λx)− φ(λ)

φ′(λ)
= λ

φ(x)

φ′(1)
,

and hence, as φ′(1) = 1,

φ(λx)− φ(λ) = λφ′(λ)φ(x) .

By differentiating with respect to x, one gets:

(3) φ′(λx) = φ′(λ)φ′(x) .

Let ψ be defined on R by ψ(y) = ln (φ′(exp(y))). One readily checks that Equation (3)
yields:

ψ (log(x) + log(λ)) = ψ (log(x)) + ψ (log(λ)) .

This equation holds for every x, λ > 0. This is well known to imply the linearity of ψ:
there exists a real number β such that for all y ∈ R,

ln
(

φ′(exp(y))
)

= ψ(y) = βy .

Thus, φ′(exp(y)) = exp(β exp(y)), that is φ′(x) = xβ for all x > 0. For α = −1, one
obtains φ(x) = ln(x). Otherwise, taking into account the constraint φ(1) = 0, this yields

φ(x) =
x1+β − 1

1 + β
.

Let us show iii). Let X and X ′ be two real-valued random variable. Since γ is convex,
γ′ is non-decreasing. So, to deal with expectation, it is the same thing to show the
subadditivity or that

γ′
(R(X +X ′)

2

)

≤ γ′
(R(X) +R(X ′)

2

)

.

We set S := X +X ′. Using the concavity of γ, we have

γ′
(R(X) +R(X ′)

2

)

≤ 1

2

[

γ′
(

R(X)
)

+ γ′
(

R(X ′)
)

]

=
1

2(1 − α)
E

(

γ′(X)1X≥qXα
+ γ′(X ′)1X′≥qX′

α

)

But

γ′
(R(S)

2

)

=
1

2(1− α)
E

(

γ′(S)1S≥qSα

)

.

So we want to show that

E

(

γ′(X)1X≥qXα
+ γ′(X ′)1X′≥qX′

α
− γ′(S)1S≥qSα

)

≥ 0.

The hypothesis of sub-additivity is now usefull because it allows us to use the same
argument that in the proof of the sub-additivity of the classical superquantile (see [2]).
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E

(

γ′(X)1X≥qXα
+ γ′(X ′)1X′≥qX′

α
− γ′(S)1S≥qSα

)

≥ E

(

γ′(X)1X≥qXα
+ γ′(X ′)1X′≥qX′

α
− γ′(X)1S≥qSα

− γ′(X ′)1S≥qSα

)

≥ γ′(qXα )E
(

1X≥qXα
− 1S≥qSα

)

+ γ′(qX
′

α )E
(

1X′≥qX′
α

− 1S≥qSα

)

= 0.

Finally, we show the closeness under the same hypothesis as just before. Let be
(Xh)h > 0 satisfying the hypothesis. By subadditivity we have

R(X) ≤ R(Xh) +R(Xh −X) ≤ 0 +R(Xh −X).

Then, it is enough to show that

Yh −→
L2

0 =⇒ R(Yh) −→ 0.

to conclude. Thanks to the concavity of γ′ we can use Jensen inequality

γ′−1





E

(

γ′(Yh)1Yh≥F−1
Y (α)

)

1− α



 ≤
E

(

Yh1Yh≥F−1
Yh

(α)

)

1− α
.

We conclude with Cauchy-Schwartz inequality

E

(

Yh1Yh≥F−1
Yh

(α)

)

1− α
≤ E((Yh)

2)
1
2

E

(

12Yh≥F
Y
−1
h

(α)

)
1
2

1− α
= ||Yh||2

√
1− α −→

h→0
0.

�

4.2. Proof of proposition 3.3 : asymptotic behavior of the plug-in estimator
of the superquantile.

4.3. Mathematical tools. We first give some technical or classical results we will use
in the forcoming proofs.

4.3.1. Ordered statistics and Beta function. Let us recall some results of ordered statis-
tics (see [8]). Let (Yi)i=1...n+1 be an independent sample having the standard exponential
distribution. It’s well known that

(4) U(i) :=

i
∑

j=1

Yj





n+1
∑

j=1

Yj





−1

as the same distribution as the ith ordered statistics of an i.i.d sample of size n
uniformly distributed on [0, 1]. That is Beta law of parameter i, n− i+1 and we denote
it B(i, n − i+ 1). It’s also known that there are this equality in law
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X(i) = F−1(U(i)).

The Beta distribution has the following density, for a and b strictly positives numbers

fB(a,b)(x) =
xa−1(x− 1)b−1

B(α, β)

where

(5) B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)

Γ(a+ b)

is the Beta function. A classical property of the Beta function is the forcoming one

(6) ∀(x, y) ∈ R
+, B(x+ 1, y) =

x

x+ y
B(x, y)

Generalizing the definition of the factorials, we set
(

n− 1
2)
)

! :=
(

n− 1
2 )
) (

n− 1− 1
2)
)

. . .
(

1
2

)

,
we have :

(7) B(i, n− i− 5

2
+ 1) =

(i− 1)!
(

n− i− 2− 1
2

)

!
(

n− 2− 1
2

)

!

(8)

(

n− 1

2

)

! =
(2n)!

(2n)2n!

Proof. The first equation is the definition (??). To proof the second equation, let us fix
k = 1

2 .

2n(n− k)! = (2n − 1)(2n − 3) . . . 3× 1 =
(2n)!

2n(2n − 2) . . . 6× 4× 2
=

(2n)!

2nn!

�

4.3.2. Technical lemma.

Lemma 4.1. Let δ be a real number strictly superior than 1.

Then n−1
n−1
∑

i=⌊nα⌋

(1− i

n+ 1
)−δ = O(

√
n) if and only if δ ≤ 3

2 .

Proof. Let δ be superior than 1. We have to characterize the δ for which

n−
3
2

n−1
∑

i=⌊nα⌋

(1 − i

n+ 1
)−δ is bounded when n goes to infinity. We set j := n + 1 − i.

The sum becomes

n−
3
2

n+1−⌊nα⌋
∑

i=2

(

j

n+ 1

)δ
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which is of the order of nδ−
3
2

n+1−⌊nα⌋
∑

i=2

1

jδ
when n goes to infinity.

As δ > 1,

n+1−⌊nα⌋
∑

i=2

1

jδ
−→ ζ(δ)

when n goes to infinity, where ζ is the Zeta function which is finite for argument
strictly superior than 1.

Finally, our problem is equivalent to characterize the set of δ which are superior than

1 and such that nδ−
1
2 is bounded. This set is clearly ]1, 32 ].

�

4.3.3. A corollary of Lindenberg-Feller theorem. To prove the asymptotic normality, we
use a central limit theorem which is a corollary of the Lindeberg-Feller theorem (see
lemma 1 in [5]).

Proposition 4.2. Let (Y1, . . . , Yn) be an independent sample of exponential variables of

parameter 1. If Qn = n−1
n
∑

j=1

αj,n(Yj − 1) and σ2n = 1
n

n
∑

j=1

α2
j,n, then

√
nQn

σn
=⇒ N (0, 1)

if and only if max1≤j≤n |αj,n| = o(n
1
2σn).

If moreover σn converges in probability to σ then by Slutsky’s lemma

√
nQn  N (0, σ2)

4.4. Proof of i) of 3.3 : consistency of the plug-in estimator.

Proof. We want to show the consistency of the estimator.

1

(1− α)n

n
∑

i=⌊nα⌋

X(i).

Let us first notice that

Qα =
E

(

X1X≥F−1
X

(x)(α)

)

1− α
=

∫

R
x1X≥F−1

X (α)fX(x)dx

1− α
=

∫ 1
1−α F

−1
X (y)dy

1− α

Thus we need to show that

1

n

n
∑

i=⌊nα⌋

X(i) −
∫ 1

α
F−1
X (y)dy −→ 0 a.s.



14 F. GAMBOA, A. GARIVIER, B. IOOSS, AND T. LABOPIN-RICHARD

In the sequel we omit the index X in F−1
X because there is no ambiguity. Let us introduce

the two following quantities.

An =
1

n

n
∑

i=⌊nα⌋

X(i) −
1

n

n
∑

i=⌊nα⌋

F−1

(

i

n+ 1

)

and

Bn =
1

n

n
∑

i=⌊nα⌋

F−1

(

i

n+ 1

)

−
∫ 1

α
F−1(y)dy.

An converges to 0 in L1. Indeed, denoting Fn the empirical cumulative distribution
function, we have X(i) = F−1

n

(

i
n

)

and

E (|An|) = E





∣

∣

∣

∣

∣

∣

1

n

n
∑

i=⌊nα⌋

F−1
n

(

i

n+ 1

)

− F−1

(

i

n+ 1

)

∣

∣

∣

∣

∣

∣





≤ 1

n

n
∑

i=⌊nα⌋

E

(∣

∣

∣

∣

F−1
n

(

i

n+ 1

)

− F−1

(

i

n+ 1

)∣

∣

∣

∣

)

We know thanks to 4.3.1 that X(i) = F−1
n

(

i
n+1

)

is distributed like the ith ordered

statistic of a uniform sample. Thus, defining U(i) with law B(i, n+ 1− i), it holds that,

E (|An|) = E

(

∣

∣

∣F−1
(

U(i)

)

− F−1

(

i

n+ 1

)

∣

∣

∣

)

.

By Mean Value theorem, there exists wn
(i) ∈]U(i),

i
n+1 [ such that :

E

(

∣

∣

∣F−1
n

(

i

n+ 1

)

− F−1

(

i

n+ 1

)

∣

∣

∣

)

≤ E





∣

∣

∣

∣

U(i) −
i

n+ 1

∣

∣

∣

∣

1

f
(

F−1(wn
(i))
)





≤
√

Var(U(i))

√

√

√

√

√E









1

f
(

F−1(wn
(i))
)





2



≤
√

i(n − i+ 1)

(n+ 1)2(n+ 2)
max







√

√

√

√

√E









1

f
(

F−1
(

i
n+1

))





2

,

√

√

√

√

√E





(

1

f
(

F−1(U(i))
)

)2










when n is large enough, because of the non-decreasing of l in the neighborhood of
1. Let us now deals with the two terms in the maximum. As l = o((1 − t)2) in the
neighborhood of 1, for ǫ > 0, there exists N such that for n ≥ N and i ∈ [⌊nα⌋, n]
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√

√

√

√E

[

(

1

f(F−1(U(i))

)2
]

≤ ǫE

[

1

(1− U(i))4

]

=
ǫ

B(i, n + 1− i)

∫ 1

0
xi−1(1− x)n+1−i−4dx

using the density of the Beta distribution. 5 allow us to conclude that

√

i(n− i+ 1)

(n+ 1)2(n+ 2)

√

√

√

√

√E





(

1

f
(

F−1(U(i))
)

)2


 =

√

i(n− i+ 1)(i− 1)!

B(i, n+ 1− i)(n− 4− (i− 2)) . . . (n− 4)(n+ 1)2(n+ 2)

∼ ǫ√
n

1
√

i
n+1

(

1− i
n+1

)
3

2

when n goes to infinity.
The second term in the maximum can be calculated in the same way.

√

√

√

√

√E





(

1

f(F−1)( i
n)

)2


 ≤ ǫE

[

1

(1− i
n)

4

]

∼ ǫ√
n

√

i
n+1

(

1− i
n+1

)
3
2

Finally, the two sums :

Pn,1 = ǫ
1

n

n
∑

i=⌊nα⌋

1

√
n
√

i
n+1

(

1− i
n+1

) 3
2

, Pn,2 = ǫ
1

n

n
∑

i=⌊nα⌋

√

i
n+1

√
n
(

1− i
n+1

) 3
2

convergence to 0 when n goes to infinity thanks to lemma 4.1.
So, An converge in L1 to 0 when n goes to infinity, then it converges to 0 in probability.

Let us study the term Bn = 1
n

∑n
i=⌊nα⌋ F

−1
(

i
n+1

)

−
∫ 1
α F

−1(y)dy to show its a.s

convergence to 0.

Remark 4.3. To begin with, it’s easy to show the convergence when the sum and the
integral are truncated at 1 − ǫ, for all epsilon (it is the convergence of a Riemann sum
of a continuous functions).



16 F. GAMBOA, A. GARIVIER, B. IOOSS, AND T. LABOPIN-RICHARD

Let us fix ǫ > 0. To begin with we separate the forcoming sum in two parts denoting
the first part S1

n and the second part S2
n, to make appear the rest we need to control.

1

n+ 1

⌊n(1−ǫ)⌋
∑

i=⌊nα⌋

F−1(
i

n+ 1
) +

1

n+ 1

n−1
∑

⌊n(1−ǫ)⌋+1

F−1(
i

n+ 1
) := S1

n + S2
n

Since the quantile function is non-decreasing on [α, 1], we have :

∫
⌊n(1−ǫ)⌋

n+1

⌊nα⌋−1
n+1

F−1(t)dt+

∫ n−1
n+1

⌊n(1−ǫ)⌋
n+1

F−1(t)dt

≤ 1

n+ 1

⌊n(1−ǫ)⌋
∑

i=⌊nα⌋

F−1(
i

n+ 1
) +

1

n+ 1

n−1
∑

⌊n(1−ǫ)⌋+1

F−1(
i

n+ 1
)

≤
∫

⌊n(1−ǫ)⌋
n+1

⌊nα⌋
n+1

F−1(t)dt+

∫ n
n+1

⌊n(1−ǫ)⌋
n+1

F−1(t)dt

We denote C1
n and C2

n the two terms of the first line and D1
n and D2

n those of the third
line.

Then, we have :

(C1
n − S1

n) + (C2
n −D2

n) ≤ (S2
n −D2

n) ≤ (D1
n − S1

n)

Let us show that C2
n−D2

n converge to 0, to conclude (the convergence of D1
n−S1

n and
C1
n − S1

n to 0 is true thanks to the remark 4.3).
As in the neighborhood of 1 l(t) = o

(

(1− t)−2
)

, we also have F−1(t) = o
(

(1− t)−1
)

.
Then, for ǫ > 0, there exist N such that for n ≥ N :

C2
n −D2

n = −
∫ n

n+1

n−1
n+1

F−1(t)dt

≤ ǫ

∫ n
n+1

n−1
n+1

1

1− t
dt

= ǫ [− ln(t)]
n

n+1
n−1
n+1

= ǫ ln (2)

Finally, S2
n −D2

n converges to 0 a.s. So is Bn.
We have shown that An + Bn converge to 0 in probability. So under our hypothesis,

the superquantile is consistent.
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Remark 4.4. With the same kind of proof, we can show that under stronger hypothesis

on the quantile function F−1(t) = o

(

1

(1−t)
1
2

)

(that is the case in ii) of porposition 3.3),

we have :

−
∫ n

n+1

n−1
n+1

F−1(t)dt ≤ ǫ

∫ n
n+1

n−1
n+1

1

(1− t)
1
2

dt

= ǫ
[

−2(1− t)
1
2

] n
n+1

n−1
n+1

= ǫ− 2(1 −
√
2)

1√
n

Then

√
n





1

n

n
∑

i=⌊nα⌋

F−1(
i

n+ 1
)−

∫ 1

α
F−1(y)dy



 −→ 0

We will use it in the next part.

�

4.4.1. Proof of ii) of proposition 3.3 : asymptotic normality of the plug-in estimator.
Let us prove the asymptotic normality of the estimator of the superquantile. To begin
with, we make some technical remarks.

Remark 4.5. The hypothesis on L implies that there exists ml <
3
2 and mF−1 < 1

2 such

that l(t) = O ((1− t)−ml), and F−1(t) = O
(

(1− t)−mF−1
)

. It also implies that in the

neighborhood of 1, L(t) = o
(

(1− t)−
5
2

)

.

Proof. The proof stands in three steps. First we reformulate and simplify the problem
and apply the Taylor Lagrange formula. Then, we show that the second order term
converges to 0 in probability. In the third step, we identify the limit of the first order
term.

Step 1 : Taylor-Lagrange formula

Let us first omit the (1− α)−1. The problem is to study the convergence in law of

√
n





1

n

n
∑

i=⌊nα⌋

X(i) −
∫ 1

α
F−1(y)dy



 .

To begin with, we have already noticed (remarks 4.4 and 4.5) that

√
n





1

n

n
∑

i=⌊nα⌋

F−1(
i

n + 1
)−

∫ 1

α
F−1(y)dy



 −→
n→+∞

0.



18 F. GAMBOA, A. GARIVIER, B. IOOSS, AND T. LABOPIN-RICHARD

Slutsky’s lemma, allows us to study only the convergence in law of

√
n





1

n

n
∑

i=⌊nα⌋

X(i) −
1

n

n
∑

i=⌊nα⌋

F−1
( i

n+ 1
)



 .

The quantile function is C2 then we can apply the Taylor-Lagrange formula at the
order 2. Using the same reasoning than in the proof of i), we introduce U(i) a random
variable distributed as a B(i, n+ 1− i). Considering an equality in law we then have

√
n





1

n

n
∑

i=⌊nα⌋+1

[

X(i) − F−1(
i

n+ 1
)

]





=
L
√
n





1

n

n
∑

i=⌊nα⌋+1

(

U(i) −
i

n+ 1

)

1

f
(

F−1( i
n+1)

)





+
1√
n

n
∑

i=⌊nα⌋+1

[

∫ U(i)

i
n+1

f ′(F−1(t))

(f(F−1(t)))3
(

U(i) − t
)

dt

]

.

We name
√
nQn the first-order term and Rn the second-order.

Step 2 : The second-order term converges to 0 in probability

Let us show that Rn converge to 0 in probability. Thanks to Markov’s inequality, we
have

P(Rn > ǫ) ≤ 1

ǫ
√
n

n
∑

i=⌊nα⌋+1

E

(∣

∣

∣

∣

∣

∫ U(i)

i
n+1

L(t)(U(i) − t)dt

∣

∣

∣

∣

∣

)

Since the function L is non decreasing in the neighborhood of 1, for n large enough,
we have,

P(Rn > ǫ) ≤ 1

ǫ
√
n

n
∑

i=⌊nα⌋+1

E

(

max

(

∣

∣L(U(i))
∣

∣ ,

∣

∣

∣

∣

L(
i

n+ 1
)

∣

∣

∣

∣

) ∫ U(i)

i
n+1

(

U(i) − t
)

dt

)

=
1

ǫ
√
n

n
∑

i=⌊nα⌋+1

E






max

(

∣

∣L(U(i))
∣

∣ ,

∣

∣

∣

∣

L(
i

n+ 1
)

∣

∣

∣

∣

)

(

U(i) − i
n+1

)2

2







As before, we study the two terms in the maximum separately. First, using the
variance of the Beta distribution,

1

ǫ
√
n

n
∑

i=⌊nα⌋+1

∣

∣

∣

∣

L(
i

n+ 1
)

∣

∣

∣

∣

E







(

U(i) − i
n+1

)2

2






=

1

ǫ
√
n

n
∑

i=⌊nα⌋+1

∣

∣

∣

∣

L(
i

n+ 1
)

∣

∣

∣

∣

i(n + 1− i)

2(n+ 1)2(n + 2)
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But according to remark ??, our hypothesis on L, gives that for ǫ′, there exists a rank
N such that for n ≥ N , for i ∈ [⌊nα⌋, n],

P(Rn > ǫ) ≤ 1

ǫ
√
n

n
∑

i=⌊nα⌋+1

∣

∣

∣

∣

L(
i

n+ 1
)

∣

∣

∣

∣

i(n+ 1− i)

2(n + 1)2(n+ 2)

≤ ǫ′

2ǫ
√
n(n+ 2)

n
∑

i=⌊nα⌋+1

i
n+1

(

1− i
n+1

)

(

1− i
n+1

) 5
2

=
ǫ′

2ǫ
√
n(n+ 2)

n
∑

i=⌊nα⌋+1

i
n+1

(

1− i
n+1

)
3
2

The convergence to 0 when n goes to infinity of the first term in the maximum is true
thanks to the lemma 4.1.

We have now to deal with the second term in the maximum. Using our hypothesis,
we have, for ǫ′ and n large enough,

1

ǫ
√
n

n
∑

i=⌊nα⌋+1

E







∣

∣L(U(i))
∣

∣

(

U(i) − i
n+1

)2

2






≤ ǫ′

2ǫ
√
n

n
∑

i=⌊nα⌋+1

E







(

U(i) − i
n+1

)2

(

U(i) − 1
)

5
2






.

Using the Beta distribution of U(i), we can write that,







(

U(i) − i
n+1

)2

(

U(i) − 1
)

5
2






=

1

B(i, n+ 1− i)

∫ 1

0
xi−1(1− x)n−i− 5

2 (x− i

n+ 1
)2dx

=
1

B(i, n+ 1− i)

(

∫ 1

0
xi+1(1− x)n−i− 5

2 dx− 2
i

n+ 1

∫ 1

0
xi(1− x)n−i− 5

2 dx

+ (
i

n+ 1
)2
∫ 1

0
xi−1(1− x)n−i− 5

2

)

We name this last quantity Iin. To have n − i − 5
2 + 1 non negative, we cut the sum

and deal only with the terms for i from ⌊nα⌋ to n− 2. Then we obtain :
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Iin =
1

B(i, n+ 1− i)

(

∫ 1

0
xi+1(1− x)n−i− 5

2 dx− 2
i

n + 1

∫ 1

0
xi(1− x)n−i− 5

2dx

+ (
i

n+ 1
)2
∫ 1

0
xi−1(1− x)n−i− 5

2

)

=
1

B(i, n+ 1− i)

(

B(i+ 2, n − i− 5

2
+ 1)− 2

i

n + 1
B(i+ 1, n − i− 5

2
+ 1)

+ (
i

n+ 1
)2B(i, n− i− 5

2
+ 1
)

Using (6) we obtain

Iin =
1

B(i, n+ 1− i)

(

B(i+ 2, n − i− 5

2
+ 1)− 2

i

n + 1
B(i+ 1, n − i− 5

2
+ 1)

+ (
i

n+ 1
)2B(i, n− i− 5

2
+ 1
)

=
B(i, n− i− 5

2 + 1)

B(i, n + 1− i)

( i(i+ 1)

(n− 5
2 + 2)(n − 5

2 + 1)

− 2
i2

(n− 5
2 + 1)(n + 1)

i(i + 1)

(n− 5
2 + 2)(n − 5

2 + 1)
+ (

i

n+ 1
)2

i(i+ 1)

(n− 5
2 + 2)(n − 5

2 + 1)

)

We set Ei
n such that Iin =

B(i,n−i− 5
2
+1)

B(i,n+1−i) Ei
n. Developping En

i , we find its order when n

goes to infinity :

En
i ∼ 1

n

i

n+ 1

(

1− i

n+ 1

)

.

Let us study the term
B(i,n−i− 5

2
+1)

B(i,n+1−i) . Using (5) and (8), we obtain

B
(

i, n − i− 5
2 + 1

)

B(i, n+ 1− i)
=

n!
(

n− 2− 1
2

)

!

(

n− i− 2− 1
2

)

!

(n− i)!

=
n(n− 1)

(n− i− 1)(n − i)

(2(n− i− 2))!((n − 2)!)222i

((n− i− 2)!)2(2(n − 2))!

Since each i can be written like i = ⌊nβ⌋ with β < 1, n − i goes to infinity when n
goes to infinity and we can apply the Stirling formula :
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(2(n− i− 2))!

((n− i− 2)!)2
∼
√

2(n − i− 2)2π
(

2(n−i−2)
e

)2(n−i−2)

2π(n − i− 2)
(

n−i−2
e

)n−i−2

∼ 22(n−i−2)

√

π(n− i− 2)

Likewise,

(2(n − 2))!

((n− 2)!)2
∼ 22(n−2)

√

π(n− 2)
.

Then, when n goes to infinity

B
(

i, n − i− 5
2 + 1

)

B(i, n + 1− i)
∼ 1

(1− i
n+1)

5
2

.

That is why we obtain

Ini ∼ 1

n

i
n+1

(1− i
n+1)

3
2

.

Finally, for n large enough, we have

Ini ≤ 2
1

n

i
n+1

(1− i
n+1)

3
2

and thanks to our hypothesis on L, for ǫ′ and n large enough, we have

1

ǫ
√
n

n−2
∑

i=⌊nα⌋+1

E







∣

∣L(U(i))
∣

∣

(

U(i) − i
n+1

)2

2






≤ ǫ′

2ǫ
√
n

n−2
∑

i=⌊nα⌋+1

E





(U(i) − i
n+1)

2

(

U(i) − 1
)

5
2





≤ ǫ′

ǫ
√
n

1

n

n−2
∑

i=⌊nα⌋+1

i
n+1

(

1− i
n+1

)
3
2

.

To conclude the second term in the maximum converges to 0 thanks the lemma 4.1.

Remark 4.6. The terms for i = 1 and i = n − 1 are of inferior order of the sum, so
they converge to 0 too.

Finally, the second order Rn converges to 0 in probability. We can now deal with the
first order term.

Step 3 : Identification of the limit
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Our goal is to find the limit of
√
nQn. Let us reorganize the expression of Qn to have

a more classical form (sum of independent random variables) and to be allowed to use
the proposition 4.2.

Denoting by

Ȳ =

n+1
∑

j=1

Yj

n+ 1

we have

Qn =
1

n

n
∑

i=⌊nα⌋+1















i
∑

j=1

Yj

n+1
∑

j=1

Yj

− i

n+ 1















l(
i

n+ 1
)

=
1

n

n
∑

j=1





























Yj
n+1
∑

j=1

Yj

− 1

n+ 1















∑

i=sup(⌊nα⌋+1,j)

l(
i

n+ 1
)















=
n+ 1
n+1
∑

j=1

Yj

1

n(n+ 1)





⌊nα⌋+1
∑

j=1



(Yj − Ȳ )

n
∑

i=⌊nα⌋+1

l(
i

n+ 1
)



+

n
∑

j=⌊nα⌋+2



(Yj − Ȳ )

n
∑

i=j

l(
i

n+ 1
)







 .

where we have inverted the two sums. The law of large numbers gives that

n+ 1





n+1
∑

j=1

Yj





−1

→ 1 when n goes to infinity. Then thanks to Slutsky’s lemma, we

need to study

1

n(n+ 1)





⌊nα⌋+1
∑

j=1



(Yj − Ȳ )
n
∑

i=⌊nα⌋+1

l(
i

n+ 1
)



+
n
∑

j=⌊nα⌋+2



(Yj − Ȳ )
n
∑

i=j

l(
i

n+ 1
)







 .

We set ∀j ≤ n, Gn
j :=

n
∑

i=j

l(
i

n+ 1
), Gn

n+1 := 0, Hn :=
n
∑

j=⌊nα⌋+2

Gj . Then
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Qn =
1

n(n+ 1)





⌊nα⌋+1
∑

j=1

(

(n− ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n+ 1

)

Yj +

n+1
∑

⌊nα⌋+2

(

Gn
j − Hn

n+ 1
+Gn

⌊nα⌋+1

−1− ⌊nα⌋
n+ 1

)

Yj





=
1

n(n+ 1)

[

⌊nα⌋+1
∑

j=1

(

(n− ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n+ 1

)

(Yj − 1)

+

n+1
∑

⌊nα⌋+2

(

Gn
j − Hn

n+ 1
+Gn

⌊nα⌋+1

−1− ⌊nα⌋
n+ 1

)

(Yj − 1)

]

because

1

n(n+ 1)





⌊nα⌋+1
∑

j=1

(

(
n− ⌊nα⌋)Gn

⌊nα⌋+1 −Hn

n+ 1

)

+

n+1
∑

⌊nα⌋+2

(

Gn
j − Hn

n+ 1
+Gn

⌊nα⌋+1

−1− ⌊nα⌋
n+ 1

)





=
1

n(n+ 1)

[(

Gn
⌊nα⌋(n− ⌊nα⌋)−Hn

n+ 1

)

(⌊nα⌋+ 1) +

(

Gn
⌊nα⌋(−1− ⌊nα⌋)

n+ 1
(n− ⌊nα⌋)− Hn

n+ 1
(n− ⌊nα⌋) +Hn

)]

= 0.

Finally, we obtain

Qn =
1

n(n+ 1)
[

⌊nα+1
∑

j=1

(

(n− ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n+ 1

)

(Yj − 1)

+

n+1
∑

⌊nα⌋+2

(

Gn
j − Hn

n+ 1
+Gn

⌊nα⌋+1

−1− ⌊nα⌋
n+ 1

)

(Yj − 1)]

=
1

n+ 1

n+1
∑

j=1

αj,n(Yj − 1)

where :

αj,n =

(

(n − ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n(n+ 1)

)

, ∀j ≤ ⌊nα⌋ + 1

and

αj,n =

(

Gn
j (n+ 1)−Hn −Gn

⌊nα⌋+1(1 + ⌊nα⌋)
n(n+ 1)

)

, ∀j ≥ ⌊nα⌋+ 2

Let us check the hypothesis of the proposition 4.2. To begin with, let us show that σ2n
converges a.s. We find a equivalent of σ2n and study the convergence of this equivalent.
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σ2n =
1

n+ 1

n+1
∑

j=1

α2
j,n

=
1

n+ 1

⌊nα⌋+1
∑

j=1

[

(n − ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n(n+ 1)

]2

+
1

n+ 1

n+1
∑

j=⌊nα⌋+2

(

Gn
j (n+ 1)−Hn −Gn

⌊nα⌋+1(1 + ⌊nα⌋)
n(n+ 1)

)2

=
⌊nα⌋+ 1

n+ 1

[

(n− ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n(n+ 1)

]2

+
1

n+ 1

n+1
∑

j=⌊nα⌋+2

(

Gn
j (n+ 1)

n(n+ 1)

)2

+ 2
1

n+ 1

n+1
∑

j=⌊nα⌋+2

Gn
j (n+ 1)(−Hn −Gn

⌊nα⌋+1(1 + ⌊nα⌋))
n2(n+ 1)2

+
1

n+ 1

n+1
∑

j=⌊nα⌋+2

(

−Hn −Gn
⌊nα⌋+1(1 + ⌊nα⌋)
n(n+ 1)

)2

Let us work with the two terms which depend on Gn
j . The first term can be develop

in this way

1

n+ 1

n+1
∑

j=⌊nα⌋+2

(

Gn
j (n+ 1)

n(n+ 1)

)2

=
1

n2(n+ 1)

n+1
∑

j=⌊nα⌋+2

(

Gn
j

)2

=
1

n2(n+ 1)

n+1
∑

j=⌊nα⌋+2





n
∑

i=j

l

(

i

n+ 1

)





2

=
1

n(n+ 1)

n+1
∑

i1=⌊nα⌋+2

n+1
∑

i2=⌊nα⌋+2

( −1

n+ 1
+

min(i1, i2)

n+ 1
− ⌊nα⌋
n+ 1

)

l

(

i1
n+ 1

)

l

(

i2
n+ 1

We simplify the second one too

2
1

n+ 1

n+1
∑

j=⌊nα⌋+2

Gn
j (n+ 1)(−Hn −Gn

⌊nα⌋+1(1⌊nα⌋))
n2(n+ 1)2

= −2
(Hn)2

n2(n+ 1)2
−2

(1 + ⌊nα⌋)
(n+ 1)3n2

HnGn
⌊nα⌋+1.

Finally
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σ2n =
⌊nα⌋+ 1

n+ 1

[

(n− ⌊nα⌋)Gn
⌊nα⌋+1 −Hn

n(n+ 1)

]2

+
1

n(n+ 1)

n+1
∑

i1=⌊nα⌋+2

n+1
∑

i2=⌊nα⌋+2

( −1

n+ 1
+

min(i1, i2)

n+ 1
− ⌊nα⌋
n+ 1

)

l(
i1

n+ 1
)l(

i2
n+ 1

)

− 2
(Dn)2

n2(n+ 1)2
− 2

(1 + ⌊nα⌋)
(n + 1)3n2

HnGn
⌊nα⌋+1 +

n− ⌊nα⌋ − 1

n+ 1

(

Hn +Gn
⌊nα⌋+1(1 + ⌊nα⌋)
n(n+ 1)

)2

Let us first notice that, if we note

Kn =

n+1
∑

i1=⌊nα⌋+2

n+1
∑

i2=⌊nα⌋+2

min(i1, i2)

n+ 1
l

(

i1
n+ 1

)

l

(

i2
n+ 1

)

and

T n =

n
∑

i=⌊nα⌋

i

n
l

(

i

n+ 1

)

then

Hn = nT n − (⌊nα⌋ + 1)Gn
⌊nα⌋+1

So we have the following equivalent of σ2n when n goes to infinity.

σ2n ∼ α
(Gn − T n)2

n2
+
Kn − α(Gn)2

n2
− −2(T n − αGn)2

n2
− 2

α(GnT n − αGn)2

n2
+

(1− α)(T n)2

n2

∼ Kn − (T n)2

n2
.

Let us show that this equivalent converges to σ2 =
∫ 1
α

∫ 1
α

min(x,y)−xy
f(F−1(x))f(F−1(y)) <∞. It is

a generalized Rieman sum. To begin with, we show that the function

g : (x, y) 7→ min(x, y)− xy

f(F−1(x))f(F−1(y))

is integrable on ]α, 1[×]α, 1[. Indeed, around 1,

g(x, y) = O

(

min(x, y)− xy

(1− x)ml(1− y)ml

)

which is integrable on this domain because for β close to 1

∫ β

α

∫ β

α

min(x, y) − xy

(1− x)ml(1− y)ml
dxdy ∼ C(α)β(1 − β)

−2
ml

+3
.

and ml <
3
2 .
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Remark 4.7. It is here that we need to take the hypothesis L(t) = O ((1− t)−mL) with

mL < 5
2 instead of L(t) = o

(

(1− t)−
5
2

)

. Indeed, when mL = 5
2 and so ml =

3
2 , the

primitives are different and the integral is not finite.

As we already seen, the results on Riemann’s sum in dimension 2, give by continuity

of (x, y) 7→ min(x,y)−xy
f(F−1(x))f(F−1(y)) that for all β < 1 :

σ2n,β :=
1

n2

⌊nβ⌋
∑

i1=⌊nα⌋

⌊nβ⌋
∑

i1=⌊nα⌋

min(i1,i2)
n − i1i2

n2

f(F−1
(

i1
n+1

)

)f(F−1
(

i2
n+1

)

)
−→

∫ β

α

∫ β

α

min(x, y)− xy

f(F−1(x))f(F−1(y))
dxdy

We have to study the rest of the sum to conclude. Let us fix β close to 1 and deal
with

r2n,β :=
1

n2

n+1
∑

i1=⌊nβ⌋

n+1
∑

i1=⌊nβ⌋

min(i1,i2)
n − i1i2

n2

f
(

F−1
(

i1
n+1

))

f
(

F−1
(

i2
n+1

)) .

In this case, the monotony will allowed us to conclude with the Lebesgue theorem.
First of all, let us notice that

r2n,β =

∫ 1

β

∫ 1

β
g

(⌊nx⌋
n

,
⌊ny⌋
n

)

dxdy

Then, we aim to invert limit and integral.

1) Let (x, y) be fixed in [β, 1[×[β, 1[ and n. Then

g

(⌊nx⌋
n

,
⌊ny⌋
n

)

−→ g(x, y)

by continuity. And g is integrable on [β, 1[×[β, 1[ as we saw before.

2) Let (x, y) be fixed in [β, 1[×[β, 1[ and n. Let us denote xn = ⌊nx⌋
n and yn = ⌊ny⌋

n .
By hypothesis

g

(⌊nx⌋
n

,
⌊ny⌋
n

)

≤ C
min(xn, yn)− xnyn
(1− xn)ml(1− yn)ml

.

By separating the two cases and using monotony we obtain that

g

(⌊nx⌋
n

,
⌊ny⌋
n

)

≤ Ch(x, y)

where

h : (x, y) 7→ min(x, y)

(1−min(x, y))ml (1−max(x, y)ml−1)

which is integrable on [β, 1[×[β, 1[.

Then, the Lebesgue theorem allow us to invert the integral and the limit and we
have shown that σ2n −→ σ2. The first hypothesis of proposition 4.2 we want to apply is
checked.
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Let now deal with the second hypothesis about the maximum of the αi,n. For j ≤
⌊nα⌋+ 1, we have

αj,n =
(n− ⌊nα⌋+ 1)Gn

⌊nα⌋+1 −Hn

n(n+ 1)

Then, with previous computations, when n is large

(αj,n)
2

nσ2n
∼

(Gn
⌊nα⌋+1 − Tn

n )2

Kn − T 2
n

n2

1

n

But the convergence
(

Kn −
(

Tn

n

))2

n4
→
∫ 1

α

∫ 1

α
(min(x, y)− xy)l(x)l(y)dxdy

implies the convergence

(Gn − Tn

n )2

n4
→
∫ 1

α
(1− x)l(x)dx.

Indeed :

∫ 1

α

∫ 1

α
(min(x, y)−xy)l(x)l(y)dxdy =

∫ 1

α

∫ 1

α
(y(1−x))l(x)l(y)dxdy+

∫ 1

α
xl(x)

∫ 1

x
(1−y)l(y)dydx

That’s why

(αj,n)
2

nσ2n
∼ C

n
−→ 0

when n goes to infinity. If j ≥ ⌊nα⌋+ 2 it’s the same thing because

αj,n =
(n+ 1)Gn

j −Hn −Gn
⌊nα⌋(nα⌋+ 1)

n(n+ 1)
∼ (n+ 1)Gjn − T n

n2

So, we are in the same situation as the previous case replacing α by j. The previous
argument are still true in this case. The second hypothesis is then true. We can apply
proposition 4.2 and conclude that

√
nQn =⇒ N (O,σ2)

where σ2 =
∫ 1
α

∫ 1
α (min(x, y) − xy)l(x)l(y)dxdy. Finally, we multiply everything by

(1− α)−1 to find the true limit.

Step 4 : Conclusion
The Slutsky lemma allows us to sum step 1 and step 2 to conclude.

�
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