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A LIOUVILLE THEOREM FOR THE DEGASPERIS-PROCESI EQUATION

LORENZO BRANDOLESE

Abstract. We prove that the only global, strong, spatially periodic solution to the Degasperis-

Procesi equation, vanishing at some point (t0, x0), is the identically zero solution. We also

establish the analogue of such Liouville-type theorem for the Degasperis-Procesi equation with

an additional dispersive term.

1. Introduction and main results

We study spatially periodic solutions of the Degasperis-Procesi equation

(1.1)

{

ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R

u(t, x) = u(t, x+ 1), t ≥ 0, x ∈ R.

Such equation attracted a considerable interest in the past few years, both for its remarkable

mathematical properties (see, e.g. [5, 7]), and for its physical interpretation as an asymptotic

model obtained from the water-wave system in shallow water regime. In this setting, the equation

models moderate amplitude waves and u stands for a horizontal velocity of the water at a fixed

depth, see [6, 11] and the references therein for further physical motivations.

The Cauchy problem associated with (1.1) can be more conveniently reformulated as

(1.2)







ut + uux + ∂xp ∗
(

3

2
u2

)

= 0, t > 0, x ∈ S

u(0, x) = u0(x), x ∈ S

where S is the circle and p the kernel of (1− ∂2x)
−1, given by the continuous 1-periodic function

(1.3) p(x) =
cosh(x− [x]− 1/2)

2 sinh(1/2)
.

Another possible reformulation of (1.1) is the momentum-velocity equation,

(1.4) yt + uyx + 3uxy = 0, y(t, x) = y(t, x+ 1), t > 0, x ∈ R,

where y = u−uxx is the associated potential, and u can be recovered from y from the convolution

relation u = p ∗ y.
It is well known (see, e.g., [13]) that if u0 ∈ Hs(S), with s > 3/2, then the problem (1.2)

possess a unique solution

(1.5) u ∈ C([0, T ),Hs(S)) ∩C1([0, T ),Hs−1(S)),
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for some T > 0, depending only u0.

The maximal time T ∗ of the above solution can be finite or infinite. For instance, if the initial

potential y0 = y(0, ·) does not change sign, then it is known that T ∗ = +∞, see [9]. On the

other hand, several different blowup criteria were established, e.g., in [9, 10, 13]: in the shallow

water interpretation the finite time blowup corresponds to a wave breaking mechanism, as near

the blowup time solutions remain bounded, but have an unbounded slope in at least one point.

The purpose of this short paper it to establish the following Liouville-type theorem:

Theorem 1.1. The only global solution u ∈ C([0,+∞),Hs(S)) ∩ C1([0,+∞),Hs−1(S)), with

s > 3/2, to the Degasperis-Procesi equation vanishing at some point (t0, x0) is the identically

zero solution.

The Degasperis-Procesi equation is often written with the additional dispersive term 3κux
in the left-hand side of equation (1.1), where κ ∈ R is the dispersion parameter. In this more

general setting the above theorem can be reformulated as follows:

Theorem 1.2. Let s > 3/2. If v ∈ C([0,+∞),Hs(S)) ∩ C1([0,+∞),Hs−1(S)) is a global

solution to the Degasperis-Procesi equation with dispersion

(1.6) vt + vvx + ∂xp ∗
(

3

2
v2 + 3κv

)

= 0, t > 0, x ∈ S,

such that v(t0, x0) = −κ at some point (t0, x0), then v(t, x) ≡ −κ for all (t, x).

In the next section we will compare these theorems with earlier related results. The main

idea of the present paper will be remark that, in the dispersionless case, for all time t ∈ R
+, at

least one of the two functions x 7→ e±
√

3/2 q(t,x)u(t, q(t, x)), where q(t, x) is the flow of the global

solution u, must be monotonically increasing.

As a byproduct of our approach, we will get a simple and natural blowup criterion for periodic

solutions to the Degasperis-Procesi equation, with or without dispersion, that is of independent

interest:

Proposition 1.3. Let v0 ∈ Hs(S), with s > 3/2, be such that v′0(a) < −
√

3
2

∣

∣v0(a)+κ
∣

∣ for some

a ∈ S. Then the solution v ∈ C([0, T ∗),Hs(S)) ∩ C1([0, T ∗),Hs(S)) of (1.6) arising from v0
blows up in finite time.

2. Comparison with some earlier results

In [9, Theorem 3.8], Escher, Liu and Yin established the blowup for equation (1.1) assuming

that u0 ∈ Hs(S), u0 6≡ 0, and that the corresponding solution u(t, x) vanishes in at least one point

xt ∈ S for all t ∈ [0, T ∗). Theorem 1.1 improves their result (and the corresponding corollaries)

by providing the same conclusion T ∗ < ∞ with a shorter proof, and under an assumption that

is easier to check.

Applying Proposition 1.3 with κ = 0 and a = 0 improves Yin’s blowup criterion [13, Theorem

3.2], establishing the blowup for odd initial data with negative derivative at the origin.

In the particular case κ = 0, Proposition 1.3 improves and simplifies the wave-breaking

criterion of [9, Theorem 4.3] (and its corollaries), that established the blowup under a condition

of the form v′0(a) < −
(

c0‖v0‖L∞ + c1‖v0‖L2

)

, with suitable c0, c1 > 0. In fact, Proposition 1.3
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shows that one can take c1 = 0, and more importantly, one only needs to check the behavior of

u0 in a neighborhood of a single point to get the blowup condition.

For general κ ∈ R, Proposition 1.3 extends and considerably simplifies the blowup condition

v′0(a) < −M established in [10, Theorem 4.1], where M =M(κ, ‖v0‖L2 , ‖v0‖L∞) was given by a

quite involved expression. In the same way, the pointwise estimates (3.7) below allow to improve

results like [10, Theorem 4.2] and its corollaries.

A Liouville-type theorem in the same spirit as Theorem 1.1 has been established for periodic

solutions of the hyperelastic rod equation in [2], when the physical parameter γ of the model

belongs to a suitable range (including γ = 1, that corresponds to the dispersionless Camassa–

Holm equation). The specific structure of the nonlocal term of the Degasperis-Procesi equation

makes possible the much more concise proof presented here. Neverthless, the Degasperis–Procesi

equation remains worse understood than Camassa–Holm’s. First of all, the geometric picture

between the two equations is different: the Camassa–Holm equation can be realized as a metric

Euler equation. On the other hand, there is no Riemannian metric on Diff∞(S) such that the

corresponding geodesic flow is given by the Degasperis–Procesi equation. In fact, the more subtle

geometric picture for the latter equation has been disclosed only recently, see [8]. Moreover, no

necessary and sufficient condition for the global existence of solutions to the Degasperis–Procesi

equation is available. (Such a condition is instead known for the Camassa–Holm equation, see

[12]). For this reason, Proposition 1.3 provides valuable information.

3. Proofs

Proof of Theorem 1.1. Equation (1.1) is invariant under time translations and under the trans-

formation ũ(t, x) = −u(−t, x). Therefore, it is enough to prove that if u0(x0) = 0 at some point

x0 ∈ S, but u0 6≡ 0, then the solution u ∈ C([0, T ),Hs(S)) ∩C1([0, T ),Hs−1(S)) arising from u0
must blow up in finite time. Let α ∈ (x0, x0 + 1) be such that u0(α) 6= 0.

We first consider the case u0(α) > 0. Let us introduce the map

φ(x) = e

√

3
2xu0(x).

By the periodicity and the continuity of u0, we can find an open interval (α, β) ⊂ (x0, x0 + 1)

such that φ(x) > 0 on the interval (α, β) and φ(α) > 0, φ(β) = 0. An integration by parts gives

(3.1)

∫ β

α
e

√

3
2xu′0(x) dx = φ(β)− φ(α) −

∫ β

α

√

3
2φ(x) dx.

We deduce from this the existence of a ∈ (α, β) such that u′0(a) < −
√

3
2 u0(a) < 0. Indeed,

otherwise, we could bound the left-hand side in (3.1) from below by

∫ β

α
−
√

3
2φ(x) dx, and get

the contradiction φ(α) ≤ φ(β).

The second case to consider is u0(α) < 0: introducing now the map ψ(x) = e−
√

3
2xu0(x) and

arguing as before, we get in this case the existence of a point a such that u′0(a) <
√

3
2 u0(a) < 0.

Notice that in both cases we get

(3.2) ∃ a ∈ S such that u′0(a) < −
√

3
2

∣

∣u0(a)
∣

∣.
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We thus reduced the proof of our claim to establishing the finite time blowup under condi-

tion (3.2), with u0 ∈ Hs(R). In fact, by approximating u0 with a sequence (un) ⊂ H3(S), we

can assume without loss of generality that u0 ∈ H3(S). (Indeed, the argument below will provide

un upper bound for T ∗ independent on the parameter n).

Let us introduce the flow map

(3.3)

{

qt(t, x) = u(t, q(t, x)), t ∈ (0, T ∗), x ∈ R

q(0, x) = x, x ∈ R.

We also introduce the C1 functions, defined on (0, T ∗),

f(t) = (−ux +
√

3
2u)

(

t, q(t, a)
)

,

and

g(t) = −(ux +
√

3
2u)

(

t, q(t, a)
)

.

Taking the spatial derivative in equation (1.2), recalling that (1−∂2x)p is the Dirac mass, we get

utx + uuxx = −u2x +
3

2
u2 − p ∗

(

3

2
u2

)

.

Using the definition of the flow map (3.3) we obtain

f ′(t) =

[

−(utx + uuxx) +
√

3
2 (ut + uux)

]

(t, q(t, a))

=

[

u2x − 3
2u

2 + (p−
√

3
2px) ∗ (32u2)

]

(t, q(t, a)).

From expression (1.3) we easily get

(p± βpx) ≥ 0 if and only if |β| ≤ coth (1/2),

and so, in particular

(3.4) p±
√

3
2px ≥ 0.

Hence we get

f ′(t) ≥
[

u2x − 3
2u

2
]

(t, q(t, a)).

Factorizing the right-hand side leads to the differential inequality

(3.5) f ′(t) ≥ f(t)g(t), t ∈ (0, T ∗).

A similar computation yields

(3.6) g′(t) ≥ f(t)g(t), t ∈ (0, T ∗).

Let

h(t) =
√

f(t)g(t).

We first observe that

h(0) =
√

fg(0) =
√

u′0(a)
2 − 3

2u0(a)
2 > 0.
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Moreover, we deduce from the system (3.5)-(3.6), applying the geometric-arithmetic mean in-

equality, that

h′(t) ≥ h2(t), t ∈ (0, T ∗).

This immediately implies T ∗ ≤ 1/h(0) <∞. Theorem 1.1 is completely established. �

The above proof establishes also Proposition 1.3 in the particular case κ = 0. But u(t, x) =

v(t, x − κt) + κ, is a global solution of (1.2) if and only if v is a global solution of (1.6) with

u0 = v0 + κ. Hence, Theorem 1.2 follows immediately from Theorem 1.1. In the same way, we

see that the claim of Proposition 1.3 holds true for general κ.

Our arguments also reveal that global solutions must satisfy quite stringent pointwise esti-

mates. Indeed, assume that u ∈ C([0,∞),Hs(S))∩C1([0,∞),Hs−1(S)) is a given global solution

of (1.1). Then, by our theorem, sign(u) = 1, 0 or −1 is well defined and independent on (t, x).

Moreover, u′(t, x) ≥ −
√

3
2 |u(t, x)| for all t ≥ 0 and x ∈ S. Then, arguing as in (3.1), we de-

duce that, for all t ≥ 0, the map x 7→ e
sign(u)

√

3

2
x
u(t, x) is increasing. Combining this with the

periodicity, we get the pointwise estimates for u(t, x), for all t ≥ 0, all α ∈ R and α ≤ x ≤ α+1:

(3.7) e
sign(u)

√

3

2
(α−x)

u(t, α) ≤ u(t, x) ≤ e
sign(u)

√

3

2
(α+1−x)

u(t, α).

From (3.7) one immediately deduces the corresponding estimates for global solutions to the

Degasperis-Procesi equation with dispersion.

We conclude observing that our results seem to be specific to periodic solutions and have no

analogue in the case of solutions in Hs(R). A reason for this is that in the non-periodic case

the expression of p should be modified into p(x) = 1
2e

−|x| and the fundamental inequality (3.4)

is no longer true.
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