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ABSTRACT. We introduce a transformation of time-varying graphs, called ∆-duplication, that re-
duces the temporal heterogeneity in the context of dynamic networks analysis. Instead of build-
ing a sequence of snapshots from a global time partitioning, we propose a individual-centred
approach: we duplicate a vertex for every time periods where the vertex interacts at least every
∆. This short note describes the general theory of ∆-duplication and provides some directions
for applications to dynamic networks analysis. In particular, we introduce a generalization of
the concept of k-cores to temporal graphs using this model.

RÉSUMÉ. Nous présentons une transformation de graphes temporels, appelée ∆-duplication,
permettant de réduire l’hétérogénéité temporelle dans l’analyse de réseaux dynamiques. Au lieu
de construire une séquence d’instantanées à partir d’un découpage global du temps, nous util-
isons une approche centrée sur les individus en considérant un sommet sur plusieurs sessions
i.e. des périodes durant lesquelles il se connecte au moins tous les ∆. Cette note décrit précisé-
ment le concept de ∆-duplication et fournit des pistes quant à son utilisation pour l’analyse de
réseaux complexes. En particulier, nous proposons une généralisation du concept de k-cores
aux graphes temporels.
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1. Introduction

Complex networks often correspond to dynamic systems such as communications
networks whose changes can be tracked in almost real time. In this context, time-
varying graphs (Casteigts et al., 2011) (denoted TVG) are used to model this dynamic.
The interactions between actors in the network appear and disappear according to an
unknown meta-structure (e.g. the existence of communities). This process is hetero-
geneous, in the sense it may evolve over time (the communities change). Dynamic
networks analysis aims at the understanding of this evolution in order to make predic-
tions or detect events.
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One way to deal to reduce the temporal heterogeneity by splitting the time into
different windows of fixed length h. The objective is to discard “short-term” fluctua-
tions and focus on the “long-term” evolutions. This approach transforms a TVG into a
series of static graphs called snapshots (Hopcroft et al., 2004; Leskovec et al., 2005).
An example can be found in Figure 1(a) where a temporal graph with 6 vertices is
transformed into two snapshots. Even though this transformation has a important ef-
fect on the analysis, it is rarely discussed in the literature.
An implicit hypothesis is that the way interactions are ordered in those snapshots is not
relevant for the analysis. The snapshots can then be studied as static graphs (eventually
weighted). So far this reduction is done globally (e.g. by considering all interactions
within an hour, a day, a week) using time windows which seems relevant for the ap-
plications’ domains. Such “vertical” time cuts may breaks some relevant patterns. In
Figure 1(a), the transformation breaks the triangle formed by vertices (d, e, f). Notice
it is less likely if the cut occurs when the network activity is low (e.g. during the night
in a human interactions network). The choice of the windows length is therefore not
the only issue with the snapshot transformation. There is no guarantee that the time
cuts always correspond to inactivity periods regardless of the windows length.

(a) Snapshots (length h) transformation. (b) ∆-duplication

Figure 1. Illustration of the difference between snapshots and ∆-duplication on a
time-line representation of a TVG. Bended links are the temporal edges. The blue
boxes represent the different instances of a vertex that are created. The red lines

represent the induced time cuts.

This preliminary work focuses on the design of an alternative and more general
data transformation that does not use an absolute time-line. We propose to partition
each vertex time-line into sessions according to a parameter ∆: time intervals in which
an individual interacts at least every ∆ (see Figure 1(b)). This gives birth to a class
of TVG we call ∆-successive and we show how a TVG can be turned into a unique
∆-successive TVG (see Section 2). We discuss in what extent the transformed TVG
could be studied as a static graph. This transformation allows us to define an important
network metric, the k-cores, in the context dynamic networks (see Section 3). The
(k,∆)-cores can be used to detect temporal subgraphs with low-bounded temporal
and topological connectivities.
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2. ∆-Duplication of Temporal Graphs

We call a TVG a tupleG = (V,E, T, t) where V is the set of vertices, E = V ×V
the set of edges and t : E → [0, T ] is the time at which an edge is observed. We only
consider instantaneous interactions. However, most of the concepts developed later
can be defined for more comprehensive models (see Section 4). We call t(v) the set of
different timestamps for which it exists an edge incident to v ∈ V . Furthermore, the
interval [max t(v),min t(v)] is called the session of v (activity period).

DEFINITION 1. — ∆-successive Graphs. A temporal graph G = (V,E, t) is said to
be ∆-successive for ∆ ∈ [0, T ] iff for all v ∈ V , t(v) is a ∆-session i.e. the biggest
interval between two consecutive interactions in t(v) is lower or equal to ∆.

Testing whether a temporal graph is ∆-successive is straightforward. We can de-
rive from this definition some useful properties.

PROPERTY 2. — Minimum frequency. If G is ∆-successive, the frequency of interac-
tions of v ∈ V when active is dG(v) / (max t(v)−min t(v)) ≥ ∆−1

PROPERTY 3. — Inclusion. For ∆1 ≤ ∆2, every ∆1-successive graph is also ∆2-
successive.

For every TVG it exists a ∆ such that the graph is ∆-successive. We show now that
any TVG can be turned into a ∆-successive with lower ∆ using vertex duplication.

DEFINITION 4. — Vertex-Duplication. The graph S = (V ′, E, θ) is a Vertex-
duplication of G = (V,E) iff θ : V ′ → V is a surjective function such that the
graph obtained after the contraction of the vertices {v ∈ V ′, θ(v) = u}u∈V is G.

A vertex-duplication is a transformation of G without information loss. In the
∆-duplication, a vertex is seen as separate entities if the time spent between two con-
secutive interactions is higher than ∆. The function θ can be viewed as a label keeping
track of the identify of the original vertex. In Figure 1(b), each blue blue box corre-
sponds to a ∆-session, the vertices (a, b, c) are duplicated.

DEFINITION 5. — ∆-duplication. The temporal graph S = (V ′, E, T, t, θ) is a ∆-
duplication of G = (V,E, T, t) iff S is a vertex-duplication of G and is ∆-successive.

We call minimum ∆-duplication of G the ∆-duplication where |V ′| is minimum.
Notice that the minimum T -duplication of G is itself. Equivalently, the minimum
0-duplication of G contains

∑
u∈V |t(u)| vertices. It is easy to show that this mini-

mum is unique. Indeed, it corresponds to the partition of each set t(v) into the largest
∆-sessions. This is achieved by splitting only the intervals of length greater than ∆
between consecutive interactions.
Computing the ∆-duplication therefore requires the sorting of the edges of G which
can be done in O(|E| log |E|) (reduced to O(|E|) if we assume the edges are already
sorted). Moreover, the ∆-duplication can be stored in Θ(|E|) since the edge set is the
same as G and |V ′| ≤ 2|E| assuming |V | ≤ 2|E|.
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We discuss now the usage of a ∆-duplicated TVG as a static graph. The ∆-
duplication transforms a TVG into another TVG. As for the snapshots transformation,
the assumption can be made that the time ordering of the links is not relevant after this
transformation.
One interesting aspect of ∆-duplication is that temporal properties can be turned into
topological properties. For example, if it exists regular time periods where the net-
work activity is null (during the night for example). Then for some value of ∆ lower
than this duration, the activity periods will correspond to disconnected subgraphs (in
the static sense) in the ∆-duplication. In this context, the connected components of
the transformed TVG can be viewed as a snapshot sequence. However, since ∆-
duplication is vertex-oriented, the time cuts may correspond to non-vertical time peri-
ods (as in Figure 1(b)). This is useful when the actors are not active during the same
periods. This can be the case for worldwide networks where actors belong to different
time zones.

3. Generalization of k-cores to temporal graphs

The k-core decomposition is a powerful tool for network analysis (Seidman, 1983).
It assigns to each vertex the largest k for which the vertex belongs to a k-core (see
Def. 6). Previous studies (Kitsak et al., 2010) suggested that the latter statistics is
positively correlated to the ability of the vertices to spread information or disease ef-
fectively. It is therefore relevant to generalize this metric to dynamic networks.

DEFINITION 6. — k-core. The k-core of a graph G = (V,E) is the maximal sub-
graph of G with minimum degree at least k.

The idea of the k-core for TVG, called (k,∆)-cores, is to extract subsets of in-
teractions that form ∆-sessions containing a given minimum number of connections.
Our generalisation preserves the properties of uniqueness and inclusion (see Theorems
8 and 9).
The parameter ∆ provides a bound to the temporal connectivity of a TVG (see Prop-
erty 2). The parameter k in the k-core decomposition provides a bound to the topo-
logical connectivity (the degree). We now bring those two constraints together. To
do that, observe the definition 6 can be formulated in term of edge subsets, which is
useful here since the vertices set changes with ∆ while the edge set of a TVG stays
the same. The concept of k-core can also be defined for various vertex statistic like
the in or out-degree or the number of triangles. Since temporal graphs are generally
multiple, a relevant statistic could here be the number of distinct neighbours.

DEFINITION 7. — (k,∆)-core. Let G be a TVG, the (k,∆)-core of G denoted
Ck,∆(G) is the maximal subset of edges such that the subgraph formed by Ck,∆(G)
has a ∆-duplication where the minimum degree is at least k.

THEOREM 8. — Uniqueness. For every temporal graph G = (V,E, T, t), it exists a
unique (k,∆)-core.
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PROOF. — Suppose it exists two different (k,∆)-cores of G denoted C1 ⊂ E and
C2 ⊂ E with C1 6= C2. Since both C1 and C2 are maximal, the graph formed by
the union C1 ∪ C2 should not have a ∆-duplication with a minimum degree of k.
For a vertex v ∈ V , its incident edges are therefore split into two groups : C1(v) and
C2(v). Both of these sets can be partitioned into ∆-sessions having at least k elements.
Observe that merging a couple of ∆-sessions in C1(v) and C2(v) that overlap over
their time periods produces a larger ∆-session. Therefore, doing the union of the two
sets C1(v) and C2(v) and merging the pairs that overlap produce a set of ∆-sessions
each having at least k elements. Since it is true for every vertices, it invalidates our
hypothesis. We conclude it exists no (k,∆)-cores C1 and C2 such that C1 6= C2. �

THEOREM 9. — Inclusion. For ∆1 ≤ ∆2 and k1 ≤ k2, we have

Ck2,∆1(G) ⊆ Ck1,∆2(G) (1)

PROOF. — According to Property 3, a ∆1-successive grap is also ∆2-successive. For
all ∆ ∈ [∆1,∆2], the edge set Ck2,∆1

(G) has a ∆-duplication with minimum degree
at least k2, therefore it has one with minimum degree at least k1. �

Theorem 9 indicates that a partial order exists between the different cores. It means
that one can find the largest k for a non-empty (k,∆)-core when ∆ is fixed. Equiv-
alently, one can find the smallest ∆ such that a (k,∆)-core is non-empty for a given k.

Algorithm 1: Computation of (k,∆)-cores
Input: G = (V,E, T, t), k, ∆
Output: Ck,∆(G)

1 G′ ← G;
2 while minu∈V (G′) dG′(u) < k and G′ not ∆-successive do
3 G′ ← min-∆-duplication(G′) ;
4 G′ ← k-core(G′) ;
5 end
6 return E(G′);

Algorithm 1 can be used to compute the (k,∆)-core of a temporal graph. One dif-
ficulty is that a subgraph of a ∆-successive graph may not be ∆-successive. Therefore
the peeling of vertices with low degree (line 4) must be used in conjunction with the
computation of minimum ∆-duplications (line 3) until the conditions given in Defi-
nition 7 are met. Finding the k-core of G′ (considered here as a static graph) can be
done in O(|E|).

THEOREM 10. — Correctness of Algorithm 1. For a TVG G = (V,E, T, t), the Al-
gorithm 1 returns Ck,∆(G).

PROOF. — We call degree (resp. core value) of an edge in G the minimum degree
(resp. core value) of its endpoints. First, at each iteration of the while loop, we
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have Ck,∆(G) ⊆ E(G′). The transformation into minimum ∆-duplication can only
decrease the core values. Those values are not modified for the edges that remain
after the extraction of the k-core of G′. Moreover, the ∆-duplication for which the
core of values of edges is maximum is the minimum ∆-duplication of G′. For every
edge e ∈ Ck,∆(G), the core value of e is therefore at least k at each iteration and
Ck,∆(G) ⊆ E(G′) at the end of the algorithm. Next, E(G′) ⊆ Ck,∆(G) since G′ is
a ∆-successive subgraph of G with a minimum degree of k. By definition, the edges
of G′ belong to Ck,∆(G). Therefore, we have E(G′) = Ck,∆(G).

�

4. Discussion and Future Directions

Our formalism can be extended to various definitions of time-varying graphs. For
example, non-instantaneous interactions can be used i.e. when edges correspond to
quadruple (u, t1, v, t2) ∈ V ×E × V ×E or continuous time intervals (u, v, [t1, t2]).
In the later, the edge (u, v) is active during the period [t1, t2] ⊆ T . The ∆-duplication
depends on the notion of vertex activity and we consider a vertex inactive if it is not
the extremity of an edge for a duration of at least ∆. This concept is still valid for the
TVG definitions given here although different types of computation may be needed.

Our objective is to use ∆-duplication and (k,∆)-cores in the practical context
of dynamic networks analysis. Since our transformation relies on a parameter ∆,
we want to design methods to effectively explore the space of ∆-duplication of real-
world networks. In particular, computing the (k,∆)-cores for different parameters
values may provide a good fingerprint of a given network. We want to compare the
information obtained and the pattern detected by comparing them to the conclusion of
studies based on a transformation into snapshots of fixed or varying length.
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