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Time-Varying Graphs Analysis via ∆-duplication

François Queyroi

May 26, 2014

In this paper, we introduce a transformation of time-varying graphs, called
∆-duplication, for the analysis of heterogeneous dynamic network. Instead of
building a sequence of snapshots from non-overlapping time windows, we pro-
pose a relative approach : consider a vertex as different vertices over multiple
sessions. A session being a time period where the vertex interaction are not
separated by more than ∆ timestamps. We describe here the general theory of
∆-duplication and provided some directions for applications to TVG analysis.
In particular, we introduce a generalization of k-core to temporal graph using
this model.

1 Introduction

Complex networks often corresponds to dynamic complex systems. In this con-
text, time-varying graphs [2] (TVG) are used to capture this dynamic : the
interactions between actor in the networks appear and disappear according to
an unknown process. In practical applications, this process is heterogeneous, in
the sense it may be time dependent. Moreover, we can assume the events in a
dynamic complex networks are not independent.

One way to deal with this temporal and topological complexity is to reduce
the time heterogeneity by cutting the time into different windows. This ap-
proach transforms a TVG into a series of static graphs called snapshots [5, 7].
An implicit hypothesis in this case is that the way interactions are ordered in
those snapshots is not relevant for the analysis, so we can study them as static
graph (eventually weighted). So far this reduction is done globally (e.g. con-
sider all interactions within an hour, a day, a week) using time windows which
seems relevant for the applications’ domains.

We want here to reduce the time heterogeneity without considering an abso-
lute time-line. Instead, we propose a vertex-oriented approach i.e. where each
vertex time-line defined by its interactions is cut according to a parameter ∆.
Those cuts define sessions which correspond to activity periods of the vertices :
time interval in which an individual interacts at least every ∆. This gives birth
to a class of TVG we call ∆-successive time-varying graphs (Section 2). We
show that a TVG can be turned into a unique ∆-successive Temporal Graphs
using a polynomial algorithm (see Section 3). This transformation allows us to
define an important network metric, the k-cores, in the context dynamic net-
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works (see Section 4). The (k,∆)-cores can be used to detect sub temporal
graph with low-bounded temporal and topological connectivity.

2 ∆-successive Temporal Graphs

In this section, we introduce a class of TVG called ∆-successive TVG. We call
a TVG a tuple G = (V,E, T, t) where V is the set of vertices, E = V × V the
set of edges and t : E → [0, T ] is the time at which an edge is observed. Notice
we consider only instantaneous interactions1, however most of the concepts de-
veloped later can be defined for more accurate models, this is further discussed
in Section 5.

In this context, we call t(V ′) the set of different timestamps for which it exists
an edge with one endpoint in V ′. Furthermore, we call [max t(V ′),min t(V ′)]
the session of V ′ and define as τ(V ′) = max t(V ′) − min t(V ′) its duration of
V ′ i.e. the length of the period for which V ′ has interactions in G. Notice that
for any subset V ′, we have τ(V ′) ≤ T .

Definition 1. ∆-session. The list of integer X = (x1, x2, . . . , xk) is called a
∆-session iff for all i ∈ [1, k− 1], x(i+1)−x(i) ≤ ∆ where x(i) is the i-th biggest
element in X.

A temporal graph is ∆-successive if all the interactions of a given vertex are
separated by at most ∆ timestamps.

Definition 2. ∆-successive Graphs. A temporal graph G = (V,E, t) is said to
be ∆-successive for ∆ ∈ [0, T ] iff for all v ∈ V , t(v) is a ∆-session.

Testing whether a temporal graph is ∆-successive is straightforward. We
can derive from this definition some useful properties.

Property 1. Minimum frequency. Let fG(v) =
dG(v)

τ(v)
the frequency of inter-

actions of a vertex over its session. If G is ∆-successive, then fG(v) ≥ ∆−1 for
all v ∈ V .

Property 2. Inclusion. For ∆1 ≤ ∆2, every ∆1-successive graph is also ∆2-
successive.

Observe that a ∆-successive G can contain sub-graphs (induced by a set of
vertices or formed by a set of edges) that are not ∆-successive themselves.

3 ∆-Duplication of Temporal Graphs

For every time-varying graph it exists a ∆ such that the graph is ∆-successive.
We show now that any temporal graph can be turned into a ∆-successive with
lower ∆ using vertex duplication.

1We consider the time as integers value since timestamped observations can only be done
in discrete time. This also justify the existence of instantaneous interactions in this context.
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Definition 3. Vertex-Duplication. The graph S = (V ′, E, θ) is a Vertex-
duplication of G = (V,E) iff θ : V ′ → V is a subjective function such that
the graph obtained after the contraction of the vertices {v ∈ V ′, θ−1(v) = u}u∈V
is G.

(a) ∆ = 4 (b) ∆ = 2 (c) ∆ = 1

Figure 1: Different (minimum) ∆-duplications of the graph (a). Edges labels
are the timestamps {t(e)}e∈E .

Notice a vertex-duplication is a transformation of G without information
loss. We will use here the θ function to encodes vertex sessions. More precisely,
the couples (vertex,session) will be considered the new vertices of the temporal
graph with temporal edges routed accordingly. A vertex will therefore be seen
as separate entities if the time spent between two consecutive interactions is
higher than ∆. An example of ∆-duplications can be found in Fig. 1.

Definition 4. ∆-duplication. The temporal graph S = (V ′, E, T, t, θ) is a ∆-
duplication of G = (V,E, T, t) iff S is a vertex-duplication of G and is ∆-
successive.

Definition 5. Minimum ∆-duplication. The temporal graph S = (V ′, E, T, t, θ)
is a minimum ∆-duplication of G = (V,E, T, t) iff |V ′| is minimum among all
∆-duplications of G.

Notice that the minimum T -duplication of G is itself. Equivalently, the
minimum 0-duplication of G contains

∑
u∈V |t(u)| vertices.

Theorem 1. Existence and Uniqueness. For every temporal graph G, it exists
a unique minimum ∆-duplication of G.

Proof. A ∆-duplication of G exists since it corresponds to the partitioning of
the sets {t(v)}v∈V into ∆-sessions. Such partition always exists. Moreover,
the minimum ∆-duplications is obtained by partitioning all set t(v) into the
minimum number of groups. There is only one way to achieve this : by splitting
only the intervals of length greater than ∆ between consecutive interactions.
This proves the uniqueness.

Theorem 2. Complexity. The minimum ∆-duplication of G = (V,E, T, t) can
be computed in O(|E| log |E|) and can be stored in Θ(|E|) assuming |V | ≤ |E|.
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Proof. Time: As said earlier, the minimum ∆-duplication is achieved by split-
ting t(v) for every consecutive step of length greater than ∆. It requires sorting
the edges according to the timestamps. The rerouting of the edges can be done
in O(|E|).

Memory: the maximum number of vertices in a minimum ∆-duplication of
G is achieved for ∆ = 0. Assuming |V | ≤ |E|, we have

|V ′| ≤
∑
u∈V
|t(u)| ≤

∑
u∈V

dG(u) = 2|E|

Since the edge set stays the same, the minimum ∆-duplication of G can be
stored in Θ(|E|).

Notice that if the edges incident to a vertex are ordered according to the
timestamps, the computation of the ∆-duplication can be done in O(|E|).

4 Generalization of k-cores to temporal graphs

In the section, we describe a possible generalization of the well-know concept of
k-core to temporal graph, called the (k,∆)-core.

Definition 6. k-core. The k-core of a graph G = (V,E) is the maximal sub-
graph of minimum degree k in G.

The k-core decomposition is a powerful tool for network analysis [8, 1] : it
assigns to each vertex the largest k for which the vertex belongs to a k-core. Pre-
vious studies [6] suggested that the latter statistics is correlated to the capacity
of spreading information. It is therefore relevant to generalize this property to
dynamic networks.

The parameter ∆ provides a bound to the temporal connectivity of a TVG
(the frequency of interaction). The parameter k in the k-core decomposition
provides a bound to the topological connectivity (the degree). We now bring
those two constraints together. To do that, observe the definition 6 can be
formulated in term of edge subsets, which is useful here since the vertices set
changes with ∆ while the edge set of a TVG stays the same.

Definition 7. (k,∆)-core. Let G be a TVG, the (k,∆)-core of G denoted
Ck,∆(G) is the maximal subset of edges such that the subgraph formed by Ck,∆(G)
has a ∆-duplication where the minimum degree is at least k.

Notice that Ck,∆(G) can be an empty subset.

Theorem 3. Uniqueness. For every temporal graph G = (V,E, T, t), it exists
a unique (k,∆)-core.

Proof. Suppose it exists two different (k,∆)-cores of G denoted C1 ⊂ E and
C2 ⊂ E with C1 6= C2. Since both C1 and C2 are maximal, the graph formed
by the union C1 ∪ C2 should not have a ∆-duplication with a minimum degree
of k. For a vertex v ∈ V , its incident edges are therefore split into two groups :
C1(v) and C2(v). Both of these sets can be partitioned into ∆-sessions having
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at least k elements. Observe merging a couple of ∆-sessions in C1(v) and C2(v)
that overlaps over their time periods produced a larger ∆-session. Therefore,
doing the union of the two sets C1(v) and C2(v) and merging the pairs that
overlap produce a set of ∆-sessions each having at least k elements. Since it is
true for every vertices, it invalidates our hypothesis. We conclude it exists no
maximal (k,∆)-cores C1 and C2 such that C1 6= C2.

Theorem 4. Inclusion. For ∆1 ≤ ∆2 and k1 ≤ k2, we have

Ck2,∆1
(G) ⊆ Ck1,∆2

(G) (1)

Proof. According to Property 2, a ∆1-successive graphs is also ∆2-successive.
For all ∆ ∈ [∆1,∆2], the edge set Ck2,∆1

(G) has a ∆-duplication duplication
with minimum degree at least k2, therefore it has one with minimum degree at
least k1.

The theorem 4 indicates that a partial order exists between the different
cores. It means that one can find the largest k for a non-empty (k,∆)-core
when ∆ is fixed. Equivalently, one can find the smallest ∆ such that a (k,∆)-
core is non-empty for a given k.

Notice that the concept of k-core is here defined with respect to vertices
degrees. It can also be defined for any vertex statistic. For example, the in
or out-degree [4], the weighted degree [3] or the number of triangles [10] can
also be used. In our case, since temporal graph are generally multiple (i.e.
multiple interactions appears between two vertices) a relevant statistic could be
the number of distinct neighbours.

Algorithm 1: Computation of (k,∆)-cores

Input: G = (V,E, T, t), k, ∆
Output: Ck,∆(G)

1 G′ ← G;
2 while minu∈V (G′) dG′(u) < k and G′ not ∆-successive do
3 G′ ← min-∆-duplication(G′) ;
4 G′ ← k-core(G′) ;

5 end
6 return E(G′);

Algorithm 1 can be used to compute the (k,∆)-core of a temporal graph. The
procedure alternates between the computation of minimum ∆-duplications (line
3) and the peeling of vertices degree lower than k (line 4) until the conditions
given in Definition 7 are met.

Theorem 5. Correctness of Algorithm 1. For a TVG G = (V,E, T, t), the
Algorithm 1 returns Ck,∆(G).

Proof. We call degree (resp. core value) of an edge in G the minimum degree
(resp. core value) of its endpoints. First, at each iteration of the while loop, we
have Ck,∆(G) ⊆ E(G′). The transformation into minimum ∆-duplication can
only decrease the core values. Those values are not modified for the edges that
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remain after the extraction of the k-core of G′. Moreover, the ∆-duplication for
which the core of values of edges is maximum is the minimum ∆-duplication of
G′. For every edge e ∈ Ck,∆(G), the core value of e is therefore at least k at
each iteration and Ck,∆(G) ⊆ E(G′) at the end of the algorithm.
Next, E(G′) ⊆ Ck,∆(G) since G′ is a ∆-successive subgraph of G with a mini-
mum degree of k. By definition the edges of G′ belong to Ck,∆(G). Therefore,
we have E(G′) = Ck,∆(G).

5 Related Works

The temporal node representation described in [9] actually corresponds to a 0-
duplication of the temporal graph2. However, it is not minimum since a vertex
is created for each timestamps in T i.e. the function θ has V ×T for input space
even if a vertex is not the extremity of an edge at some instant.

Notice our formalism can be extended to more general definitions of time-
varying graphs [2]. For example, non-instantaneous interactions can be used i.e.
when temporal edges corresponds to quadruple (u, t1, v, t2) ∈ V × E × V × E
or continuous time intervals (u, v, [t1, t2]). In the later, the edge (u, v) is active
during the period [t1, t2] ⊆ T . The ∆-duplication depends on the notion of
vertex activity and we consider a vertex inactive if it is not the extremity of
an edge for a duration of at least ∆. This concept is still valid for the TVG
definitions given here although different types of computation may be needed.

In TVG analysis, the transformation into sequences of snapshots is often
justified if the “time cuts” between the snapshots correspond to time periods of
inactivity in the networks (for example during the night in a communications
network within the same time zone). In this case, the transformation is not likely
to break relevant patterns. If a TVG exhibits such property i.e. regular periods
with no interactions then those cuts can be recovered by the ∆-duplication
looking at the connected components of the static graph obtained by ignoring
the timestamps of the edges.

Property 3. Connected components of ∆-duplication. Let G = (V,E, T, t) be
a TVG and t1 < t2 such that there is no edge e ∈ E, with t(e) ∈ [t1, t2]. The
(t2 − t1)-duplication of G contains at least two connected components (in the
static and temporal sense).

According to Property 3, having ∆ ≤ (t2− t1) will disconnect the TVG over
the time period. Therefore, if it exists multiple cuts of length at least (t2 − t1),
the connected components of the (t2 − t1)-duplication will correspond to the
transformation into snapshots. The ∆-duplication is however more flexible since

• the period of inactivity in the network can have different length

• the transformation into snapshot requires another (hidden) parameter t0
which is the time of the first snapshot (most of the time t0 = 0).

2Assuming there is no directed edge between successive temporal node corresponding to
the same node.
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Notice the two items given above can be achieved by creating a new snapshot
when no interaction is observed for a duration of at least ∆ timestamps. This
leads to a transformation of a TVG into a sequence of static graphs with (non-
overlapping) time windows of different length. The ∆-duplication is however
vertex-centred, meaning a vertex may be duplicated even if there are simultane-
ous activities in the networks that does not affect the vertex directly. Therefore,
the ∆-duplications allows finding “non-vertical” time cuts.

6 Conclusion and Future Directions

We introduced in this paper a transformation of a time-varying graph that can
be used to handle time heterogeneity. The idea is to consider couples of vertices
and sessions. The latter correspond to periods of quasi-continuous activity (de-
fined using a parameter ∆) of an individual in the network.
We described properties of this transformation and discuss computational as-
pects. A generalisation of k-core to TVG analysis was also proposed. Although
different concepts could also be extended in the context of ∆-duplication, we
focus here of the new notion of (k,∆)-core as its static counterpart is widely
used in network analysis for a variety of applications.

Our objective is to use ∆-duplication and (k,∆)-cores in the practical con-
text of dynamic networks analysis. In particular, we want to compare the infor-
mation obtained or the pattern detected by comparing them to the conclusion
of studies based on a transformation into snapshots of fixed or varying length.
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