
HAL Id: hal-00996346
https://hal.science/hal-00996346v1

Submitted on 26 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithm for the principal ideal problem in
indefinite quaternion algebras

Aurel Page

To cite this version:
Aurel Page. An algorithm for the principal ideal problem in indefinite quaternion algebras. Al-
gorithmic Number Theory Symposium ANTS XI, Aug 2014, GyeongJu, South Korea. pp.366-384,
�10.1112/S1461157014000321�. �hal-00996346�

https://hal.science/hal-00996346v1
https://hal.archives-ouvertes.fr

Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

An algorithm for the principal ideal problem
in indefinite quaternion algebras

A. Page

Abstract

Deciding whether an ideal of a number field is principal and finding a generator is a fundamental
problem with many applications in computational number theory. For indefinite quaternion
algebras, the decision problem reduces to that in the underlying number field. Finding a generator
is hard, and we present a heuristically subexponential algorithm.

Keywords: quaternion algebra, principal ideal algorithm, factor base, Bruhat-Tits tree.

1. Introduction

Automorphic forms and their Hecke eigenvalues are of tremendous importance in number
theory. These eigenvalues carry a lot of interesting arithmetic information, such as the number
of points on elliptic curves or traces of Frobenius in Galois representations. One of the most
successful methods for computing automorphic forms for GL2 over number fields uses the
Jacquet-Langlands correspondence. This result transfers the problem to a quaternion algebra,
in which it is often easier to solve. This approach has its roots in the theory of Brandt matrices
and has been successfully used by Dembélé-Donnelly and Greenberg-Voight [5] to compute
Hecke eigenvalues of Hilbert modular forms. In both methods, a crucial step is to test whether
an ideal is principal and to produce a generator in this case: this is the principal ideal problem
that we are considering in this paper.
The principal ideal problem naturally splits into two cases: definite and indefinite algebras.

In the definite case, Dembélé and Donnelly described an algorithm and Kirschmer and Voight
proved that this algorithm runs in polynomial time when the base field is fixed, so we focus
on the remaining indefinite case. In that case, testing whether an ideal is principal reduces
to the same problem over the base field by Eichler’s theorem (Theorem 2.3), but finding a
generator is difficult. Kirschmer and Voight [12] provide an algorithm that improves on naive
enumeration†, without analysing its complexity.
In this paper, we present a probabilistic algorithm using a factor base and an auxiliary

data structure to solve the principal ideal problem. Our algorithm is inspired by Buchmann’s
algorithm [4] for computing the class group of a number field. However, it is not easy to adapt
this technique to quaternion algebras. Indeed, the set of right ideals of an order does not form a
group under multiplication. In fact, for most pairs of ideals, multiplication is not well-defined.
We are able to salvage the factor base technique in the case of indefinite quaternion algebras by
algorithmically realizing the strong approximation property (Theorem 2.1). The main point is
that if every ideal were two-sided, Buchmann’s method would work unchanged. Our algorithm
is divided in two parts. Because the algebra is indefinite, every ideal is equivalent to an “almost

2000 Mathematics Subject Classification 11Y40 (primary), 11R52, 11R65 (secondary).

This research was partially funded by ERC Starting Grant ANTICS 278537.
†Trying every linear combination of a basis until we find a generator.

Page 2 of 19 A. PAGE

two-sided” ideal: a local algorithm (Algorithm 3.9) makes this equivalence effective. The global
algorithm (Algorithm 3.12) uses a factor base: by linear algebra it cancels out the valuations of
the norm of the ideal and then corrects the ideal locally at every prime to make it two-sided.
We implemented our algorithm as in Magma. It performs well in practice, compared to the
built-in Magma function implementing Kirschmer and Voight’s algorithm.
The paper is organized as follows. We first recall basic properties of quaternion algebras,

Eichler’s theorems and Bruhat-Tits trees in Section 2. We then proceed to algorithms in
Section 3. In Section 3.1, we define local and global reduction structures and Algorithm 3.14,
solving the principal ideal problem. In Section 3.2, Algorithm 3.19 constructs the needed
local and global reduction structures: the first one uses units constructed from commutative
suborders, and the second one is inspired by Buchmann’s algorithm. In Section 3.3, we introduce
a compact representation for quaternions to prevent coefficient explosion in the previous
algorithms. Section 4 provides a complexity analysis of our algorithms: assuming suitable
heuristics, we prove a subexponential running time. Section 5 presents examples.

2. Background on quaternion algebras and Bruhat-Tits trees

When G is a group and S ⊂ G is a subset, we write 〈S〉 for the subgroup generated by S.
When the group G acts on a set X , we say that S acts transitively on X if 〈S〉 does.

2.1. Quaternion algebras

Good references for this section and the next one are [12], [17] and [19]. Let K be a number
field with ring of integers ZK and discriminant dK . We write N : K → Q for the norm. Let p be
a prime of ZK . We write Kp for the p-adic completion of K, we let vp be the p-adic valuation
and we write κp for the residue field ZK/p. When S is a set of primes of ZK , we write ZK,S

the ring of S-integers in K.
Let A be a quaternion algebra over K with reduced norm nrd. Let v be a place of K. The

place v is split or ramified according to whether A⊗K Kv
∼=M2(Kv) or not. The reduced

discriminant δA of A is the product of the ramified primes and its absolute discriminant is the
integer ∆A = d4KN(δA)

2. Let O be a maximal order in A. We write O1 for the group {x ∈
O | nrd(x) = 1}. A lattice I ⊂ A is a finitely generated ZK -submodule such that KI = A. The
right order Or(I) of I is the set {x ∈ A | Ix ⊂ I} and the left orderOl(I) is defined analogously.
A right O-ideal is a lattice I such that Or(I) = O. The ideal I is integral if I ⊂ O and I is
two-sided if Ol(I) = Or(I). The inverse I−1 of I is {x ∈ A | xI ⊂ O}. If I, J are lattices such
that Or(I) = Ol(J), we define their product IJ to be the lattice generated by the set {xy : x ∈
I, y ∈ J}. If I is an O-ideal we have II−1 = Ol(I) and I−1I = Or(I). The reduced norm nrd(I)
of an O-ideal I is the ZK -module generated by the reduced norms of elements in I. The reduced
norm of ideals is multiplicative. For a right O-ideal I we define N (I) = N(nrd(I)) and for an
element x ∈ A× we set N (x) = N (xO). Let p be a prime of ZK . There exists a unique two-
sided O-ideal P such that every two-sided O-ideal having reduced norm a power of p is a power
of P. We have P = pO if p splits in A and P2 = pO if p ramifies in A: such an ideal P is called
a prime of O, and every two-sided O-ideal is a product of primes of O. The set of right O-ideals
is equipped with an action of the group of two-sided O-ideals by multiplication on the right and
an action of the group A× by multiplication on the left. Two right O-ideals I, J are equivalent
if there exists x ∈ A× such that xI = J , that is if they lie in the same orbit modulo A×.
The set of equivalence classes of right O-ideals is written Cl(O). An ideal is principal if it is
equivalent to the unit ideal O. If S is a set of primes of ZK , the S-order associated with O is
the ring OS = ZK,SO and the group of S-units (relative to O) in A is O×

S .

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 3 of 19

2.2. Eichler’s condition and theorems

A quaternion algebra A satisfies the Eichler condition or is indefinite if there exists an infinite
place of the base field K at which A is split. Indefinite algebras satisfy the following properties.

Theorem 2.1 (Consequence of strong approximation). Let O be a maximal order in a
quaternion algebra A over a number field K, satisfying the Eichler condition. Let p be a prime
of ZK that splits in A and k a positive integer. Then the map

O1 −→ SL2(ZK/pk)

is surjective.

Theorem 2.2 (Integral version of Eichler’s norm theorem). Let O be a maximal order in a
quaternion algebra A over a number field K satisfying the Eichler condition. Let S be a finite
set of primes of ZK . Let Z×

K,S,A be the set of S-units that are positive at every real place of K
that ramifies in A. Then the reduced norm

nrd : O×
S −→ Z×

K,S,A

is surjective.

Theorem 2.3 (Eichler). LetO be a maximal order in a quaternion algebraA over a number
field K satisfying the Eichler condition. Let ClA(K) be the ray class group with modulus the
product of the real places of K that ramify in A. Then the reduced norm induces a bijection

Cl(O) ∼−→ ClA(K).

In other words, two right O-ideals are equivalent if and only if the classes of their norm
in ClA(K) are equal. Note that since Cl(O) is not a group, this map is only a bijection of sets.

2.3. The Bruhat-Tits tree

The standard reference for this section is [16]. Let K be a field with a discrete valuation v.
Let R be its valuation ring, π a uniformizer and κ = R/πR the residue field. An R-lattice in K2

is anR-submodule of rank 2 inK2. We define the Bruhat-Tits tree T , which we write Tp whenK
is the p-adic completion of a number field. The set of vertices of T is the set of homothety classes
of R-lattices in K2. Let L,L′ be two such R-lattices. There exists an ordered R-basis (e1, e2)
of L and integers a, b such that (πae1, π

be2) is an R-basis of L′. The integer |a− b| depends only
on the homothety classes of L,L′ and is called their distance. By definition, there is an edge in
the tree T between every pair of vertices at distance 1. The graph T is an infinite tree. If P,Q
are two vertices, the unique path of minimum length between P and Q is called the segment PQ
and the distance d(P,Q) equals the length of the segment PQ. The set of vertices at distance 1
from a given vertex is in natural bijection with P1(κ). The group GL2(K) acts on the tree and
preserves the distance, and this action factors through PGL2(K) and is transitive on the set of
vertices. The stabilizer of the vertex P0 corresponding to the R-lattice R2 is K×GL2(R) and
the stabilizer of any vertex is a conjugate of this group. The group SL2(R) acts transitively
on the set of vertices at a fixed distance from P0. For every g ∈ M2(R) \ πM2(R), the Smith
normal form shows that d(g · P0, P0) = v(det(g)). The tree is illustrated in Figure 1 where we
label some vertices P with a matrix g such that P = g · P0.

Page 4 of 19 A. PAGE

(

1 0

0 1

)

(

2 0

0 1

)

(

2 0

1 2

)

(

4 0

0 1

)

(

8 0

0 1

)

(

4 0

1 2

)

(

1 0

0 2

)

(

1 0

0 4

)

(

1 0

2 4

)

(

1 0

1 2

)

(

1 0

1 4

)

(

1 0

3 4

)

Figure 1. The Bruhat-Tits tree for K = Q2

Theorem 2.4. Let P,Q be two vertices of the tree T with d(P,Q) = 1. Then the action
of the group G = SL2(K) on the vertices of T has exactly two orbits G · P and G ·Q.

The connection between the Bruhat-Tits tree and ideals is the following: a right M2(R)-
ideal is always principal, generated by an element of GL2(K). Such an ideal is two-sided if
and only if it is generated by an element of K×GL2(R). So there is a GL2(K)-equivariant
bijection between set of the vertices of the Bruhat-Tits tree and the quotient of the set of
rightM2(R)-ideals modulo the action of the group of two-sidedM2(R)-ideals.

3. Algorithms

We want to adapt the classical subexponential algorithms for computing the class group of
a number field due to Hafner and McCurley [7] in the quadratic case and Buchmann [4] in the
general case to indefinite quaternion algebras by using a factor base: a fixed finite set of primes
of ZK . To simplify the notations, we set ∆ = ∆A.

Definition 3.1. The factor base for A is a finite set B of primes of ZK that generates the
group ClA(K).

We say that a fractional ideal a of K is B-smooth or simply smooth if it is a product of
the primes in B. Let I be a right O-ideal I. When I is integral, we say that I is smooth if
its reduced norm is. When I is arbitrary, it is smooth if it can be written I = Ja with a a
smooth fractional ideal of K and J an integral smooth right O-ideal. Equivalently, the ideal I
is smooth if and only if Ip = Op for all p /∈ B. An element x ∈ A× is smooth if the ideal xO is
smooth, or equivalently if x ∈ O×

S with S = B.
We equip M2(R) and M2(C) with the usual positive definite quadratic form Q given by

the sum of the squares of the absolute values of the coefficients, and we equip the Hamiltonian
quaternion algebra H with the positive definite quadratic form Q = nrd. For each infinite
place of K represented by a complex embedding σ, we fix an isomorphism σ′ : A⊗K Kσ

∼= M
extending σ, where M is one of M2(R), M2(C) or H. This defines a positive definite
quadratic form T2 : A⊗Q R→ R by setting T2(x) =

∑

σ[Kσ : R] ·Q(σ′(x)) for all x ∈ A⊗Q R,
giving covolume ∆1/2 to the lattice O. We represent a lattice in A by a ZK-pseudobasis
(see [12]). When L is a lattice in A, we can enumerate its elements by increasing value

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 5 of 19

of T2 with the Kannan–Fincke–Pohst algorithm [9, 10]. We represent this enumeration with
a routine NextElement that outputs a new element of L every time we call NextElement(L),
ordering them by increasing value of T2.

3.1. The reduction algorithms

In this section, we describe the reduction structures and the corresponding reduction
algorithms. We start with the local reduction, which is an effective version of the fact that
every integral right O-ideal of norm p2 is equivalent to the two-sided ideal pO (Theorem 2.3).
We perform this reduction by making algorithmic the reduction theory of SL2(Kp) on the
Bruhat-Tits tree Tp (Section 2.3). The point is that this reduction needs only a small number
of units: this leads to the definition of the p-reduction structure.

Definition 3.2. Let p be a prime that splits in A, let O0 = O and let P0 be the fixed
point of O×

0 in the Bruhat-Tits tree Tp. A p-reduction structure is given by the following data:
(i) the left order O1 of an integral right O-ideal of norm p, and the fixed point P1 of O×

1 in Tp;
(ii) for each b ∈ {0, 1} and for each P ∈ Tp at distance 1 from Pb, an element g ∈ O×

b such
that g · P = P1−b.

Such a structure exists by strong approximation (Theorem 2.1). Note that if I is an integral
right O-ideal of norm p such that O1 = Ol(I), we have Ip = xOp for some x ∈ A×, and P1 =
x · P0. We represent the points at distance 1 from Pb by elements of P1(κp) and we compute
the action on these points via explicit splitting maps ιb : Ob/pOb →M2(κp).

This structure provides everything we need to perform reduction in the Bruhat-Tits tree. The
following algorithm corresponds to the standard reduction procedure (Theorem 2.4), which is
illustrated in Figure 2. The idea is to use successive “rotations” (elements in SL2(Kp) having a
fixed point in the tree) around the adjacent vertices P0 and P1 to send an arbitrary vertex to
one of the vertices Pb: every rotation around a vertex decreases the distance to the other one.

To realize this procedure, we need to perform the following subtask: given a right O-ideal I,
find x ∈ I such that Ip = xOp. A simple idea is to let e = vp(nrd(J)) and to draw elements x ∈
J/pO uniformly at random until vp(nrd(x)) = e. To obtain a deterministic algorithm, we can
adapt Euclid’s algorithm in the matrix ringM2(R) with R = ZK/pe+1. This is done in [15],
except that the base ring R is assumed to be a domain. We adapt the argument to our case.
First note that we have a well-defined p-adic valuation v = vp in the ring R. Let a, b ∈ R.
We have v(ab) ≤ v(a) + v(b) whenever ab 6= 0, and a | b if and only if v(b) ≥ v(a). If a 6= 0,
there is a Euclidean division taking the following simple form: if a | b then b = a · (b/a) + 0,
and otherwise b = a · 0 + b. In every case we have written b = aq + r with r = 0 or v(r) < v(a).
Adapting this in the matrix ring leads to the following Euclidean division algorithm, where for
convenience we write w = v ◦ det. The idea is to work with A in Smith normal form, and if A
is a diagonal matrix, dividing by A is almost the same as dividing by the diagonal coefficients.
The difference is that we have to ensure that det(R) 6= 0 unless R = 0.

Subalgorithm 3.3 DivideMatrix.

Input: two matrices A,B ∈M2(R) with detA 6= 0, where R = ZF /p
i.

Output: two matrices Q,R ∈M2(R) such that B = AQ+R, and (R = 0 or w(R) < w(A)).
1: let A′ = UAV be the Smith form of A with U, V ∈ SL2(R) and A = (a 0

0 b)
2: B′ ← UB
3: let B′′ = B′W be the Hermite form of B′ with W ∈ SL2(R) and B′′ = (c 0

e f)
4: if a | c then

Page 6 of 19 A. PAGE

5: if b | f then

6: if b | e then

7: Q←
(c/a 0
e/b f/b

)

, R←
(

0 0
0 0

)

8: else

9: Q←
(c/a 1

0 f/b

)

, R←
(

0 −a
e 0

)

10: end if

11: else

12: Q←
(

c/a−1 0
0 0

)

, R←
(

a 0
e f

)

13: end if

14: else

15: if b | f then

16: Q←
(

0 0
0 f/b−1

)

, R←
(

c 0
e b

)

17: else

18: Q←
(

0 0
0 0

)

, R←
(

c 0
e b

)

19: end if

20: end if

21: return V QW−1, U−1RW−1

Proposition 3.4. Subalgorithm 3.3 is correct.

Proof. By case-by-case analysis, we have B′′ = A′Q+R, and either R = 0 (Step 7)
or det(R) 6= 0 and w(R) < w(A′). Let Q′ = V QW−1 and R′ = U−1RW−1 be the matri-
ces returned by the algorithm. We have B = U−1B′ = U−1B′′W−1 = U−1(A′Q +R)W−1 =
U−1A′V −1Q′ +R′ = AQ′ +R′. Since U, V and W have determinant 1, we have R = 0 if and
only if R′ = 0, and w(R′) = w(R) < w(A′) = w(A), proving the correctness of the algorithm.

Subalgorithm 3.5 GCDMatrix.

Input: two matrices A,B ∈ M2(R) with detA 6= 0, where R = ZF /p
i.

Output: a matrix D such that AM2(R) +BM2(R) = DM2(R).
1: Q,R← DivideMatrix(A, B)
2: if R = 0 then

3: return A
4: else

5: return GCDMatrix(R, A)
6: end if

Proposition 3.6. Subalgorithm 3.5 is correct.

Proof. In Step 5 we have det(R) 6= 0 by the properties of Subalgorithm 3.3, so the recursive
call to GCDMatrix is valid. The rest of the proof is the same as with the usual Euclidean
algorithm.

Subalgorithm 3.7 LocalGenerator.

Input: an integral right O-ideal I and a prime p, for some maximal order O.
Output: an element x ∈ I such that Ip = xOp.
1: b1, . . . , bn ← an LLL-reduced Z-basis of I
2: e← vp(nrd(b1))

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 7 of 19

3: R ← ZK/pe+1

4: B1, . . . , Bn ← images of b1, . . . , bn inM2(R)
5: D ← B1

6: for i = 1 to n do

7: D ← GCDMatrix(D, Bi)
8: end for

9: let µ1, . . . , µn ∈ Z be such that
∑

µiBi = D
10: return

∑

µibi

Proposition 3.8. Subalgorithm 3.7 is correct.

Proof. By definition of the norm of an ideal, we have vp(nrd(I)) ≤ vp(nrd(b1)) = e. Because
of the choice of R, at Step 5 we have det(D) 6= 0, so the calls to GCDMatrix are valid. By the
properties of Subalgorithm 3.5, at Step 9 we have DM2(R) = B1M2(R) + · · ·+B1M2(R)
so the integers µ1, . . . , µn exist. Now let x =

∑

µibi ∈ I be the output of the algorithm,
so that vp(nrd(x)) ≤ e, hence pe+1Op ⊂ xOp. Let y ∈ Ip. By reduction modulo pe+1 there
exists a ∈ Op and b ∈ pe+1O such that y = xa+ b ∈ xOp, proving the result.

Now we can present the local reduction algorithm.

Subalgorithm 3.9 PReduce.

Input: an integral right O-ideal I, a prime p and a p-reduction structure.
Output: an integer r, an element c ∈ A× and an integral O-ideal J such that cI = Jpr

and vp(nrd(J)) ∈ {0, 1}.
1: r ← largest integer such that I ⊂ Opr, J ← Ip−r

2: k ← vp(nrd(J))
3: c← 1, b← 0
4: x← LocalGenerator(I, p)
5: Q← x · P0

6: repeat

7: P ← point at distance 1 from Pb in the segment PbQ
8: (c, J,Q)← g · (c, J,Q) where g ∈ O×

b is such that g · P = P1−b

9: if b = 1 then J ← Jp−1, r← r + 1, k ← k − 2 end if

10: b← 1− b
11: until k < 2
12: return J, c, r

In Step 1, we have 2r = vp(nrd(I)) where I is the two-sided O-ideal generated by I. We
can compute I as follows: if w1, . . . , wn is a Z-basis of O and b1, . . . , bn is a Z-basis of I,
then I =

∑

i,j Zwibj .

Proposition 3.10. Subalgorithm 3.9 is correct.

Proof. Since k decreases by 2 every two iterations and is positive by the loop condition,
the algorithm terminates. We now prove that the output is correct.
First, the distance d(Pb, Q) decreases by 1 during each execution of the loop: before Step 8,

we have d(P1−b, gQ) = d(gP, gQ) = d(P,Q) = d(Pb, Q)− 1 since P is at distance 1 from Pb

on the segment PbQ. We claim that before or after a complete execution of the loop, we

Page 8 of 19 A. PAGE

P0

P1

Q

g

gQ
k = 4
b = 0

P0

P1

Q

gQ

g

k = 4
b = 1

P0

P1

Q

gQ

g

k = 2
b = 0

P0

P1

Q

g

k = 2
b = 1

Figure 2. PReduce (Subalgorithm 3.9)

have d(P0, Q) = k (see Figure 2). The claim is true before the first iteration: we have x ∈
O \ pO so d(P0, Q) = d(P0, xP0) = vp(nrd(x)) = vp(nrd(J)) = k. We only need to prove that
the equality d(P0, Q) = k is preserved when b = 1. In that case, P1 is in the segment P0Q
because of the previous iteration, so that d(P0, Q) = 1 + d(P1, Q) = k.
We now prove that before or after a complete execution of the loop, the O-ideal J is

integral and vp(nrd(J)) = k. This property clearly holds before the first iteration. Before
Step 9, after two iterations b = 0 and b = 1, J and Q have been multiplied by an element h
such that vp(nrd(h)) = 0 and d(P0, hQ) = d(P0, Q)− 2, so hJ is divisible by p. Step 9 hence
preserves integrality and updates k according to the valuation of nrd(J).
We now prove the proposition. The element c is a product of elements of O×

0 and O×
1 so c

is a p-unit with nrd(c) ∈ Z×
K . We have just proved that J is integral, and by Step 9 the value

of r is such that cI = Jpr. Because of the loop condition, after the algorithm terminates we
have vp(nrd(J)) = k ∈ {0, 1}.

We now explain how to perform global reduction. We use linear algebra to control the
valuations of a smooth ideal and then perform local reduction at every prime to get an “almost
two-sided ideal”. The first step is similar to its commutative analogue: we need sufficiently many
“relations” (smooth elements in A×) so that the quotient of the factor base by the norms of the
relations is the ray class group ClA(K). This leads to the definition of a G-reduction structure.

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 9 of 19

Definition 3.11. A G-reduction structure is given by the following data:
(i) a p-reduction structure for each p ∈ B that splits in A;
(ii) a finite set of elements X ⊂ O ∩ A× and a map φ : ClA(K)→ 〈B〉 that is a lift of an

isomorphism ClA(K)
∼−→ 〈B〉/〈nrd(X)〉 and such that φ(1) = ZK .

The following algorithm performs global reduction. In order to avoid explosion of the size
of the ideal in the local reduction, we extract the two-sided part, allowing us to reduce all
exponents modulo 2. The remaining part stays small and gets p-reduced, while the two-sided
part is only multiplied by powers of primes.

Subalgorithm 3.12 GReduce.

Input: a smooth integral right O-ideal I and a G-reduction structure.
Output: an integral ideal J , an element c ∈ A× and a two-sided ideal I such that cI = JI

and I is principal if and only if J = O and I = O.
1: a← nrd(I)
2: b← φ(a) where a is seen as an element of ClA(K)
3: let e ∈ ZX be such that nrd(y)a = b where y =

∏

x∈X xex .
4: c←∏

x∈X xexmod 2, f ←∏

x∈X nrd(x)⌊ex/2⌋ {Extract two-sided part}
5: J ← cI
6: I← two-sided ideal generated by J
7: J ← JI−1 {Extract two-sided part}
8: I← fI
9: for p ∈ B dividing nrd(J) and splitting in A do

10: J, c′, r ← PReduce(J, p)
11: c← c′c, I← prI

12: end for

13: return J, cf, I

Proposition 3.13. Subalgorithm 3.12 is correct.

Proof. Since Step 7 and PReduce preserve integrality (Proposition 3.10), the output J is
integral. The relation cI = JI is clear by tracking the multiplications. If the output is such
that J = O and I = O, then I = c−1O is principal. Conversely, if I is principal, then a = nrd(I)
is trivial in the class group ClA(K) so b = φ(cl(a)) = ZF . After Step 5, we have nrd(J) =
f−2ZF . After Step 7, we have multiplied J by a two-sided ideal, so vp(nrd(J)) is even for all
primes p splitting in A. Since J is not divisible by a two-sided ideal, nrd(J) is not divisible by
primes that ramify in A. We obtain J = O at the end of the loop by the properties of PReduce
so nrd(I) = ZF . Since I is two-sided, it is entirely determined by its norm so I = O.

Finally, we reduce the general case to the smooth case by the noncommutative analogue
of standard randomizing techniques. We generate a random smooth O-ideal by the following
procedure, to which we refer as RandomLeftIdeal(O). For each p ∈ B, pick a nonnegative
integer k. Let ι : O →M2(ZF /p

k) be a splitting map. Let M ∈ M2(ZF /p
k) be a random

upper-triangular matrix with zero determinant and compute Rp = Oι−1(M) + pkO. Finally,
return

⋂

pRp. Choose the exponents k such that N (R) ≈ ∆.
It not clear at the moment what the best distribution for the exponents is. A simpler idea

would be to use random products
∏

p p
kp . In our experience, this leads to poorly randomized

ideals. This is clear in the case K = Q: the randomized ideals are simply integer multiples of O.

Page 10 of 19 A. PAGE

Algorithm 3.14 IsPrincipal.

Input: an integral right O-ideal I and a G-reduction structure.
Output: an integral ideal J , an element c ∈ A× and a two-sided ideal I such that cfI = JI

and I is principal if and only if J = O and I = O.
1: R← RandomLeftIdeal(O)
2: x← NextElement(I−1 ∩R)
3: if xI is not smooth then return FAIL end if

4: J, c, I← GReduce(xI)
5: return J, cx, I

By Proposition 3.13, if Algorithm 3.14 does not return FAIL, its output is correct. In practice,
we repeat Algorithm 3.14 until it returns the result.

3.2. Building the reduction structures

Now we explain how to build the previous reduction structures. The local reduction structure
needs units in O. In general it is difficult to compute the whole unit group O×: for instance in
the Fuchsian case, the minimal number of generators is at least ∆3/8+o(1) (this follows from the
theory of signatures of Fuchsian groups [11, Section 4.3] and a volume formula [14, Theorem
11.1.1]), which makes it hopeless to find a subexponential method. However, we can find some
units in O by considering commutative suborders and computing generators of their unit group
with Buchmann’s algorithm. Heuristically, these units are sufficiently random for our purpose.
This strategy is implemented by the following algorithms.

Subalgorithm 3.15 P1Search.

Input: a maximal order O and a prime p.
Output: a set of elements X ⊂ O× acting transitively on P1(κp).
1: X ← ∅
2: repeat

3: x← NextElement(O)
4: L← K(x)
5: if L/K has positive relative unit rank then

6: R← ZL ∩ O
7: X ← X ∪ a set of generators of R×

8: end if

9: until X acts transitively on P1(κp)
10: return X

In Step 7, we can compute the unit group R× with the algorithms of Klüners and Pauli [13].
Note that we actually do not need the full group R×: a subgroup of finite index is sufficient.

Proposition 3.16. Subalgorithm 3.15 is correct.

Proof. By strong approximation (Theorem 2.1), the group O× acts transitively on P1(κp).
This group is finitely generated, so after finitely many iterations we will have enumerated a set
of generators and the algorithm will terminate. By the loop condition, the output is correct.

Subalgorithm 3.17 PBuild.

Input: a maximal order O and a prime p.
Output: a p-reduction structure.

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 11 of 19

1: I ← an integral right O-ideal of norm p

2: O1 ← Ol(I)
3: X ← P1Search(O, p)
4: from X , for each P at distance 1 from P0 compute an element g ∈ O× such that g · P = P1

5: X ← P1Search(O1, p)
6: from X , for each P at distance 1 from P1 compute an element g ∈ O×

1 such that g · P = P0

7: return the p-reduction structure

Remark 3.18. Let g, g′ ∈ O× be such that g · P1 = g′ · P1 and let h = g−1g′. Then h · P1 =
P1 so h ∈ O× ∩ O×

1 . This allows us to construct many elements in O×
1 before Step 5. If we

have sufficiently many such units, which often happens in practice, they will act transitively
on the points P 6= P0 at distance 1 from P1. In this case, in Step 5 we will only need to find
one element g ∈ O×

1 such that g · P0 6= P0.

We build the global reduction structure in a way similar to the commutative case: we look
for small relations in smooth ideals. In addition, we get a good starting point thanks to the
inclusion ZK ⊂ O: the units Z×

K,B provide all the relations up to a 2-elementary Abelian group.

Algorithm 3.19 GBuild.

Input: a maximal order O and a factor base B.
Output: a G-reduction structure.
1: for p ∈ B that splits in A do

2: PBuild(O, p)
3: end for

4: X ← integral generators of Z×
K,B

5: for p ∈ B do

6: I ← integral O-ideal of norm p

7: repeat

8: x← NextElement(I)
9: until x is smooth

10: X ← X ∪ {x}
11: end for

12: while 〈B〉/〈nrd(X)〉 6∼= ClA(K) do
13: x← NextElement(O)
14: if x is smooth then X ← X ∪ {x} end if

15: end while

16: return the G-reduction structure

Remark 3.20. The various calls to PBuild in Step 2 are not completely independent: we
can keep the elements in O× from one call for other ones.

Proposition 3.21. Algorithm 3.19 is correct.

Proof. Let I be the ideal in Step 6. There exists a smooth ideal J equivalent to I, let x ∈ A×

be such that I = xJ . Then xO = IJ−1, so nrd(J)x ∈ IJ̄ ⊂ I is smooth. It will be enumerated at
some point, so the loop starting at Step 7 terminates. Since B generates the class group ClA(K),
by Eichler’s theorem (Theorem 2.3) we have 〈B〉/nrd(A×) ∼= ClA(K), so there exists a finite
set of B-smooth elements X ⊂ O such that 〈B〉/〈nrd(X)〉 ∼= ClA(K). We will enumerate this

Page 12 of 19 A. PAGE

set at some point, so the loop starting at Step 12 terminates. So Algorithm 3.19 terminates,
and by Proposition 3.16 and Step 12 it returns a correct G-reduction structure.

Remark 3.22. We have restricted to maximal orders to simplify the exposition, but this
restriction can be weakened as follows. Let O be an arbitrary order, and let S be the set
of primes p of ZK such that O is not p-maximal. The set S is finite, so we can choose a
factor basis disjoint from S. Then our algorithms work unchanged for right O-ideals except
one point: Theorem 2.3 characterizing principal ideals might no longer hold. If we restrict to
Eichler orders, that is intersections of two maximal orders, Theorem 2.3 still holds. Otherwise
we need to find the suitable class group and change Definition 3.11 (ii) accordingly.

3.3. Compact representations

In the previous algorithms, the cost of elementary operations is important. Representing
units as linear combinations of a basis of O could be catastrophic: the classical example of real
quadratic fields suggests that fundamental units in commutative orders, such as those produced
by Subalgorithm 3.15, can have exponential size. This problem is classically circumvented by
representing units in compact form: a product of small S-units with possibly large exponents.
The problem is reduced to computing efficiently with those compact representations. A natural
notion of compact representation in O would be to take ordered products of S-units in O but
we do not know how to compute efficiently with such a general representation. Instead we use
a more restricted notion: we group the units belonging to a common commutative suborder,
in which we can compute efficiently. This leads to the following definition.

Definition 3.23. A compact representation in O is:
(i) an element x ∈ O, or
(ii) a product y =

∏r
i=1 y

ei
i where the exponents are signed integers, the elements yi all lie in

a single ring R ⊂ O containing ZK and such that y ∈ R×, together with a Z-basis of the
integral closure of R and a factorization of its conductor, or

(iii) an ordered product of compact representations.
A product y as in (ii) will be called a representation of type (ii).

We describe the algorithms for representations of type (ii), and they naturally extend by
multiplicativity to arbitrary compact representations. We first explain the algorithm for local
evaluation of compact representations. Since the product represents a unit, we can replace it
with a product of local units, avoiding loss of precision despite the large exponents.

Subalgorithm 3.24 EvalCR.

Input: a representation y =
∏r

i=1 y
ei
i ∈ R of type (ii), an ideal a ⊂ ZK .

Output: an element z ∈ O such that z = y (mod aO).
1: L← field of fractions of R
2: f← conductor of R inside ZL

3:
∏k

j=1 P
wj

j ← factorization of afZL

4: for j = 1 to k do

5: φ← reduction map onto ZL/P
wj

j

6: π ← uniformizer in Pj, v ← vPj

7: zj ←
∏r

i=1 φ(yiπ
−v(yi))ei

8: end for

9: z ← element in ZL such that z = zj (mod P
wj

j)

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 13 of 19

10: return z

Proposition 3.25. Subalgorithm 3.24 is correct.

Proof. First, we claim that for all j ≤ k, we have zj = y (mod P
wj

j). Since nrd(y) ∈ Z×
K ,

we have
∑r

i=1 v(yi)ei = 0 so
∏r

i=1(yiπ
−v(yi))ei =

∏r
i=1 π

−v(yi)ei
∏r

i=1 y
ei
i = y. Since yiπ

−v(yi)

is integral atPj , we can apply φ to it and the claim follows. This implies that the output z of the
algorithm satisfies z = y (mod afZL). In particular, we have z = y (mod fZL) so z − y ∈ R.
Since y ∈ R we get z ∈ R ⊂ O. The relation afZL ⊂ aR ⊂ aO shows that z = y (mod aO).

We can now explain how to multiply an ideal by a compact representation. To know an ideal,
it suffices to know it up to large enough precision: we reduce the problem to local evaluation.

Subalgorithm 3.26 MulCR.

Input: a representation y =
∏r

i=1 y
ei
i ∈ R of type (ii), an integral right O-ideal I.

Output: the ideal yI.
1: a← nrd(I)
2: z ← EvalCR(y, a)
3: return zI + aO

Proposition 3.27. Subalgorithm 3.26 is correct.

Proof. By Proposition 3.25, we have z = y (mod aO) so (z − y)I ⊂ (z − y)O ⊂ aO, which
gives zI + aO = yI + aO. Since y ∈ O×, we have nrd(yI) = nrd(I) = a, so aO ⊂ yI and
finally yI + aO = yI. Therefore the output of the algorithm is correct.

4. Complexity analysis

We perform a complete complexity analysis of our algorithms, assuming suitable heuristics.
To simplify the notations, we set L(x) = exp(

√
log x log log x). In every complexity estimate,

the degree of the base field K is fixed. When we mention a complexity of the form L(∆)O(1),
we always implicitly mean L(∆)O(1) times a polynomial in the size of the input. We fix a
parameter α > 0. We will analyse our algorithm using the general paradigm that with a factor
base of subexponential size, elements have a subexponential probability of being smooth.
However, recall from Definition 3.1 that the factor base B is assumed to generate the ray
class group ClA(K), so we need the following heuristic.

Heuristic 4.1. There exists a constant c = cα such that for every quaternion algebra A
with absolute discriminant ∆, the set of primes having norm less than c · L(∆)α generate the
class group ClA(K).

This heuristic is a theorem under the Generalized Riemann Hypothesis [1]. By Minkowski’s
bound, Heuristic 4.1 is also true unconditionnally with the restriction that log∆≫α (log |dK |)2.
From now on, we assume Heuristic 4.1 and we assume that the factor base B is the set of primes
having norm less than c · L(∆)α. Note that this implies the bound #B ≤ L(∆)α+o(1).

Page 14 of 19 A. PAGE

We start by analysing the complexity of elementary operations: Subalgorithm 3.7 and the
algorithms of Section 3.3.

Lemma 4.2. Subalgorithm 3.7 terminates in time polynomial in the size of the input.

Proof. Subalgorithm 3.3 (DivideMatrix) is made of a constant number of elementary
operations, so it is polynomial. In Subalgorithm 3.5 (GCDMatrix) with R = ZK/pi, since
the valuation of the determinant decreases at every recursive call, there are at most i such
calls. When Subalgorithm 3.7 (LocalGenerator) calls Subalgorithm 3.5, we have i = e+ 1 =
vp(nrd(b1)) + 1 = O(logN (I)) by lattice reduction. So the algorithm is polynomial in the size
of the input.

Lemma 4.3. Given the factorization of a, Subalgorithm 3.24 terminates in time polynomial
in the size of the input. Given the factorization of nrd(I), Subalgorithm 3.24 terminates in time
polynomial in the size of the input.

Proof. In Subalgorithm 3.24, the number of iterations of the loop is polynomial in the size
of the input. The only operations that could possibly not be polynomial in the size of the input
are the computation of ZL and the factorization of afZL, but ZL and the factorization of f are
contained in the compact representation, and the factorization of a is assumed to be given.
So the algorithm is polynomial in the size of its input. Since the HNF of the output can be
computed in polynomial time [2], Subalgorithm 3.24 is also polynomial.

The restriction on the factorization is not a problem in our application: every ideal on which
we call these algorithms is smooth.

Since our algorithms use their commutative counterparts, we have to make assumptions on
the algorithms used to compute commutative unit groups.

Heuristic 4.4. There is an explicit algorithm that, given a number field F with
discriminant dF , an order R in F and a bound b = L(dF)

O(1), computes a set U of integral
generators for the S-unit group of ZF , where S is the set of primes of norm less than b,
and generators for the unit group R× expressed as products of elements in U , in expected
time L(dF)

O(1).

This is a strong hypothesis. However, under the Generalized Riemann Hypothesis it is
a theorem for quadratic number fields [7, 20] and experience has shown that it is not an
unreasonable assumption†.

Since the reduction algorithms depend on the structures that are given as input, we analyse
the algorithms building the reduction structures before the reduction algorithms. We start with
Subalgorithm 3.15, for which we need some heuristic assumptions.

†The PARI developers experimented extensively with this algorithm in the past twenty years, as implemented
in the PARI/GP function bnfinit, while building and checking tables of number fields of small degree [Ref:
http://pari.math.u-bordeaux1.fr/pub/pari/packages/nftables/], as well as with number fields of much
larger degree. E.g. the class group and unit group of K = Q[t]/(t90 − t2 − 1), dK > 10175 can be computed
in a few hours (Karim Belabas, personal communication).

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 15 of 19

Heuristics 4.5. In Subalgorithm 3.15, we assume the following.
(i) If K is totally real, a positive proportion of x satisfies the condition of Step 5 that K(x)/K

has positive relative unit rank.
(ii) The images in PGL2(κp) of the units produced at Step 7 are uniformly distributed in the

image of O× in PGL2(κp).

Proposition 4.6. Assuming Heuristics 4.4 and 4.5, the expected running time of
Subalgorithm 3.15 is at most L(∆)O(1).

Proof. We first prove that the expected number of iterations of the loop is O(1). If K is
not totally real, the relative unit rank condition is always satisfied, so by Heuristic 4.5 (i) a
positive proportion of the iterations of the loop produce a unit. By strong approximation, the
image of O× in PGL2(κp) contains PSL2(κp), and the index is at most 2. By Heuristic 4.5 (ii),
with probability at least 1/2 the image of the unit produced at Step 7 is in PSL2(κp), and
the corresponding images are equidistributed in PSL2(κp). By [8], the probability that two
random elements of PSL2(κp) generate this group is bounded below by a constant. Therefore,
after an expected number of iterations O(1), the image of X generates PSL2(κp) and hence
acts transitively on P1(κp).
Each computation of a unit group in Step 7 takes expected time L(∆)O(1) by Heuristic 4.4

since the discriminant of ZK [x] is ∆O(1). The units are stored in compact representation and
we use Subalgorithm 3.24 (EvalCR) to compute the action on P1(κp), so by Lemma 4.3 this
takes total time L(∆)O(1).

Heuristics 4.7. Let Z×
K,B,A be the group of B-units in ZK that are positive at every real

place ramified in A. In Algorithm 3.19, we assume the following.
(i) There exists a constant β > 0 such that the elements x produced in Steps 8 and 13 are

smooth with probability at least L(∆)−β+o(1).
(ii) The norms of the smooth elements produced in Step 13 are equidistributed in Z×

K,B,A/Z
×2
K,B.

By comparison with the case of integers [6, Equation (1.16) and Section 1.3], β = 1/(2α)
could be a reasonable value.

Theorem 4.8. Assume Heuristics 4.4, 4.5, 4.1 and 4.7. Then, given a maximal order O
in an indefinite quaternion algebra A, Algorithm 3.19 (GBuild) terminates in expected
time L(∆)O(1).

Proof. There are 2 ·#B = L(∆)O(1) calls to Subalgorithm 3.15 (P1Search). By Propo-
sition 4.6, these calls take total time L(∆)O(1). The computation of the group Z×

K,B takes

time L(dK)O(1) = L(∆)O(1) by Heuristic 4.4. By Heuristic 4.7 (i), the expected number of
iterations in the loop starting at Step 7 is at most L(∆)O(1) for each p ∈ B, so the total
expected number of iterations of this loop is at most #B · L(∆)O(1) = L(∆)O(1).
We study the loop starting at Step 12. After Step 4, we have 〈B〉/〈nrd(X)〉 = 〈B〉/Z×2

K,B.

Let C be the group Z×
K,B,A/Z

×2
K,B. There is an exact sequence

1 −→ C −→ 〈B〉/Z×2
K,B −→ ClA(K) −→ 1,

so that the loop terminates if and only if the image of nrd(X) generates the group C. We
have #C = 2#B+O(1), so by Heuristic 4.7 (ii) this happens after we find an expected number

Page 16 of 19 A. PAGE

of #B +O(1) smooth elements. By Heuristic 4.7 (i), the total expected number of iterations of
this loop is at most #B · L(∆)O(1) = L(∆)O(1). Checking the loop condition 〈B〉/〈nrd(X)〉 6∼=
ClA(K) amounts to linear algebra, so it also takes time L(∆)O(1). This proves the theorem.

Theorem 4.9. Assume Heuristics 4.4, 4.5, 4.1 and 4.7. Then, given the G-reduction
structure computed by Algorithm 3.19 and a smooth integral right O-ideal I, Algorithm 3.12
(GReduce) terminates in expected time L(∆)O(1).

Proof. First, since by Theorem 4.8, Algorithm 3.19 terminates in expected time L(∆)O(1)

so in particular the expected size of its output is also at most L(∆)O(1). In Subalgorithm 3.12
(GReduce), the first part is linear algebra so it takes time L(∆)O(1). By Lemma 4.3, all the
elementary operations can be performed in time polynomial in the size of their input.
We analyse the calls to Subalgorithm 3.9 (PReduce). In this subalgorithm, the variable k

decreases by 2 every two iterations and the initial value of k is bounded by vp(nrd(J)), so
the algorithm terminates after at most vp(nrd(J)) iterations by the loop condition. So the
total number of iterations in the calls to Subalgorithm 3.9 is bounded by

∑

p∈B vp(nrd(J)) ≤
log2N (J) ≤ log2(NX · N (I)) by Step 5 of Subalgorithm 3.12, where NX =

∏

x∈X N (x).
But logN (I) is polynomial in the size of the input and logNX is polynomial in the size
of the G-reduction structure, which is L(∆)O(1). This proves the theorem.

Finally, for a general integral right O-ideal, repeated attempts with Algorithm 3.14
(IsPrincipal) takes total expected time L(∆)O(1) if we assume the following heuristic.

Heuristic 4.10. There exists a constant γ > 0 such that in Step 3 of Algorithm 3.14, the
element x is smooth with probability at least L(∆)−γ+o(1).

Again, by comparison with the case of integers [6], γ = 1/(
√
2α) could be a reasonable value.

5. Examples

We have implemented the above algorithms in the computer algebra system Magma [3].
In this section, we demonstrate how our algorithms work and perform in practice. Every
computation was performed on a 2.5 GHz Intel Xeon E5420 processor with Magma v2.20-5
from the PLAFRIM experimental testbed.

Example 1. Let A be the quaternion algebra over Q generated by two elements i, j such
that i2 = 3, j2 = −1 and ij = −ji. The algebra A is ramified at 2 and 3 and unramified at
every other place: A is indefinite and our method applies. Let O be the maximal order Z+ Zi +
Zj + Zω where ω = (1 + i+ j + ij)/2. We construct a reduction structure with Algorithm 3.19
(GBuild) and factor base B = {2, 3, 5, 7, 11, 13, 17}. Let I = 19O + aO where a = −3− 4i+ j,
so that nrd(I) = 19Z. We use Algorithm 3.14 (IsPrincipal) to compute a generator of I. It
finds an element x = (7 + i− 9j − 3ω)/19 ∈ I−1 such that nrd(xI) = 7Z, so that xI is smooth.
The linear algebra phase in Subalgorithm 3.12 (GReduce) computes c = −1− 2i− j + ω having
norm −7 and f = 1/7. We obtain J = 49O + bO with b = −17− 8i+ j and I = 7−1O before
the local reduction. We reduce the ideal J at 7. In Subalgorithm 3.9 (PReduce), at the first
iteration we have P = P1 so c = 1. In the second iteration we have c = (−9− 5i− 7j − 3ω)/7:
the element c has norm 1 and r = 1. After multiplying every element, we obtain the output c =

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 17 of 19

7/19 · (8 + 4i+ 3j − 11ω), f = 1/7 and x = (cf)−1 = 3 + 4i− 3j − 11ω has norm −19: x is a
generator of the ideal I.

Example 2. Let K be the complex cubic field of discriminant −23, which is generated by an
element t such that t3 − t+ 1 = 0. Let A be the quaternion algebra over K generated by two
elements i, j such that i2 = 2t2 + t− 3, j2 = −5 and ij = −ji. The algebra A is ramified at the
real place of K and the discriminant δA has norm 5. All the maximal orders in A are conjugate
and we compute one of them with Magma. Algorithm 3.19 (GBuild) constructs the reduction
structure in 4 seconds. We then compute the 22 primes of K coprime to δA and having norm
less than 100. For every such prime p, we construct a random integral right O-ideal I with
norm p. Since ClA(K) is trivial, they are all principal. We apply Algorithm 3.14 (IsPrincipal)
to compute a generator of each of these ideals. This computation takes 0.3 seconds per ideal
on average with a maximum of 0.9 seconds. As a comparison, we compute generators for the
same ideals with the function provided by Magma. This computation takes 4 hours per ideal
on average with a maximum of 69h, and 5 of the 23 ideals take less that 0.1 seconds.

Example 3. When the base field is totally real and the algebra is ramified at every real place
except one, there is an algorithm of Voight [18] for computing the unit group of an order. In [5,
p. 25], Dembélé and Voight mention but do not describe an unpublished algorithm using this
computation to speedup ideal principalization. This algorithm is provided in Magma† and
improves on the algorithm of [12]. Let K be the real cubic field of discriminant 3132 = 22 ·
33 · 29, which is generated by an element t such that t3 − 15t+ 6 = 0. Let A be the quaternion
algebra over K generated by two elements i, j such that i2 = −1, j2 = (141t2 + 57t− 2092)/2
and ij = −ji. The algebra A is ramified at two of the three real places of K and no finite
place. We compute a maximal order in A and then construct the reduction structure in 14
seconds. We produce a random integral ideal of norm p for each prime p having norm less
than 100 and compute a generator for each of them with our algorithm. The computation
takes 1.5 seconds per ideal on average with a maximum of 4.6 seconds. With Magma we
compute the unit group O× in 8 minutes and then compute generators for the same ideals
with the units-assisted algorithm [5, p. 25] provided by Magma. The computation takes 1 hour
per ideal on average with a maximum of 17h, and 10 of the 23 ideals take less that 0.5 seconds.
Magma tends to return smaller generators than our algorithm. Magma is fast whenever there
exists a small generator and our algorithm is faster when this is not the case.

Example 4. In order to understand the practical behaviour of the algorithms, we conduct
the following experiment. We draw algebras A and ideals I at random‡. In every random test
case, we compute our reduction structure with Algorithm 3.19 (GBuild), and we compute a
generator of the ideal I with Algorithm 3.14 (IsPrincipal). We also compute a generator
of I with the function provided by Magma. In every case, we interrupt any algorithm that
takes more than 1000 seconds to terminate. The result of 15 000 such test cases is plotted in

†IsPrincipal(<Any> I, <GrpPSL2> Gamma) -> BoolElt, AlgQuatElt

‡Let x be uniformly distributed in [0, 70]. This value controls the size of the discriminant. Let k be 1 or 2, each
with probability 1/2. This is the number of prime factors of the discriminant of the algebra. Let t be uniformly
distributed in [0, 1]. This value controls the part of the size of the discriminant coming from the base field or
from the algebra. Let d be the smallest fundamental discriminant larger that exp(tx/4), and let K = Q(

√
d).

Let p1 be the prime of ZK with smallest norm larger than exp((1 − t)x/2k), and if k = 2 let p2 be the prime
with smallest norm larger than N(p1). Let A be the quaternion algebra ramified exactly at pi for i ≤ k and
at kmod 2 real places of K, and let O be a maximal order in A. Let ∆ = d4N(δA)2 be the absolute discriminant
of A. Let y be uniformly distributed in [0, 1], and let p be the prime of ZK of smallest norm larger than y∆1/2,
coprime to δA and such that the class of p in ClA(K) is trivial. Finally, let I be a random integral right O-ideal
of norm p.

Page 18 of 19 A. PAGE

105 108 1011 1014 1017 1020 1023 1026 1029 1032

10-1

100

101

102

103

time (s)

∆

 Magma
 GBuild
 IsPrincipal

Figure 3. Running time of the algorithms

Figure 3: the discriminant ∆ and the time are both in logarithmic scale, and each plot (D,T)
is such that T is the average of the running time of the algorithm over the discriminants ∆ ∈
[D/10, 10D]. We do not plot the running time when more than 50% of the executions were
interrupted, since the corresponding value is no longer meaningful.

Acknowledgements. I would like to thank Karim Belabas and Andreas Enge for helpful
discussions and careful reading of early versions of this paper. I also want to thank an anony-
mous referee many comments and corrections and for suggesting a deterministic algorithm for
computing a local generator and Pierre Lezowski for explaining to me Euclidean algorithms
over matrix rings.

References

1. E. Bach. Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), no. 191,
355–380.

2. J.-F. Biasse and C. Fieker. A polynomial time algorithm for computing the HNF of a module over
the integers of a number field. 37th International Symposium on Symbolic and Algebraic Computation
(ISSAC 2012).

3. W. Bosma, J. Cannon and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic
Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

4. J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic
number fields. Séminaire de Théorie des Nombres, Paris 1988–1989, 27–41, Progr. Math., 91, Birkhäuser
Boston, Boston, MA, 1990.

5. L. Dembélé and J. Voight. Explicit methods for Hilbert modular forms. Elliptic curves, Hilbert modular
forms and Galois deformations, 135–198, Birkhäuser, Basel, 2013.

6. A. Granville. Smooth numbers: computational number theory and beyond. Algorithmic number theory:
lattices, number fields, curves and cryptography, 267–323, Math. Sci. Res. Inst. Publ., 44, Cambridge Univ.
Press, Cambridge, 2008.

THE PRINCIPAL IDEAL PROBLEM IN QUATERNION ALGEBRAS Page 19 of 19

7. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of class groups.
J. Amer. Math. Soc. 2 (1989), no. 4, 837–850.

8. W. M. Kantor and A. Lubotzky. The probability of generating a finite classical group. Geom. Dedicata
36 (1990), no. 1, 67–87.

9. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including
a complexity analysis. Math. Comp., 44(170):463–471, 1985.

10. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, STOC ’83, New York, NY, USA, 1983.
ACM.

11. S. Katok. Fuchsian groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL,
1992.

12. M. Kirschmer and J. Voight. Algorithmic enumeration of ideal classes for quaternion orders. SIAM
J. Comput., 39(5):1714–1747, 2010.

13. J. Klüners and S. Pauli. Computing residue class rings and Picard groups of orders. J. Algebra 292
(2005), no. 1, 47–64.

14. C. Maclachlan and A. W. Reid. The arithmetic of hyperbolic 3-manifolds. Graduate Texts in
Mathematics, 219. Springer-Verlag, New York, 2003.

15. I. N. Sanov. Euclid’s algorithm and one-sided prime factorization for matrix rings. Sibirsk. Mat. Ž. 8 1967
846–852.

16. J.-P. Serre. Trees. Translated from the French original by John Stillwell. Corrected 2nd printing of the
1980 English translation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.

17. M.-F. Vignéras. Arithmétique des algèbres de quaternions (French). Lecture notes in Mathematics,
Vol. 800. Springer, Berlin, 1980.

18. J. Voight. Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux, 21(2):469–
491, 2009.

19. J. Voight. The arithmetic of quaternion algebras. In preparation. Accessible from the url
http://www.math.dartmouth.edu/ jvoight/research.html#books.

20. U. Vollmer. An accelerated Buchmann algorithm for regulator computation in real quadratic fields.
Algorithmic number theory (Sydney, 2002), 148–162, Lecture Notes in Comput. Sci., 2369, Springer, Berlin,
2002.

Aurel Page
Univ. Bordeaux, IMB, UMR 5251,
F-33400 Talence, France.

aurel.page@math.u-bordeaux1.fr

CNRS, IMB, UMR 5251,
F-33400 Talence, France.

INRIA,
F-33400 Talence, France.

