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Abstract—This paper introduces the new concept of discrimi-

native autoencoders. In contrast with the standard autoencoders
– which are artificial neural networks used to learn compressed
representation for a set of data – discriminative autoencoders aim
at learning low-dimensional discriminant encodings using two
classes of data (denoted such as the positive and the negative
classes). More precisely, the discriminative autoencoders build
a latent space (manifold) under the constraint that the positive
data should be better reconstructed than the negative data. It can
therefore be seen as a generative model of the discriminative data
and hence can be used favorably in classification tasks. This new
representation is validated on a target detection task, on which the
discriminative autoencoders not only give better results than the
standard autoencoders but are also competitive when compared
to standard classifiers such as the Support Vector Machine.

I. INTRODUCTION

This paper addresses the problem of the detection of small
targets in aerial images, a task commonly referred as Automatic
Target Recognition (ATR). Typical images illustrating this task
can be seen from Fig. 1. This is an old – yet unsolved –
computer vision task. This task is complex and challenging
not only because of the smallness of objects but also because
of illumination and color changes, pose differences or occlu-
sions. However, this task is important and involved in many
applications such as visual surveillance, safety or protection.

Despite the fact that object detection has received a
lot of attention during the last 5 years (e.g. [1], [2]), our
problem differs from these recent works for several reasons.
First, representing small targets is difficult: indeed, the afore
mentioned recent approaches rely on the use of accurate
descriptors capturing fine discriminating details of the objects
(e.g. the Dalal and Triggs’s HOG descriptor for pedestrian
detection [3]) and/or on the use of part-based models [4].
These descriptors and models can hardly be used for as small
as e.g. 20 pixel-wide objects. Secondly, it is usually difficult to
obtain large enough training sets as it is expensive to collect
and annotate aerial images. Thirdly, image backgrounds (i.e.
the pixels surrounding the targets) are usually not correlated
with the objects themselves: vehicles can be on a roads, fields
etc. Finally, in some cases, vehicles can even be camouflaged
and cannot be distinguished easily from the background.

Interestingly, while target’s appearance usually belongs to
a high dimensional space – e.g. a 20×20 pixel targets lies
in a 400-d space – only a few parameters (often called the
latent variables) are necessary to explain their appearances.

Fig. 1. Typical images for automatic target recognition, from the VeDAI
Dataset.

Such parameters can be, for example, the 3D pose or the
illumination. Furthermore, it has been shown in the past
that manifolds are good candidates to represent small size
objects for which distinct features can hardly be extracted
([5], [6], [7]). Indeed, they allow to represent the high-
dimensional manifolds containing the data by low-dimensional
representational space. Supporting this assumption, the work
of Zhang [6] shows that images of 3D objects seen from
different view-points can be represented as points on a low-
dimensional manifold. Different works used manifold learning
as a generative model, such as the famous work of Pentland,
based on linear manifolds obtained by Principal Component
Analysis [5], or the work of Feraud et al. [7] based on non-
linear manifold learning.

However, one strong limitation of these manifold-based
approaches is that, while they accurately model object’s ap-
pearance, they do not focus on the discriminative informa-
tion, contrarily to state-of-the-art approaches using boosting
[8], Support Vector Machines (SVM) [9] or neural networks
(NN) [10]. Once the manifold is learned, hence constituting a
generative model of the data, the discriminant information is
irremediably lost. This is what motivates this paper. Indeed,



this paper proposes a new type of autoencoders denoted as
discriminative autoencoders which uses an autoencoder to
build a generative model of the discriminative information.
In contrast with the standard autoencoders, our discriminative
autoencoders learn a manifold which is by construction good
at reconstructing the targets while the backgrounds are poorly
reconstructed. It opens the door to very simple classification
frameworks in which the reconstruction error can be used as
a natural, simple and efficient way to classify image windows
in a sliding window framework.

Experiments on a dataset including vehicles in aerial im-
ages (the VeDAI dataset) show that the proposed approach
is not only better than the standard autoencoders but also
performs better than discriminative classifiers such as the SVM
classifiers.

The rest of the paper is as follows: we first introduce
the related works in Section II, we present the discriminative
autoencoders in Section III, and, finally, give the experimental
validation of the proposed approach in Section IV.

II. RELATED WORKS

Even if target detection has a long history in the computer
vision literature, the recent literature on object detection fo-
cuses mainly on the detection of large objects in consumer
images. Most of the techniques are based on the sliding win-
dows framework, combining descriptors, such as Histogram of
Oriented Gradient [3] or Haar Wavelets [11], with powerful
discriminative classifier, such as boosting [8] or SVM [9].
Many improvements have been proposed to enhance these
techniques e.g. new kernels [12] or part-based models [4].

More directly related to our problem, some approaches
have been specifically designed for the detection of vehicles.
In [13], Zhao and Nevatia pose car detection as a 3D object
recognition problem, to account for the variation in viewpoint
and shadow. Their experiments show promising results on
challenging images, but the cars that are not on roads do not
seem to be well detected. Eikvil et al. [14] use several different
features combined with Linear Discriminant Analysis [15].
A segmentation step, followed by a two-stages classifier is
used. Their work relies on the availability of multispectral
and panchromatic images, and on the knowledge of the road
network. Despite the authors’ promising results, the vehicles
can be detected only because they are supposed to be on roads.
In [16], Stilla et al. propose several algorithms adapted to
the different sensors they use (color, thermal infrared, radar).
They also build local and global features from a 3D model,
and use the context as well. [17] reports interesting vehicle
detection results, obtained by using large and rich sets of
application specific image descriptors. The features are based
on several geometric and color attributes representative of the
vehicles, and perform a Partial Least Square analysis on them.
They compare their approach to HOG-SVM-like classifiers
[3], obtaining similar performance. Other works address the
detection of small vehicles such as [14], [18]. However all of
them assume that the vehicles are located on roads, to make the
detection easier, and cannot be used in our context. Finally, it
worths noting that none of their experiments can be reproduced

Fig. 2. Manifolds: vectors of the original Euclidean space H belong to a
manifold spanned by the subspace E. f is a mapping function, giving the
correspondence between a point in the manifold M in the original space and
its projection in the subspace. f−1 is its inverse, going from E to M.

because neither the protocols nor the datasets have been made
publicly available.

There are very few papers specifically addressing the
detection of small objects. These papers are often based on
the detection of salient regions. In this case, the objects to
be detected are defined as the regions of the image which
do not have the same statistics as the background e.g. [19],
[20]. Among the rare papers which tried to model small
targets explicitly, we can mention the work of [21], which
– in addition to introducing a new dataset of 36 × 18 pixels
pedestrian images – has shown that good performance can be
obtained by combining standard features such as Haar wavelets
or HOG features with SVM/boosting classifiers [22].

Manifolds have been successfully used to model object’s
appearance. A manifold is a subspace embedded in a higher
dimension space which can be locally approximated by an
Euclidean subspace, denoted as the latent space. The geodesic
distances, which are the shortest paths between two points
inside a manifold, are locally preserved in the latent space.
Fig. 2 gives an illustration by showing the relationship between
the manifold (E) and the Euclidean space (H). A manifold
can be learned through different ways. The simplest methods
are the linear ones e.g. Linear Discriminant Analysis [15],
or the simple Principal Components Analysis. Regarding non
linear methods, some of them are based on the conservation of
geodesic distances such as Isomap [23]. Local Linear Embed-
ding [24] and its variants learn linear local approximations
of the manifold. Other approaches learn the manifold in a
global way, such as the Maximum Variant Unfolding [25],
or autoencoders [26]. It worths pointing out that most of these
algorithms have been designed to visualize high-dimensional
data in 2D, and thus only give the mapping f (see figure 2),
but not its inverse (required by our approach for the detection
task, as explained later). Interestingly, Principal Components
Analysis (and its variants) and autoencoders can be used to
compute both f and f−1.

Manifold learning has already been used by several authors
to address detection tasks. In [5], Pentland introduced the
well known eigenfaces, using Principal Component Analysis
to build linear face manifolds used for face detection. It has
also been applied later to hand detection in [27]. In the same
spirit, [28] uses PCA for object detection, by modeling the
background and the objects as linear manifolds. Interesting
results are reported on good quality car and pedestrian images,



Fig. 3. Illustration of the concept of distance to the manifold. Let Xs be a
vector and X′

s
= f−1◦f(Xs) is its projection on the latent space. ||X′

s
−Xs||

is referred as the distance to the manifold. f goes from H to E, and f−1

goes from E to M – which is included in H.

for high dimensional manifolds. In [7], the authors use autoen-
coders to build face manifolds for face detection, but the false
alarm rate is high, probably because the background model
can not be learned with such a model. In [29], the authors
counter this effect by using a distinct background model.

Our approach builds on these recent works by using one of
the best current image representations (HOG) combined with
a manifold learning approach. The contribution of the paper
lies in the new framework allowing to learn discriminative
autoencoders. As far as we know, this is the first time such a
model is proposed.

III. DISCRIMINATIVE AUTOENCODER

Before presenting the proposed discriminative autoen-
coders, we start by explaining how manifolds can be used
as classifiers, and how to learn manifolds with autoencoders.

A. Manifold as a generative model

Let H denote the input space and x ∈ H a visual signature
(also called visual feature) extracted from an image. We
remind that building a Riemannian manifold M representative
of the visual signatures is equivalent to finding a function f ,
such as:

∀x ∈ M, ∃!x̄ ∈ Rn, x̄ = f(x) (1)

f is called the embedding of M, and is an isometric function.

Obviously, if x lies on the manifold, f−1 ◦ f(x) = x.
f−1 ◦ f projects any point of the input space on the manifold
M. By denoting PM = f−1 ◦ f , we can define the distance
to the manifold by:

DM(x) = ||x− PM(x)|| (2)

where ||x|| represent the Euclidean norm of x. The principle
of this projection is illustrated by Fig. 3. This distance can then
be used to model a category, as the closer to the manifold a
vector is, the more likely it belongs to the category.

B. Autoencoder

Autoencoders are symmetrical neural networks, which
learn the identity function under constraints. A typical simple
autoencoder is presented Fig. 4, but more complex architec-
tures can be used. One neuron from the layer i is connected
to all the neurons of layer i + 1, and only to these neurons.

Fig. 4. Let H be the input space and E the latent space. It is an illustration
of the minimal autoencoder, which is made of 3 layers.

We denote as Wij the matrix of weights connecting the layer
i and the layer j. The layers are numbered from 0 (input)
to N (middle layer) and then back from N (middle layer) to
0 (output), as shown Fig. 4. As the network is symmetric,
dimension(Wji) = dimension(WT

ij ). Each layer j has an

output r(x), fully defined by the layer input x and the weights
matrix:

r(x) = h(Wijx) (3)

h is called the activation function, and is typically the sigmoid
function. When the activation function h is linear for all the
layers, the autoencoder computes a PCA [26]. Contrary to this,
using non-linear h functions allow the network to approximate
any function [30].

Let us denote χ the set of training vectors x. The standard
autoencoder minimizes the following loss function [26]:

L(χ) =
∑

x∈χ

||x− x̃||2, (4)

hence minimizing the reconstruction error. x̃ is the recon-
struction of x given by the autoencoder. The loss is usually
minimized using a stochastic gradient descend, within a back-
propagation framework [31]. f and its inverse are therefore
learned simultaneously. The latent space E is available as the
output of the middle layer. More efficient convergence rates
can be achieved using Restricted Boltzmann Machine [32] and
Contrastive Divergence [33]. The interested reader can see [34]
for further details.

In the context of manifold learning, the network is usually
used to learn f and f only, providing an embedding of data
[34]. In contrast, we learn the full network, which gives the
projection on the manifold PM(x) we are looking for. The
distance from the class (which can be used as a classification
score) can be computed as simply as in Eq. (2).

C. Discriminative autoencoder

In contrast with standard autoencoders, we introduce the
concept of discriminative autoencoders, which use data from
two classes (denoted in the following as χ+, the set of
positive training vectors, and χ− the set of negative ones) and
learn a manifold which is good at reconstructing the data of
the positive class while ensuring that those of the negative
class are pushed away from the manifold. By doing this, we
intend to take advantage of the information carried by negative
examples. Let us denotes as t(x) the label of the example x,



Fig. 5. Hinge Loss. Top: graph of the standard hinge loss. Bottom: the hinge
loss used for metric learning.

with t(x) ∈ {−1, 1} and e(x) the distance of that example
to the manifold with e(x) = ||x− x̃||. We substitute the loss
function given by Eq. 4 by the following one:

Ld(χ
+ ∪ χ−) =

∑

x∈χ+∪χ−

max (0, t(x) · (e(x)− 1)) (5)

which is nothing else than the hinge loss function (see Fig.
5 for an illustration), used in many different classification al-
gorithms such as the SVM. In practice, we use the slightly dif-
ferent version of the standard hinge loss, as proposed by [35] –
the standard one should be Ld =

∑

x∈χ+∪χ−
max(0, 1−t(x) ·

e(x)) – more adapted to our problem as the reconstruction
errors are all positive. In that sense, our problem is closer to
a metric learning task than to a classification task. When the
minimum is reached, positive (resp. negative) examples are
expected to have a reconstruction error lower (resp. greater)
than 1.

To optimize the loss function, we use here again a back-
propagation of the error. First we give the equations of the
autoencoder, which are:

y = h(W10z) and z = k(W01x) (6)

As done in [34], the activation function k is the identity
function, and h is the sigmoid function. To simplify these
equations, let us denote u and v as:

u = W10z and v = W01x (7)

The objective is to estimate the coefficients wki of W01

and W10 by minimizing L(χ+ ∪ χ). The optimum values of
wki verify:

∂L

∂wki

= 0 (8)

which can be solved using a stochastic gradient descend. The
partial derivatives can be written as:

∂L

∂wki

=
∂L

∂ei
·
∂ei

∂yi
·
∂yi

∂ui
·
∂ui

∂wki

(9)

with:

∂ei

∂yi = −1; ∂yi

∂ui = ∂h(ui)
∂ui ; ∂ui

∂wki

= zk (10)

Furthermore, in the case of the sigmoid function:

∂h(ui)

∂ui
= yi · (1− yi) (11)

Up to here, the derivations are close to the classic back-
propagation. Then, by introducing the hinge loss:

∂L

∂ei
=

{

ei if t(x) · (e(x)− 1) > 0
0 otherwise

(12)

we thus obtain the following gradient step:

∆wki = −ηδiz
k (13)

with δi = ei
∂h(ui)
∂ui if t(x) · (e(x)− 1) > 0 and 0 otherwise.

For the hidden layer (we give the derivations for only one
hidden layer, but this is the same with more hidden layers):

∂L

∂wlk

=
∂L

∂zk
·
∂zk

∂vl
·
∂vl

∂wlk

(14)

The two last terms do not change, but the first one becomes:

∂L

∂zk
=

∑

n

en
∂en

∂zk
if t(x) · (e(x)− 1) > 0 (15)

which give us:

∂L

∂zk
=

∑

n

en
∂(xk − h(un))

∂un
·
∂un

∂zk
(16)

= −
∑

n

en
∂(h(un))

∂un
wkn = −

∑

n

δ(n)wkn (17)

The increment is therefore:

∆wlk = −ηδkx
l (18)

with δk = ∂h(vk)
∂vk

∑

n δ(n)wkn if t(x) · (e(x)− 1) > 0 and 0
otherwise. For both increment, η is the learning rate. Different
ways exist to optimize it. As it is not the main subject, the
reader should see [36] for more information.

These equations can be made more robust by adding a
margin w to the equation, t(x) ·(e(x)−1) > 0, thus becoming
t(x) · (e(x) − 1) + w > 0. w is chosen by cross validation.
Finally, the reconstruction error for a new vector x – which
can be used as a classification score – is:

e(x) = ||x− x̃|| (19)

IV. EXPERIMENTS

This section experimentally validates the proposed discrim-
inative autoencoder on the task of small targets detection. We
first introduce the dataset used in our experiments, the VeDAI
(Vehicle Detection in Aerial Imagery) dataset, and then present
our detection pipeline. We finally report the performance of the
discriminative autoencoders and compare it with the perfor-
mances of standard autoencoders and standard discriminative
classifiers. We also compare the proposed detector to the
Deformable Part Model of [4].



TABLE I. RESULTS ON THE VEDAI DATASET

Detector mAP Recall @ 0.01 FPPI Recall @ 0.1 FPPI Recall @ 1 FPPI

Deformable Part Model [4] 60.5±4.2 13.4±6.8 31.4±5.8 74.5±4.5

HOG-SVM (1st stage only) 58.9±3.5 13.2±5.1 30.4±3.9 72.1±4.1

HOG-SVM followed by Standard Autoencoder 30.0± 3.9 1.5±1.6 6.8 ±1.8 39.5± 4.1

HOG-SVM combined with Standard Autoencoder 58.8±3.8 12.9±3.5 34.0 ±4.5 71.8±5.4

HOG-SVM followed by Discriminative Autoencoder 68.0±4.2 21.2±6.9 46.7 ±6.8 78.7±3.4

HOG-SVM combined with Discriminative Autoencoder 69.6±3.4 20.4 ±6.2 49.0±3.6 80.3±3.1

Fig. 6. 100x100 pixels regions centred on cars, extracted from the VeDAI
dataset. Small size, specular reflections, shadows or occlusion make the
detection challenging.

A. VeDAI dataset

We did the experimental validation on a dataset built
to benchmark small targets detection algorithms, the VeDAI
dataset1. It contains a total of 1,210 images (of 1024×1024
pixels, 3 color bands) with various backgrounds and vehicles
(see illustrative images Fig. 1). These images come from the
Utah ARGC website [37], and more precisely from the 2012
HRO 6 inch orthophotography set. The image resolution is
12.5×12.5cm per pixel. The cars have a size around 20×40
pixels. Their detection is challenging because of occlusions,
specular reflections and shadows, as shown by Fig. 6. The
intra-class variation is important. We used a 10-fold cross
validation process: the 1,210 images are split in 10 folds, each
of them containing 134 targets (cars) in 121 different images.
During the evaluation, 9 folds are used for training and the
last for testing. Each fold is used in turn as the test set.

B. Detection pipeline

Our detection pipeline builds on the standard sliding win-
dow framework using manifold learning to score the windows.
All the possible rectangular regions of a given aspect ratio are
evaluated one by one by our object classifier. This is done in
practice by using a multi-scale grid. We used a typical step-size

of 8 pixels and a ratio of 2
1
10 between each scales, such as done

by [4]. As the aspect ratio of vehicles can vary a lot depending
on the orientation, several distinct classifiers are trained. The
aspect ratio clusters are obtained by clustering training image
regions. Only four scales were used as the distance to target is
the same from one image to another. To improve the efficiency,
we adopt a two stage cascade. The first stage is made of
12 linear-SVM classifiers based on HOG features (2 different
orientations × 6 different aspect ratios), while the second stage
re-scores the detections using 12 discriminative autoencoders
(one paired with each SVM classifier). First-stage detectors

1can be downloaded from https://jurie.users.greyc.fr/

are trained using initial training data while those of the second
stage are trained from the hard negative (i.e. the false positive
of the first stage with highest scores) of the training images.
The number of neurons in the autoencoders (with only one
hidden layer) is set by cross validation. During testing, the
12 SVM detectors are run over the entire image and only the
windows with a score over -1.0 are kept. Then, as usually with
sliding-windows, a non-maximum filtering stage is applied. We
use a simple and efficient iterative greedy strategy consisting
in keeping only the windows which have the maximum score
over a disk (which radius is half the window width). We set
the windows so that the selected windows do not overlap
by more than 50 percent. Finally, the selected windows are
re-scored with a standard or discriminative autoencoder. Our
algorithm can virtually use any type of image features as input.
In practice, all the presented experiments are done with HOG.

We also tried to combine the two scores (i.e. the ones of the
first-stage SVM classifiers with the ones of the discriminative
autoencoders). In this case the final score is computed as:

αSautoencoder(x) + (1− α)SSVM (x) (20)

α being fixed by cross validation.

C. Results

We measure the performance of the target detector by the
mean Average Precision (mAP) over the 10 folds, as well
as by the mean detection rate (Recall) at 0.01 false positive
per image (FPPI), 0.1 FPPI and 1 FPPI. The mean average
precision is computed from an 11 points extrapolation of the
precision-recall curve, as done in many detection benchmarks
[1]. The mean and the standard deviation are computed over
the 10 folds. The results are given in Table I. We first observe
that the standard autoencoder (using only positive examples)
does not give good results on its own. Even when combined
with the first-stage SVM, it does not significantly improve
the performance of the SVM alone. On the other hand, the
discriminative autoencoder performs much better than the
standard autoencoder (+38.0 of mAP), but also significantly
better than the standard SVM (+9.1 of mAP), even if it
uses exactly the same training examples. For the different
operating points, the discriminative autoencoder gains +16.3
of recall at 0.1 FPPI, and +6.6 of recall at 1 FPPI compared
to the SVM alone. The large standard deviation of 0.01 FPPI
makes conclusions not reliable, but the observed gain is of
+8.0% on the detection rate. The combination of the score
of the discriminative autoencoder and the one of the SVM
gives slightly better results than the discriminative autoencoder
alone, with a gain of +1.6 of mAP, +1.6 of recall at 1 FPPI
and of +2.3 of recall at 0.1 FPPI. Finally, when compared to
the Deformable Part Model of [4] (we used the latest release



of the author’s code), one of the state-of-the-art detector at
the moment, the gain is of about 10% of mAP. These results
clearly show that not only discriminative autoencoders largely
outperform standard autoencoders but also that it significantly
outperforms linear SVM or DPM detectors, on this small
objects detection task.

V. CONCLUSIONS

This paper introduces the new concept of discriminative
autoencoders, which, in addition to optimizing the recon-
struction of the positive examples (as standard autoencoders
do), push the manifold away from the negative examples. We
also show how such autoencoders can be trained, inspired
by recent metric learning techniques. In the context of small
target detection, where manifold learning is very relevant, we
have shown that the discriminative autoencoders perform much
better that the traditional autoencoders, and offer a significant
gap over other approaches (including the Deformable Part
Model) when it is associated with a linear SVM classifier.
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