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I. TRANSITION MATRICES FOR THE DIFFERENT MODELS

We show in Table I the transition matrices W for the four models of Fig. 1 in the main text. States are numbered
from 1 to 2N in the following way (the unbound state U is omitted as it is an absorbing state). The initially bound
protein has N possible bound states Ti, where i is the number of attached units of the protein to the DNA. The
’invading’ protein has, for each state of the bound protein, only two possible configurations: on or off (j = 0, 1), at
the site corresponding to where the (i + 1)th unit of the bound protein would be, which we call the ’zipping’ site.
There are thus 2N states, labelled by the index S = 2 i + j − 1, for i = 1, .. . . . N , j = 0, 1. The transition matrices
W have therefore 2N lines and columns. Empty squares correspond to zero entries. For N > 3 the boundaries (two
first and two last lines and columns) are the same, and the 2× 2 central blocks are repeated N − 2 times on the band
diagonal.
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TABLE I: Transition matrices W for the NZ (top, left), Z-NS (top, right), Z-S-NSB (bottom, left), and Z-S-SB (bottom, right)
models with N = 3 binding units. All columns sum up to zero due to probability conservation, except the first two columns as
states 1 (T1) and 2 (R1) may decay into the unbound state U, not represented in the matrices above.

II. UNBINDING RATES VS. CONCENTRATION FOR DIFFERENT ε AND N

In Fig. S1, Fig. S2, and Fig. S3 we show the unbinding rate r as a function of the concentration c for the Z-NS,
Z-S-NSB and Z-S-SB models, for ε = 2, 3 and different sizes N .

III. FIT OF MODEL PARAMETERS FROM EXPERIMENTAL DATA

To fit the Fis-Fis and CueR-CueR data we have proceeded as follows. We have first considered three possible
elementary length a = 0.5, 1 and 2 nm. In Table II we give the elementary time t0 and the unit of concentrations
c0 obtained in the three cases. The experiments give us access to the values of three quantities: the spontaneous
dissociation rate r(0), the order of magnitude of the concentration cR at which replacement dominates over spontaneous
dissociation, and the exchange rate R. We have first fitted the value N of the number of units for the Z-NS and Z-S
models from the leading contribution to R (formulas given in main text), and we have then adjusted N and ε to fit the
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a (nm) 0.5 1 5

t0 (s) 2 10−10 1.6 10−9 2 10−7

c0 (M) 8 1 0.008

TABLE II: Values of the time constant t0 and of the unit of concentration c0 for three different elementary lengths a.

spontaneous dissociation. The order of magnitude of cR, given the fitted N and ε allows us to check the consistency
of the model.

Interestingly we have found that the choice of a does not change the values, at the leading order, of R and cR.
Indeed at the leading order they both depend on the product c0 × t0, which is independent of the value of a. More
precisely, using the experimental values for RFis and RCueR, we have found:

NZ−NS
Fis ≈ − log2 (c0 t0RFis) = 13.3 , (1)

and

NZ−S−NSB
CueR ≈ (co toRCueR)

−1 − 1 = 21 . (2)

Given the approximate values of N above the concentration at which replacement start to dominates is given by

(cR)Z−NSFis ≈ c0 t0 rFis(0) 2N ≈ 1 nM , (3)

and

(cR)Z−S−NSBCueR ≈ c0 t0 rCueR(0) (N + 1) ≈ 17 nM . (4)

Then we have used the spontaneous dissociation rate r(0) to estimate, given N , the order of magnitude of the binding
evergy ε through

ε ≈ − log(t0 r(0))/N , (5)

for both Fis and CueR data. Note that the Z-NS model is not compatible with CueR data because we would
obtain NZ−NS

CueR = 4, which would corresponds to large binding energies of ε = 5.7, 5.2, 4 kB T , for, respectively, a =

0.5, 1, 5 nm. Conversely, Z-S-NSB is not compatible with Fis data because we would obtain NZ−S−NSB
Fis = 10, 000.

We have then tuned the value of NZ−S−NSB
CueR and NZ−NS

Fis to precisely fit R when the whole expression of the
exchange rate is taken into account (see Eqs. (8) and (9) of main text), in particular the multiplicative factors in

1− ρ = 1− e−ε. The final value for NZ−S−NSB
CueR ranges from 13 to 16 depending on the value of a (see Fig. 3 of the

main text). There is less variability in the value of NZ−NS
Fis , due to the exponential dependence of R upon N . The

best fit is obtained in the three cases for N = 14; the best value for a is a = 5 nm. Finally, once N is fixed, a fine
tuning of ε is easily done to reproduce the spontaneous dissociation rate.

We show in Fig. S4 the fits of the Fis-Fis, Fis-Hu, and CueR-CuerR experiments presented and cited in the main
text. In each panel three fits are presented, corresponding to the three values of the elementary length a = 0.5, 1, 5 nm.
The values of N and ε are given in the panels. The slope of the curves are the exchange constants R:

• The experimental Fis-Fis exchange constant RFis−Fis = 6 104 ± 3 103 M−1 s−1 has to be compared with
RZ−NSFis−Fis = 4.9 104, 5.1 104, 6 104 M−1 s−1 for, respectively, a = 0.5, 1, 5 nm. The replacement concentration

is (cR)Z−NSFis = 2, 2, 1.6 nM for a = 0.5, 1, 5 nm.

• The experimental Fis-Hu exchange constant RFis−Hu = 2.7 103 ± 5 102 M−1 s−1 has to be compared with
RZ−NSFis−Hu = 2.3 103, 2.6 103, 4 103 M−1 s−1 for, respectively, a = 0.5, 1, 5 nm. The replacement concentration is

(cR)Z−NSFis−Hu = 400, 370, 180 nM for a = 0.5, 1, 5 nm.

• The experimental CueR-CueR exchange constant is RCueR−CueR = 2.8 107 M−1 s−1 has to be compared with
RZ−S−NSBCueR−CueR = 2.8 107, 2.9 107, 3.1 107 M−1 s−1 for, respectively, a = 0.5, 1, 5 nm. We obtain the replacement
concentration (cR)CueR−CueR = 19, 16, 17 nM for a = 0.5, 1, 5 nm.
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IV. SCALING OF THE REPLACEMENT RATE R WITH N

We start by writing the average unbinding time as

tunb(c) = (1− PR) tunb(0) + PR tunb−R , (6)

where PR is the probability that unbinding occurs (at least partially) through the replacement pathway, tunb(0) =
1/r(0) is the average unbinding time through the thermal pathway only, and tunb−R is the average unbinding time
through the replacement pathway.

In the limit of small solution-phase protein concentrations, i.e. for small rates c, we expect PR to scale linearly with
c, PR ' pR c, and, thus, that PR � 1. In addition, as unbinding through replacement is much faster than through
thermal activation alone, we have tunb−R � tunb(0). Taking the inverse of (6) we obtain

r(c) =
1

tunb(c)
' r(0) + pR c r(0) . (7)

Comparing with Eq. (3) in the main text we see that the replacement rate R coincides with

R = pR r(0) . (8)

To calculate pR, which corresponds to the linear term in the expansion of PR in powers of c, we consider ’replacement’
paths with only one binding event for the invader. The scaling behavior of pR with N can be simply guessed from the
most likely scenario leading to dissociation through the replacement pathway, see main text and blue configurations
sketched in Fig. 1 therein. Below, we consider all contributions to pR to find back the exact expression for R given in
Eqs. (7), (8) and (9) in the main text for the three Z- kinetic models; the unbinding time for the NZ model at small
c is not significantly larger than the thermal rate, and the replacement rate for this model, given by Eq. (6) in the
main text, cannot be exactly found back within this approach (though the asymptotic dependence with N is easy to
determine, see main text).

We will use the following result, true for the thermal pathway alone (c = 0): the average time spent in state Ti
(before the protein eventually unbinds) is

τi = (1− ρ) ρN−i
(
1 +O(ρN )

)
/r(0) , (9)

where r(0) = (1− ρ)2ρN to the leading order in powers of ρ, see main text. The sum of τi over all states i = 1, ..., N
coincides with our expression for the thermal unbinding time, tunb(0) = 1/r(0).

A. Z-NS model

One possible scenario of unbinding due to replacement, considered in the main text, consists in reaching state RN
from state TN . As the average time spent in state TN is τN = (1−ρ)/r(0) the probability that the invader eventually
binds is, to the lowest order in c, ' c τN . Next, the probability to stay and go all the way up along the alternative
replacement pathway is 2−N , because each transition Ri →Ri−1 has the same rate as the transition Ri →Ti (invader
detachment). The contribution of this scenario to the replacement rate is

τN 2−N r(0) = (1− ρ) 2−N (10)

Other replacement scenarios, with a single invader-binding event, are as follows: the system spends time in the thermal
pathway, undergoes the transition Tk →Rk at some level (number of bound units) k, remains in the replacement
pathway until level `(≤ k), and goes back to the thermal pathway through T` →R`, until thermal binding occurs (the
scenario above corresponds to the case k = N , without back transition to the thermal pathway). The probability of
climbing (without leaving) the replacement pathway from Tk to T` is 2−(k−`).

We then need to calculate the probability q` that the system reaches back the thermal pathway in state T`. Let
us start by estimating the probability µ` that, once in state `, the protein will unbind quickly, i.e. in a time much
lower than the average time tunb in the thermal pathway. The following physical picture is useful to compute µ`. A
particle is undergoing a biased random random walk on discrete sites i ≥ 0 along the 1D semi-infinite line; i = 0
is an absorbing site. The random walk is biased by a force F pushing the particle towards the right (large i), with
F = − log ρ. µ` is the probability that, starting from state i = `, the particle with reach the absorbing state, rather
than being attracted towards i→∞. We obviously have

µ` =
1

1 + ρ
µ`+1 +

ρ

1 + ρ
µ`−1 , ∀` = 2, . . . , N , (11)
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with the boundary conditions µ0 = 1 and µ∞ = 0, which gives

µ` = ρ` , (12)

for all ` ≥ 0. Formally speaking, µ` is the probability that the system reaches the U state in a finite time (when
N →∞), conditioned to the starting state, T`. The probability q` that the system reaches back the thermal pathway
in state T` conditioned to fast unbinding is, according to Bayes’ rule,

q` =
µ`∑
i≥0 µi

= (1− ρ) ρ` . (13)

The sum of the contributions corresponding to all pairs (k, `) gives the replacement rate

RZ−NS =
∑

`≤k≤N

τk 2−(`−k) q` r(0) = (1− ρ)2
∑

`≤k≤N

ρN−k+` 2−(k−`) (14)

= (1− ρ)2
∑

0≤m≤N

(N + 1−m) ρN−m 2−m =
(1− ρ)2

(1− 2 ρ)2 2N
, (15)

to the leading order in N , in agreement with Eq. (7) in the main text.

B. Z-S-NSB model

In the Z-S-NSB model the alternative scenario to thermal unbinding starts with a transition TN →RN . Later the
system changes states in the replacement pathway, until unbinding occurs. We need to estimate the probability Q
that this scenario occurs, rather than the systems reaches back state TN from RN , and unbinding occurs through the
thermal pathway. Let µi,N , with 1 ≤ i ≤ N the probability that the system never leaves the replacement pathway
(and unbinding eventually occurs), starting from state Ti; we want to calculate Q = µN,N . According to Fig. 1 in
the main text (bottom & left panel), the rates of the forward (Ri →Ri−1) and backward (Ri →Ri+1) transitions are
identical (away from the boundaries). Hence the µi,N s fulfill the recurrence equations

µi,N =
1

2
(µi−1,N + µi+1,N ) , ∀i = 2, . . . , N . (16)

The above equation can be extended to the states i = N and i = 1, with the prescriptions µN+1,N ≡ 0 (which
expresses the fact that the system cannot re-enter the replacement pathway after having left it), and µ0,N ≡= 1
(where the subscript 0 stand for the unbound state U here). The solution to these equations is

µi,N =
N + 1− i
N + 1

. (17)

We deduce that the replacement rate is given by

RZ−S−NSB = τN µN,N r(0) =
1− ρ
N + 1

, (18)

in perfect agreement with Eq. (8) in the main text.

C. Z-S-SB model

The replacement rate for the Z-S-SB model is calculated in the same way as for the Z-S-NSB model. The only
differences are: the replacement pathway is entered through the TN−1 →RN−1 transition, and the ’length’ (number
of states) of this replacement pathway is now N − 1 instead of N . We readily obtain, using (17),

RZ−S−SB = τN−1 µN−1,N−1 r(0) =
ρ(1− ρ)

N
, (19)

in agreement with Eq. (9) in the main text.



5

V. EFFECT OF SALT ON PROTEIN-DNA INTERACTION KINETICS

It should be noted that small ions (salts) could be considered to act as ‘invading monomers’ in DNA-ligand binding,
with a net super-cooperative effect on a ligand’s dissociation constant. Binding constants for positively charged ligands
to nucleic acid chains have indeed been shown [1, 2] to have a power-law dependence on the salt concentration in
solution, where the exponent is proportional to the number of counterions released by the binding. This behavior
arises from the entropy associated with the release of counterions on ligand binding [1, 2]. We note that in the
DNA-DNA interaction study of [2] ions are likely being exchanged from the backbones, outside the interior of the
duplex where the interactions between helices occur. It would be quite interesting from the point of view of this paper
to study how salt affects off-rates in cases where ions are released from a binding site upon complex formation; the
theory of this paper most relevant to this case would be the NZ model.

[1] D. P. Mascot, T. Lohman. Proc. Natl. Acad. Sci. USA 87 , 3142 (1990).
[2] N. F. Dupuis, E. D. Holmstrom, D. J. Nesbitt. Biophys. J. 105 , 756 (2013).
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FIG. S1: Unbinding rate as a function of the concentration for the Z-NS model, and for different protein sizes N ranging from
6 to 14, and monomer binding energy ε = 2 and 3 (in units of kBT ) in log-log scale. Full lines: numerical calculation of the
unbinding rate. Dotted lines: linear approximations to the unbinding rate, see main text.
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FIG. S2: Unbinding rate as a function of the concentration for the Z-S-NSB model, and for different protein sizes N ranging
from 6 to 14, and monomer binding energy ε = 2 and 3 (in units of kBT ) in log-log scale. Full lines: numerical calculation of
the unbinding rate. Dotted lines: linear approximations to the unbinding rate, see main text.
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FIG. S3: Unbinding rate as a function of the concentration for the Z-S-SB model, and for different protein sizes N ranging
from 6 to 14, and monomer binding energy ε = 2 and 3 (in units of kBT ) in log-log scale. Full lines: numerical calculation of
the unbinding rate. Dotted lines: linear approximations to the unbinding rate, see main text.
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FIG. S4: Fit of the experimental data on concentration dependent dissociation rates of Fis proteins bounded on DNA as a
function of concentration of Fis proteins (top) and Hu proteins (middle) in solution with the Z-NS model. Bottom: fit of
CueR dissociation rates as a function of CueR concentration in solution with the Z-S-NSB model. See text for details on the
parameter values.


