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Introduction

Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. This is particularly the case for low-income countries. The influence of climate variability on health in Africa is widely recognised [START_REF] Thomson | Malaria early warnings based on seasonal climate forecasts from multi-model ensembles[END_REF] and the economic development in Africa is severely affected by human and animal diseases [START_REF] Sachs | The economic and social burden of malaria[END_REF]. The most important diseases affecting health are vector borne, such as malaria, Rift Valley fever (RVF) and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least 1 million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa [START_REF] Who | World Malaria Report[END_REF]. Some 12 million of these cases and 155 000 to 310 000 malaria deaths per year are in epidemic areas [START_REF] Worrall | The burden of malaria epidemics and cost-effectiveness of interventions in epidemic situation in Africa[END_REF] for which climate variability is the most important feature. The climate has a large impact on the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the vegetation and the land-surface characteristics. The research teams involved in AMMA mainly focused on RVF and malaria in West Africa.

RVF is an acute, fever-causing viral disease that affects domestic animals and humans. The RVF virus belongs to the genus Phlebovirus in the family Bunyaviridae. This is transmitted to vertebrate hosts by infected floodwater mosquitoes, namely species of Aedes and Culex. Generally, Aedes vector abundance peaks in phase with the rainy season (August), whereas the Culex population emerges 2 months later (October). The RVF virus affects livestock (cattle, goats, sheep and camels) and causes high mortality and abortions in pregnant females. Humans can be infected by direct contact or inhalation of viraemic animal blood during slaughtering. The human symptoms are characterised by the onset of high fever, encephalitis, haemorrhagic ocular disease and this can sometimes lead to death [START_REF] Meegan | Rift Valley fever[END_REF].

Malaria is caused by a parasite (protozoan Plasmodium) that is carried by the female mosquito from the Anopheles spp. The first symptoms consist of fever, pain, chills and aches, and sometimes nausea and diarrhoea that can lead to more serious health issues. Infection with the most severe form of the parasite, Plasmodium falciparum, if not promptly treated, may lead to kidney failure, seizures, mental confusion, coma and death. Epidemics of the disease can be triggered by factors affecting human, vector or parasite populations including abnormal meteorological conditions, changes in anti-malarial programs, population movement and environmental changes [START_REF] Nájera | Malaria epidemics: detection and control, forecasting and prevention[END_REF]. The mosquitoes' breeding sites and the lifecycle of the malaria parasite are both strongly connected to climate, especially rainfall, humidity and temperature.

The key findings about RVF and malaria diseases that have been raised in AMMA are highlighted in the following sections. This research is carried out using both field and modelling experiments. The observation and modelled datasets and the methodology are described in Section 2, while results are shown in Section 3. Discussion and perspectives follow in Section 4.

Method

Mosquito and malaria parasite samples were collected every 2 months in two villages (Banizoumbou and Zindarou, Niger). Standard sampling procedures were followed after classical guidelines (WHO). Mosquitoes were sampled by landing and spray-catches and CDC light-traps, parasites were collected from blood finger pricks of asymptomatic inhabitants on thick and thin malaria slides, Giemsa coloured and microscopically. This cross-sectional survey began in 2003 with WHO funds, was completed in 2005 by the AMMA project and received the acceptance of the National Ethics Committee of Niger.

In order to model and map both diseases, different climate datasets are used. Daily rainfall is estimated using mixed satellite and rain gauge observations from the Global Precipitation Climatology Project (GPCP) dataset [START_REF] Huffman | Global precipitation at onedegree daily resolution from multi-satellite observations[END_REF]. Rainfall and temperature from NCEP [START_REF] Kalnay | The NCEP/NCAR 40-year reanalysis project[END_REF] and ERAIN-TERIM [START_REF] Uppala | Towards a climate data assimilation system: Status update of ERA-Interim[END_REF] reanalysis are also used to drive the analysis. Regional climate model (RCM) simulations carried out within the ENSEMBLES project framework are employed (Van Der Linden et al., 2009). Eight RCMs are employed: KNMI-RACMO2.2b, SMHIRCA, DMI-HIRHAM, METNO-HIRHAM, METO-HC HadRM3.0, GKSS-CCLM4.8, MPI-REMO and ICTP-REGCM3. Two types of simulations performed for the African domain (50 km 2 resolution) are examined. The first ensemble is driven at the boundaries by the ERAINTERIM reanalysis. The second ensemble is driven at the boundaries by future projections from two different General Circulation Models (GCMs) which are forced by the SRESA1B emission scenario (according to this plan: http://ensemblesrt3.dmi.dk/091 211 AMMA-Matrix.pdf).

The Liverpool Malaria Model (LMM) is a dynamic model driven by daily rainfall and temperature to simulate malaria incidence in the human population [START_REF] Hoshen | A weather-driven model of malaria transmission[END_REF][START_REF] Morse | A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model[END_REF]. The mosquito population is simulated using larval and adult stages, with the number of eggs deposited into breeding sites and the larval mortality rate depending on the previous 10 days' rainfall. The adult mosquito (1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007). The number of RVF risk events is defined by a dry spell (10 consecutive days with total rainfall below 1 mm) followed by a convective event (high precipitation defined by 1 or 2 days following the dry spell above the 90th percentile) occurring during the late rainy season (SON). The total number of RVF risk events is then rescaled to range between 0 and 100% to define the risk. The dotted, crossed and filled black areas depict animal host densities (cattle + buffalo + sheep + goats) above 1, 10 and 100 per km 2 (FAO, 2005).

mortality rate and the egg-laying/biting (gonotrophic) cycle depend on temperature. Then, the process of parasite transmission between humans and mosquitoes is modelled, with temperature dependencies in the rate of development of the parasite within the mosquito (sporogonic cycle) and the mosquito biting rate. Both cycles evolve as a function of the number of 'degree days' above a specific temperature threshold. The gonotrophic (sporogonic) cycle takes approximately 37 (111) degree days with a threshold of 9 • C(18 • C). The model does not have immunity; therefore, the data from non-epidemic regions is only for non-immune members of the population.

A methodology to track the climatic events that can favour RVF risk over West Africa has been developed. These events are defined as a rainfall peak (the 90th percentile of rainfall distribution, about 10 mm) which follows a dry spell (10 consecutive days with an average below 1 mm) and this is done for the late rainy season [September-October-November (SON)]. The total number of these events is then rescaled between 

Results

Rift Valley fever

The work carried out in AMMA highlighted that intraseasonal rainfall variability is shown to be a key factor in generating high RVF risk over Senegal [START_REF] Ndione | Environnement et épidémiologie de la fièvre de la vallée du Rift (FVR) dans le bassin inférieur du fleuve Sénégal[END_REF][START_REF] Ndione | Variabilitéi n t r asaisonnière de la Pluviométrie et émergence de la fièvre de la vallée du rift (FVR) dans la vallée du fleuve Sénégal : nouvelles considérations[END_REF]. In these studies, observed RVF outbreaks are related to a long dry spell which is followed by an intense rainfall event during the late rainy season (SON). The Culex mosquito eggs are then rehydrated in the ponds; this leads to massive hatching in SON and unfortunately coincides with the proximity of available hosts as the farmers move the cattle near the ponds to water them during this period of the year. These climatic features have been observed for different pond regions over Senegal during the RVF outbreaks in 1993, 1994, 1999 and 2002. Based on these results for Senegal, we extrapolated the RVF risk over West Africa (Section 2). Figure 1(a) and (b) depict the derived mean RVF risk based on ERAIN-TERIM rainfall for the period 1990-2007 and GPCP rainfall for the period 1996-2007, respectively. High RVF risk is highlighted over northern Senegal, southern Mauritania and central/northern Mali. If GPCP is used as the reference rainfall dataset (Figure 1(b)), the RVF risk spreads over a larger area including the Côte d'Ivoire and Nigeria. Over northern Senegal, high RVF risk is reproduced by the ERAINTERIM reanalysis during the observed RVF outbreaks in 1993, 1994 and 2002; and GPCP highlights the highest RVF risk for 1999 and 2002 (not shown). The differences between ERAINTERIM and GPCP arise from different sources. The spatial resolution and the time period availability differ for these datasets. Moreover, ERAINTERIM is based on data assimilation, whereas GPCP rainfall is a reconstruction based on satellite and rain gauge measurements. ERAINTERIM overestimates the number of rainy days near the Guinean coast for the late rainy season with respect to GPCP (not shown). Climatic factors are important, but if the livestock is not in contact with the infected mosquitoes, nothing happens. High animal densities are highlighted over northern Senegal, the southern boundary of Mauritania, central Mali and northern and coastal Nigeria (Figure 1). The superposition between the host availability and the climatic risk suggests that the northern part of Senegal and southern Mauritania are the RVF hot spots in West Africa. However, this method of defining the RVF risk based on coarse climate datasets is not relevant for regional-local scale applications.

Another methodology based on field measurements and high-spatial resolution (10 m) satellite imagery from SPOT-5 has been developed to highlight RVF hot spots at the regional scale over northern Senegal during the 2003 rainy season [START_REF] Lacaux | Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley fever epidemics in Senegal[END_REF][START_REF] Tourre | Mapping of zones potentially occupied by mosquitoes (ZPOMs) Aedes vexans and Culex poicipiles, the main vectors of Rift Valley fever in Senegal[END_REF][START_REF] Vignolles | Rift Valley fever in a zone potentially ocupied by Aedes vexans in Senegal : dynamics and risk mapping[END_REF]. This study undertaken in the Barkedji area of the Ferlo region in Senegal, during the 2003 rainy season, is based on the analysis of the interaction between the various variables associated with RVF such as the mosquito vector, available hosts and rainfall distribution. The abundance of RVF vectors is directly linked to pond dynamics and their vegetation cover and turbidity degree. The pond dynamics is associated with the spatio-temporal variability of rainfall events [START_REF] Ndione | Environnement et épidémiologie de la fièvre de la vallée du Rift (FVR) dans le bassin inférieur du fleuve Sénégal[END_REF]. So first, ponds considered as breeding sites were identified by remote sensing, using a high-spatial resolution SPOT-5 satellite image. A decision-tree conditional classifier based on the normalised difference pond index (NDPI) has been used to locate the temporary ponds [START_REF] Lacaux | Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley fever epidemics in Senegal[END_REF]. Then, additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in situ entomological (embryogenesis, aggressiveness and flying range) and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since 'Aedes vexans productive rainfall events' are dependent on the timing of rainfall for their embryogenesis (6 days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Aedes vexans density was based on the total rainfall amount and pond dynamics. So mapping of detailed zones potentially occupied by mosquitoes (ZPOM) (Figure 2, bottom) was obtained on a daily basis and combined with aggressive temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites (Figure 2,top). As shown in Figure 2 (top), 15% of the fencedin ruminants were never at risk, whilst 60 to 30% of the fenced-in areas exposed the animals to moderate to high risk. This major achievement is meant to contribute to the development of a new operational early warning system (EWS) for the occurrence of RVF vectors over Senegal.

Malaria

Previous work found positive forecast skill for the prediction of epidemic malaria in Botswana [START_REF] Thomson | Malaria early warnings based on seasonal climate forecasts from multi-model ensembles[END_REF] based on multi-model seasonal forecasts, but no such assessment has been carried out for West Africa. Recent results show that the LMM was able to simulate realistic epidemic malaria prediction over West Africa, based on the ENSEMBLES multi-model seasonal forecasts [START_REF] Jones | Skill of ENSEMBLES seasonal reforecasts for epidemic malaria prediction in West Africa[END_REF]. This is true for both low and high malaria categories, the multi-model being the most skilful estimate to forecast malaria incidence. This framework can be applied to operational forecasts in order to provide malaria probabilistic risk estimates at seasonal time scales.

Field experiments carried out within AMMA corroborated the relationship between malaria incidence and climate parameters (rainfall, humidity and temperature) in Kumasi (Ghana). In Banizoumbou (Niger), the total mosquito abundances showed strong seasonal patterns, peaking in August in link with the Sahel water cycle. The inter-annual variability was important and could not be directly related to the annual total rainfall. The differences between the two villages (Zindarou and Banizoumbou) underlined the spatial variability in the Sahel even at short distances (30 km). Local fine-scale models based on hydrology processes found again these between-year and between-village differences [START_REF] Bomblies | A mechanistic approach for accurate simulation of village-scale malaria transmission[END_REF]. The malaria parasite carriage among people showed a seasonal pattern, peaking in October, but the differences between villages was less marked. The simulated mean seasonal cycle of the abundance of infected mosquitoes for this area fits the observed dataset (Figure 3(a)). The maximum is simulated in October as for the observed parasite carriage but the inter-annual variability is not well captured (arising from biases in LMM and the climate datasets but also due to vector control measures led by the Ministry of Health of Niger). Figure 3(b) provides a larger view of rainfall and malaria dynamics , whereas the future pattern (2031-2050) is depicted by the red dots for each model. The epidemic belt is defined for mean incidence above the 1% threshold and when the standard deviation is above 50% of the average. at seasonal time scales over West Africa. The onset of the West African monsoon occurs in July and the rain belt reaches its top northward location (18 • N) in August over the Sahel, followed by a rapid retreat to the south in September. The malaria incidence belt reaches its top northward location (15 • N) in autumn (SON). There is a phase shift between rainfall and malaria incidence seasonality. High malaria incidences are conditioned by the climatic conditions occurring 2 months before. These findings are consistent with the results raised by field observations. However, the LMM underestimates the top northward location of the malaria incidence belt. Other modelling approaches show that the northern epidemic fringe of malaria incidence spreads to 17 • N (Le [START_REF] Sueur | An atlas of malaria in Africa[END_REF].

The simulated annual mean incidence (driven by climate observations and reanalysis) highlights a clear south-north gradient pattern, with minimum incidences reaching the latitude 15 • N (Figure 4(a)-(c)). High incidences show where malaria is endemic (above 70-80%, from central Africa to coastal West Africa), namely where malaria is present all year around and then mainly conditioned by human factors. Then, there is a transition zone (endemic and seasonal malaria regions) where the incidence ranges between 20 and 70%. Low annual incidence values show where malaria is epidemic and seasonal, namely strongly connected to climate variability (between 12 • N and 15 • N). This region is often referred to as the malaria epidemic fringe. The RCMs fairly well simulate the observation-driven incidence pattern (Figure 4(d)-(k)). However, simulated malaria incidence spreads too far north compared to the control runs because the simulated rain belt extends too far north for these RCMs (not shown). The maximum incidence near the coasts of the Gulf of Guinea is generally underestimated by the RCM runs.

Only considering the climatic part of the malaria risk, future projections (2031-2050) highlight a decrease in mean malaria incidence over the northern epidemic fringe in autumn (Figure 5). This is consistent for the KNMI, DMI, METO-HC, MPI and GKSS model projections over the whole domain, whereas it is restricted to the central and eastern (western) part for SMHI (METNOHIRAM). The ICTP run simulates low changes. The change in the incidence variability pattern highlights a meridional dipole pattern (southward shift of the epidemic fringe). This feature is consistent across the different RCM projections (not shown). This is depicted more precisely in Figure 5, where the simulated current climate epidemic belt is compared with its future location. The potential future malaria epidemic belt is slightly shifted southward (from 1 • to 2 • ) with respect to the current climate one. This feature is mainly related to a simulated decrease in the number of rainy days in summer over this area (not shown). Similar future changes are highlighted in another study using the LMM driven by the Remo RCM [START_REF] Malaris | The impact of climate change on malaria risk in Africa[END_REF].

Discussion and perspectives

Hot-spot regions have been highlighted for RVF and malaria over West Africa, based on climatic indicators. Based on large-scale climatic indicators, we showed that northern Senegal and southern Mauritania appear to be critical areas for RVF risk in West Africa. At finer spatial scales, another method has successfully tracked the zone potentially occupied by the RVF mosquitoes over Barkedji (Senegal) in 2003. This method has demonstrated the feasibility of an operational EWS for the occurrence of RVF vectors over Senegal. Simulations performed with the LMM highlighted that the malaria epidemic fringe spreads between the latitudes 12 • N and 15 • N over West Africa. This fringe is strongly connected with climate variability and its northward extension is underestimated by the LMM. Future projections highlight that the malaria incidence may decrease at the northern edge of the Sahel and the potential epidemic belt may be shifted southward in autumn. As the demography is expected to increase in the future over Africa this could lead to significant health problems. However, these results must be interpreted with caution as there are still large biases related to both the disease model and to the RCM projections for the future.

Our knowledge on the links between vector-borne diseases and climate in West Africa has significantly improved during AMMA. We have to ensure that the most important results and the related uncertainties are properly transferred to society through the link of interface experts to stakeholders and policymakers. The experience and collaborations earned within AMMA will be continued in other upcoming projects in order to improve our understanding of the disease burdens in Africa under the threat of climate change.

Figure 1 .

 1 Figure 1. Rift Valley fever risk (%) based on rainfall from (a) the ERAINTERIM reanalysis (1990-2007) and (b) the GPCP(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007). The number of RVF risk events is defined by a dry spell (10 consecutive days with total rainfall below 1 mm) followed by a convective event (high precipitation defined by 1 or 2 days following the dry spell above the 90th percentile) occurring during the late rainy season (SON). The total number of RVF risk events is then rescaled to range between 0 and 100% to define the risk. The dotted, crossed and filled black areas depict animal host densities (cattle + buffalo + sheep + goats) above 1, 10 and 100 per km 2 (FAO, 2005).

Figure 2 .

 2 Figure 2. (Top) Relationships between productive rainfall events and percentage of parks within the ZPOM and with animals under risks. (Bottom) Dynamical ZPOMs and associated risks. Ranked risks from the 2003 summer monsoon are displayed from unlikely (yellow) to high (red). From TRMM data rainfall events, amounts (in mm) producing RVF vectors are given (vertical blue lines). From Vignolles C, Lacaux J-P, Tourre YM, Bigeard G, Ndione JA, Lafaye M. 2009. Rift Valley fever in a zone potentially ocupied by Aedes vexans in Senegal : dynamics and risk mapping. Geospatial Health 3 (2): 211-220. 0 and 100% to define the risk. Animal densities (including cattle, buffalo, sheep and goats) from the FAO archive (FAO, 2005) are then overlaid upon the climatic risk to highlight hot-spot regions.

Figure 3 .

 3 Figure 3. (a) Mean observed number of landing caughtAnopheles gambiae s.s. mosquitoes (solid line) in Banizoumbou (13.32 • N, 2.40 • E), Niger. The dotted lines depict the number of simulated infected mosquitoes (M) as simulated by LMM using daily rainfall and temperature from station measurements (red) and daily rainfall from GPCP combined with daily temperature from ERAINTERIM (black, the closest grid point is considered). (b) Mean seasonal cycle of rainfall (shading) over West Africa (averaged between 16 • W and 16 • E) based on the GPCP data for the period 1996-2007. The mean seasonal cycle of simulated malaria incidence (cases per 100 people) is depicted by the black contours (LMM driven by GPCP rainfall and ERAINTERIM temperature over the same time window). The red (black) vertical dotted line highlights the top northward location of the rainbelt (the malaria incidence belt).

Figure 4 .

 4 Figure 4. Mean annual malaria incidence (cases per 100 people) as simulated by LMM over West Africa for the 1990-2007 period. The LMM control simulation is driven by (a) ERAINTERIM, (b) the NCEP reanalysis and (c) rainfall from GPCP and temperature from ERAINTERIM (the period to compute the mean is 1996-2007 in this case). (d)-(k) LMM is forced by rainfall and temperature from eight RCMs that have been driven by the ERAINTERIM reanalysis at the boundaries (simulations performed within the ENSEMBLES project framework).

Figure 5 .

 5 Figure5. Mean seasonal (SON) future changes of malaria incidence (shading) as simulated by eight RCMs forced by the SRESA1B scenario (simulations performed within the ENSEMBLES project framework). The differences are computed between the time slices 2031-2050 and 1990-2010. The mean seasonal (SON) location of the 'epidemic' fringe is depicted by crosses for the recent climate, whereas the future pattern (2031-2050) is depicted by the red dots for each model. The epidemic belt is defined for mean incidence above the 1% threshold and when the standard deviation is above 50% of the average.
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