
HAL Id: hal-00996090
https://hal.science/hal-00996090v2

Preprint submitted on 14 Oct 2014 (v2), last revised 21 Apr 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Suppression Distance Computation for Hierarchical
Clusterings

François Queyroi, Sergey Kirgizov

To cite this version:
François Queyroi, Sergey Kirgizov. Suppression Distance Computation for Hierarchical Clusterings.
2014. �hal-00996090v2�

https://hal.science/hal-00996090v2
https://hal.archives-ouvertes.fr

Suppression Distance Computation for Hierarchical

Clusterings

François Queyroi∗, Sergey Kirgizov∗

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract

We discuss the computation of the suppression distance between two hierar-
chical clusterings of the same set. It is defined as the minimum number of
elements that have to be removed so the remaining clusterings are equals.
The problem of distance computing was studied by [2] for partitions. We
prove it can be solved in polynomial time in the case of hierarchies as it gives
birth to a class of perfect graphs. We also propose an algorithm based on
recursive maximum assignments.

Keywords: hierarchical partition, clustering, distance, graphs, vertex cover

1. Introduction

Decomposing a set into patterns of interest is a central problem in data
analysis. Evaluating the distance between decompositions is an important
task in this context as it allows to study the behaviour of clustering algo-
rithms or study the evolution of a set of patterns over time. The situation
where the detected patterns do not overlap is called partitions. Measures
based on edit distance [2, 6] or on mutual information [5] can be used to assess
the distance between those objects. In particular, the partition-distance [2]
is used for practical applications in bioinformatic [9].

∗Corresponding author
Email addresses: francois.queyroi@lip6.fr (François Queyroi),

sergey.kirgizov@lip6.fr (Sergey Kirgizov)

Preprint submitted to Information Processing Letters October 14, 2014

This work focuses on hierarchical clusterings (also called hierarchies) in
which patterns can be recursively decomposed into smaller patterns with
similar properties. The problem of distance definition between hierarchies is
of interest [7]. It can be related related to the comparison of phylogenetic
trees [8] in biology although those objects have typically more constraints
than the decompositions studied here.

2. Definitions and Problem Statement

We assume we have a set S of elements of finite cardinality. A hierar-
chy H = (H1, H2, . . . , Hk) is a finite collection of non-empty subsets of S
(H1, H2, . . . , Hk) such that if there exist two groups H1, H2 ∈ H such that
if H1 ∩H2 6= ∅ then either H1 ⊆ H2 or H2 ⊆ H1. The relation of inclusion
between the sets define a partial ordered set. It can be represented in a forest
fashion, the roots of each tree being the sets that are not include in any other
group.
Let Ni(H) denote the i-th level of H i.e. the groups sitting at depth i in
this forest. Notice it is still well defined if H contains repeated groups. A
level Ni(H) is a partition since it does not contain overlapping sets. The
depth of a hierarchy d(H) is the maximum depth of its groups. Moreover, we
call H[S ′] the induced sub-collection of groups that contain S ′ ⊆ S i.e. the
hierarchical clustering of S ′ obtained after the removal of every elements of
{S \ S ′}.

Definition 1. (Suppression Distance) Let H1 and H2 be two hierarchies
of S. The suppression distance ds is defined as

ds(H1,H2) = min
S′⊆S
{|S ′|,H1[S \ S ′] = H2[S \ S ′]} (1)

A set S ′ such that H1[S \ S ′] = H2[S \ S ′] is called a suppression set.

This definition is the same as the one introduce in [2]. As show in Theorem
1, the measure is still a distance in the case of hierarchies.

Theorem 1. The function ds is a metric.

Proof. The non-negativity, identity and symmetry properties are straight-
foward for ds. Moreover, this distance respects the triangular inequality.

2

Consider three hierarchiesH1,H2 andH3. Let Sij ⊆ S such thatHi[S\Sij] =
Hj[S \ Sij]. Observe that H1[S \ (S12 ∪ S23)] = H3[S \ (S12 ∪ S23)], so we
have:

|S13| ≤ |S12 ∪ S23| ≤ |S12|+ |S23|
ds(H1,H3) ≤ ds(H1,H2) + ds(H2,H3)

Our objective is the computation of the suppression distance given in
Def. 1. It is worthwhile to note that hierarchies are a subclass of set covers i.e.
a collections of (overlapping) subsets of S. The same definition of distance
can be used in this case. Its evaluation relates to hypergraph matching used
in pattern recognition [1]. Indeed, the problem is equivalent to finding a
maximum common sub-hypergraph, which is NP-hard.

3. Existence of a polynomial-time solution

We give here an non-constructive proof for this claim. The difference be-
tween hierarchies can be encoded in a difference graph (Definition 2). Finding
a suppression set for two hierarchies is equivalent to find a minimum vertex
cover in this graph (Theorem 2). Since, this graph is perfect (Theorem 3), it
exists a polynomial algorithm to solve this problem.

Definition 2. (Difference Graph) Let H1 and H2 be two hierarchies of
a set S. We call G(H1,H2) = (S,E) the difference graph of (H1,H2) with
E = {(s1, s2) ∈ S2, |H1[{s1, s2}]| 6= |H2[{s1, s2}]|}. This graph can contain
self-loops.

Two elements of S are connected iff they do not appear the same number
of groups together in both hierarchies. An example of hierarchies and their
difference graph can be found in Figure 1.

Lemma 1. Given G = (S,E) the difference graph of (H1,H2) and S ′ ⊆ S,
the induced subgraph G[S ′] is the difference graph of (H1[S

′],H2[S
′]).

Proof. Let G′ = G(H1[S
′],H2[S

′]). First, notice that V (G′) = V (G[S ′])
by definition. Second, we have E(G′) = E(G[S ′]). Indeed, ∀S ′′ ⊆ S ′ and
i = [1, 2], |Hi[S

′′]| = |Hi[S
′]| by definition of induced hierarchy. Therefore,

we have E(G′) = {(s1, s2) ∈ S ′2, |H1[{s1, s2}]| 6= |H2[{s1, s2}]|} which is also
equal to E(G[S ′]) by the definition of induced subgraph.

3

abc def

ab c

ab c

H1

N1

N2

N3

a

b

c

d
e

f

G(H1,H2)

abcdef

ac b

a c b

H2

N1

N2

N3

Figure 1: Example of two hierarchies H1,H2 of a set S = {a, b, c, d, e, f} and their
difference graph G(H1,H2) (p(e) = 1 for gray edges and p(e) = 2 for black edges).

Theorem 2. ds(H1,H2) is equal to the size of the minimum vertex cover of
G(H1,H2).

Proof. Let G = G(H1,H2). We show first that E(G) = ∅ ⇔ H1 = H2.

1. (H1 = H2)⇒ (E(G) = ∅) by definition of difference graph.

2. (E(G) = ∅)⇒ (H1 = H2)

(a) d(H1) = d(H2) = d since G contains no self-loops by hypothesis:
every s ∈ S belongs to the same number of sets in both hierarchies.

(b) G =
⋃d

i=1G(Ni(H1), Ni(H2)) since all element in S belong to at
most one group at a given level by definition of hierarchy. Indeed,
let (a, b) ∈ S2 such that H1[{a, b}]| = i and H2[{a, b}]| = j, if
i < j then both G(Ni+1(H1), Ni+1(H2)) and G contain the edge
(a, b), if i = j then neither any of the G(Ni(H1), Ni(H2)) nor G
contain the edge (a, b).

(c) H1 = H2 ⇔
⋂d

i=1 Ni(H1) = Ni(H2) since H =
⋃d

i=1 Ni(H) and
any H ∈ H only belongs to one level Ni(H) by definition of hier-
archy and levels.

(d) By contradiction, assuming E(G) = ∅ and H1 6= H2, it exists i ∈
[1, d] such that Ni(H1) 6= Ni(H2). In this case, G(Ni(H1), Ni(H2))
should contain at least one edge as the difference graph of two
partitions (Lemma 3.1 of [2]). This contradicts the hypothesis
E(G) = ∅.

We show now that a minimum suppression set for (H1,H2) is also a
minimum vertex cover of G. Since (E(G) = ∅)⇔ (H1 = H2) and according
to Lemma 1, for S ′ ⊆ S, we have H1[S

′] = H2[S
′] iff E(G[S ′]) = ∅. The

subset S ′ is therefore a vertex cover of G by definition.

4

We assume for the rest of the paper that each element of S belongs to
the same number of sets in both hierarchies. Indeed, if it is not the case, the
elements that appears a different number of groups are part of every possible
suppression sets (equivalently, they will have self-loops and belong to every
possible minimum vertex cover of G). Those elements can be found in poly-
nomial time. If G(H1,H2) contains no self-loops then H1 and H2 have the
same depth d.

We use the edge function p : E(G)→ N to encode the first level at which
the couple (a, b) ∈ E belongs to a group of H1 but not H2 (or the opposite).
We denote by Gi the subgraph of G formed by the edges {e ∈ E, p(e) ≥ i}.
Notice we have G1 = G. Lemma 2 and 3 provide important properties for
the difference graph.

Lemma 2. Let S ′ ⊆ S and i > 0 such that Gi[S
′] is connected, the elements

of S ′ all belong to the same groups of depth lower than i in both H1 and H2.

Proof. Assume Gi[S
′] is a connected subgraph but there exist at least two

non-overlapping subsets A and B of S ′ that belong to different groups of
depth lower than i in both H1 and H2. It means that either A and B belong
to the same groups in H1 but not in H2 or both do not belong to the same
groups in both hierarchies. Notice that both cases are impossible otherwise
all edges would have value a value lower than i (first case) or there would
be no edges between the two groups (second case). This contradicts our
hypothesis since we assume A ∪B is a connected component of Gi.

Lemma 3. Let S ′ ⊆ S and i > 0 such that Gi[S
′] is connected, if there exist

u 6∈ S ′ such that (u, v) ∈ E and p(u, v) = j < i then ∀w ∈ S ′, we have
(u,w) ∈ E with p(u,w) = j.

Proof. According to Lemma 2, the elements in S ′ all belongs to the same
groups of depth lower than i in both hierarchies. If there exist u 6∈ S ′ such
that (u, v) ∈ E and p(u, v) = j < i, it means there is a group at depth j in
H1 that contain (u ∪ S ′) and a group at depth j in H2 that contains S ′ but
not u. Therefore u should be connected to every elements of S ′ with an edge
of value j.

One important consequence of Lemma 3 is that two connected compo-
nents of G2 either have no edges between them or form a complete bipartite
subgraph in G. We now prove the main theorem.

5

Theorem 3. Let H1,H1 be two hierarchies of finite depth of a set S, com-
puting ds(H1,H1) can de done in polynomial time.

Proof. First, the difference graph G can be computed in polynomial time.
Now, let Ψd denote the set of pairs of hierarchies of a set S with common
depth d such that each element appears in the same number of sets in both
hierarchies. We show that the difference graph G of any pair in Ψd is a
perfect graph by induction over d.

1. Basis. For d = 1, Ψ1 corresponds to pairs of partitions and the graph
G is therefore perfect (Theorem 3.4 of [2]).

2. Inductive step. Assuming it is true for any d we show it is also true for
d + 1. Let G̃ be the graph obtained by contraction of edges of G2 in
G. According to Lemma 2, elements within the same connected com-
ponents of G2 belongs to the same group at depth 1. The graph G̃ is
therefore the difference graph of the two partitions (P̃1, P̃2) obtained
by the fusion of each maximal connected components of G2 into a new
element in the partitions (N1(H1), N1(H2)). There, G̃ is perfect (The-
orem 3.4 of [2]).
According to Lemma 3, the graph G can be recovered from G̃ by ex-
panding each vertex u ∈ V (G̃) by its corresponding connected com-
ponent of G2 and connecting each element to the vertices previously
adjacent to u. Now, since G̃ is perfect and every connected subgraphs
of G2 is perfect as the difference graph of two hierarchies of depth d,
the graph G of depth d + 1 is also perfect according to the Theorem 1
of [4].

By Theorem 2, the distance ds(H1,H1) can be computed in polynomial time.

4. An Algorithm based on recursive maximum assignment

If P1 and P2 are partitions, the distance ds(P1,P2) can be computed by
solving a maximum assignment problem based on the size of intersections
between all pairs of groups in P1 and P2 using the Hungarian algorithm [3].
The computation of the intersections takes O(n) and the assignment is com-
puted in O((|P1| + |P2|)3). The suppression set corresponds here to the
elements that are not covered by the maximum assignment.

6

As explained in the proof of Theorem 2, two hierarchies are equals iff
the set of couple {(Ni(H1), Ni(H2))}1≤i≤d are all pairwise equals. However,
finding a suppression set S ′ using a greedy “level-by-level” approach (either
top-down or bottom-up) may not lead to an optimal solution. Consider the
example given in Figure 1 where ds(H1,H2) = 3, a top-down approach may
fail since either {a, b, c} or {d, e, f} can be chosen at level 1 to be part of S ′.
But choosing {d, e, f} would lead to a distance of 4. Alternatively, consider
the sub-hierarchies induced by the set {a, b, c}, a bottom-top approach may
also fail since either a or b can belongs to S ′ at the last level. Choosing b
would lead to a distance of 2 whereas ds(H1[{a, b, c}],H2[{a, b, c}]) = 1.

Algorithm 1 can be used to compute a minimum suppression set for two
hierarchies. It recursively computes a suppression set for two sub-hierarchies
whose element belongs to the same groups at the current level.

Algorithm 1: suppressionSet(H1,H2)

Input: H1,H2 two hierarchies of a set S
Output: S ′ ⊆ S a suppression set

1 if H1 = H2 = ∅ then
2 return ∅
3 else
4 S ′ ← ∅
5 for C ∈ maxCommonGroups(N1(H1), N1(H2)) do
6 S ′ ← S ′ ∪ suppressionSet(H1[C]− C,H2[C]− C)
7 end
8 return S ′ ∪ flatSuppressionSet(N1(H1[S \ S ′]), N1(H2[S \ S ′]))
9 end

The function maxCommonGroups(P1,P2) returns the maximal subsets
of vertices that are together in both partitions P1 and P2. The function
flatSuppressionSet(P1,P2) returns a minimum suppression set of elements S ′

such that ds(P1,P2) = |S ′|. Lemma 4 is used to show that the set returned
by a recursion call is a subset of one optimal solution.

Lemma 4. Let G = (S,E) be the difference graph of two hierarchies of S,
any minimum vertex cover of Gi is a subset of a minimum vertex cover of
Gi−1.

7

Proof. Let C be a minimum vertex cover of Gi, S
′ be a maximal connected

component of Gi. The set C ′ = (S ′ ∩ C) is a minimum vertex cover of
Gi−1[S

′]. According to Lemma 3, the edge cut (S ′, S ′′) forms a complete
bipartite graph where S ′′ is the set of vertices in (S \ S ′) connected to S ′.
The minimum vertex cover of Gi−1 should contain either all S ′ or all (S ′′∪C ′).
Therefore, C ′ is a subset of the cover in both cases. Since it is true for the
minimum cover of every maximal connected components of Gi, the set C is
a subset a minimum vertex cover of Gi−1.

Theorem 4. For two hierarchies H1,H2 of a set S, Algorithm 1 always
terminates and returns a suppression set S ′ such that ds(H1,H2) = |S ′|.

Proof. Termination: First the algorithm will terminate since the hierarchies
are of finite depth and the recursive call is used on two sub-hierarchies of
depth d − 1 (the “root” group is removed in both hierarchies in line 6).
Moreover, the condition in line 1 is always met at some point since we as-
sume elements of S appears the same number of sets in both hierarchies.

Correctness: Observe the function maxCommonGroups(P1,P2) returns
sets that correspond to either independent or maximal connected components
of G2. Let C be one of these sets, the sub-hierarchiesH1[C]−C andH2[C]−C
correspond to the sub-hierarchies induced by C minus the first level. Assume
that at the end of the loop 5–7, the set S ′ is the union of the elements to
be removed so that those sub-hierarchies are equals. According to Lemma
4, the set S ′ is a subset of a minimum suppression set between (H1,H2) i.e.
a minimum vertex cover of G2. A possible solution is therefore the union
of S ′ and a suppression set of H1[S \ S ′] and H2[S \ S ′]. The latter can be
found only looking at the first level of both hierarchies. We can show the
assumption on S ′ to be true by induction since the Algorithm will return a
minimum suppression set if H1,H2 are flat partitions.

We shall discuss the complexity of Algorithm 1. The function maxCom-
monGroups can be implemented in O(n log(n)). Notice the worst case sce-
nario is achieved when H1 = H2 since the results of each recursive call will
be the empty set. Assuming the first Θ(d) levels correspond to one repeated
group S and the last levels correspond to Θ(n) repeated groups, the time
complexity is O(n3 + dn log n).

8

References

[1] Bunke, H., Dickinson, P., Kraetzl, M., Neuhaus, M., Stettler, M., 2008.
Matching of hypergraphs—algorithms, applications, and experiments. In:
Applied Pattern Recognition. Springer, pp. 131–154.

[2] Gusfield, D., 2002. Partition-distance: A problem and class of perfect
graphs arising in clustering. Information Processing Letters 82 (3), 159–
164.

[3] Kuhn, H. W., 1955. The hungarian method for the assignment problem.
Naval research logistics quarterly 2 (1-2), 83–97.

[4] Lovász, L., 1972. Normal hypergraphs and the perfect graph conjecture.
Discrete Mathematics 2 (3), 253–267.

[5] Meilă, M., 2003. Comparing clusterings by the variation of information.
In: Learning theory and kernel machines. Springer, pp. 173–187.

[6] Porumbel, D. C., Hao, J. K., Kuntz, P., 2011. An efficient algorithm
for computing the distance between close partitions. Discrete Applied
Mathematics 159 (1), 53–59.

[7] Queyroi, F., Delest, M., Fédou, J.-M., Melançon, G., 2014. Assessing
the quality of multilevel graph clustering. Data Mining and Knowledge
Discovery 28 (4), 1107–1128.

[8] Robinson, D., Foulds, L. R., 1981. Comparison of phylogenetic trees.
Mathematical Biosciences 53 (1), 131–147.

[9] Sheikh, S. I., Berger-Wolf, T. Y., Khokhar, A. A., Caballero, I. C., Ash-
ley, M. V., Chaovalitwongse, W., Chou, C.-A., DasGupta, B., 2010. Com-
binatorial reconstruction of half-sibling groups from microsatellite data.
Journal of bioinformatics and computational biology 8 (02), 337–356.

9

	Introduction
	Definitions and Problem Statement
	Existence of a polynomial-time solution
	An Algorithm based on recursive maximum assignment

