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Abstract

We discuss the computation of the suppression distance between two set
covers. It is the minimum number of element of a set that have to be removed
so the renaming covers are equal. We show that this problem is N'P-Hard by
reduction to MINIMUM VERTEX COVER. We further investigate the subclass
of hierarchies and prove this problem to be polynomial in this case as it gives
birth to a class of perfect graphs. We also propose an algorithm based on
recursive maximum assignments.
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1. Introduction

Decomposing a set into patterns of interest is a central problem in data
analysis. Evaluating the distance between decompositions is an important
task in this context as it allows to study the behaviour of clustering algo-
rithms or study the evolution of a set of patterns over time. The situation
where the detected patterns do not overlap is called partitions. Measures
based on edit distance [4, 9] or on mutual information [§] have been used
to assess the distance between partitions. The situation where groups may
overlaps received some attention recently [3]: we call these decomposition
covers. They are particularly useful for the detection of communities in com-
plex networks [6]. A subclass of covers are hierarchies in which patterns can
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be recursively decomposed into smaller patterns with similar properties. The
problem of distance definition between hierarchies is also of interest [10]. We
focus in this paper on the computation of the suppression distance defined
for partitions in [4] and generalized here for general covers and hierarchies.

We assume we have a set S of elements of finite cardinality n. A cover of
the set S is a finite collection of subsets C = (C4, Cy, ..., Cy) where each C;
is a non-empty subset of S. We call C(S”) the sub-collection of groups that
contain S C S. We denote by C[S’] the induced sub-cover of C by S i.e. the
cover of S” obtained after the removal of every elements of S\ S’

Definition 1. (Suppression Distance) Let C; and Cy be two covers of S.
The suppression distance dg is defined as

ds(C1, C2) = min{] 5", C1[S\ 5 = Co[ S\ 1 (1)

A set S" such that C1[S'\ S'] = Co[S \ '] is called a suppression set.
Theorem 1. The function dy is a metric.

Proof. The non-negativity, identity of indiscernibles and symmetry proper-
ties are straightfoward for d,. Moreover, this distance respects the triangular
inequality. Consider three covers C;,Cy and Cs. Let S;; be such set that
CZ[S \ SZ]] = Cj [S \ SZ]] Observe that Cl [S\ (512 U 823)] = Cg [S\ (512 U 523)],

So we have:

|S13] < [S12 U Saz| < [Sh2| + |Sas]
ds(C1,Cs) < ds(Cq,Ca) + dy(Ca, Cs)

2. Computation of the Suppression Distance

The evaluation of the distance between covers relates to hypergraph match-
ing used in pattern recognition [2]. One can easily reduce the computation
of the suppression distance to the problem of MAXIMUM COMMOM SUB-
HYPERGRAPH [I]. Indeed the couple (S,C) is an hypergraph. If 8" C S is
the maximum common induced sub-hypergraph of (S,C;) and (S,Cy) then
obviously we have ds(Cy,Cq) = |S| — |S’|. However, finding such subset is



NP-hard. We show here that the suppression distance computation can
also be reduced to the MINIMUM VERTEX COVER problem. The differences
between both covers can be encoded into a simple graph called the cover
graph.

Definition 2. (Cover Graph) Let C; and Cy be two covers of a set S.
We call G(C1,Cs) = (S, E) the cover graph of (C1,Co) with the edges E =
{(s1,82) € S%|Ci({s1,52})] # |Ca({s1,82})|}. This graph can contain self-

loops.

Two elements (or a singleton) of S are connected iff they (it) do (does)
not appear the same amount of time together (alone) in both covers. A
similar transformation has been proposed by Gusfield [4].

Lemma 1. Given G = (S, E) the cover graph of (C1,C2) and S" C S, the
induced subgraph G[S'] is the cover graph of (C1[S’],Cs[S"]).

Proof. First, the G(C,[5"],C2]S5"]) has the same vertex set as G[S’]. Second,
for every pair of elements sy, sy in S, we have |Cy({s1, s2})| = |C1({s1, 52})|
and |Co({s1,52})| = |C5({s1,52})]. Therefore, every edge in G(C1[S"],C3]5])
is also an edge in G[9’] since G[S'] is an induced subgraph. Also, every non-
edge in G(C,[9'],C5[97]) is an non-edge in G[S’]. Therefore the edge set of
both graphs are equal. O]

Theorem 2. d (Cy,Cy) is equal to the size of the minimum vertex cover of

G(Cy,Cy).

Proof. We first show that £ = () iff C; = C,. If both covers are equal then
each pair of vertices appears the same amount of time in both decomposition
and the cover graph contains no edge. Now if a cover graph contains no
edge then there exist a bijection between the groups of C; and Cs. If such
bijection does not exist, it means there is at least one group in either C;
or Cy that has no equal counterpart in the other cover. Therefore, there is
a pair of elements in S? that does not appear together the same amount
of time in C; and Cy. Those two elements should be connected in G which
contradicts our hypothesis. Finding a set S’ such that C;[S\ S’ and Co[S'\ 5’
are equal is therefore equivalent to finding a S’ such that G[S \ S’] contain
no edges (Lemma . If the S’ is the smallest among all other subsets with
this property then it is a minimum vertex cover of G. m



Theorem 3. For any simple graph G = (S, E), there exist two covers (Cy,Cs)
of S such that G = G(Cy,Cs)

Proof. For each edge (u,v) € E(G), add the set {u,v} to C; and create
two groups {u} and {v} in Cy. Using this construction, the elements u and
v are found together in one group in C; and are not found together in Cs.
Therefore the cover graph G(Cy,Cs) will contain the edge (u,v). Moreover,
the edge set of G(Cy,Cs) will correspond to the groups of C;. We conclude

G:G(Cl,CQ). D

Since any graph can be the cover graph of two set covers (Theorem ,
computing d4(C1,Cs) is N'P-hard by reduction to the MINIMUM VERTEX
COVER problem (Theorem [2)).

3. The Case of Hierarchies

Hierarchies are a particular class of covers that contain partitions as spe-
cial cases. We show in this section that ds can be computed in polynomial
time in this context and provide a recursive algorithm.

Definition 3. (Hierarchy) A hierarchy H is a cover of a set S such that if
there exist two groups Hy, Hy € H such that HiNHy # () then either H, C Hy
or H2 g Hl.

Since the inclusion between the sets define a weak ordering of the groups.
The relations between the sets of H can be represented in a tree ordered
fashion, the roots being the groups that are not include in any other group.
Let N;(H) denote the i-th level of H i.e. the groups sitting at depth ¢ in this
tree. Notice it is still well defined if H contains repeated groups. The depth
of a hierarchy is the maximal depth of its groups. For G = G(H1, Hz), we
have a function p : E(G) — N which is the first level at which the couple
(a,b) € E belongs to a group of H; but not Hs (or the opposite). We denote
by G; the subgraph of G formed by the edges {e € E,p(e) > i}. Notice we
have G; = G. An example of hierarchies and their cover graph can be found
in Figure

We will assume that each element of S appears the same number of
times in (Hi, Hs). If it not the case, the cover graph G(H;,Hy) contains
self-loops. A subset of vertices belonging to all minimum vertex covers is
therefore straightforward to find. Indeed, vertices with self-loops are part of
all minimum vertex cover.



7’[1 G<H1; HQ) 7’[2

\ (

N\ abe  def c abedef N
BN PR Nl 1
Ny 1 ab C d—a /\// /CLC\ b 1 Ny
| e 3
\Ng }ab c J \[l)// K c b ;Ng)

Figure 1: Example of two hierarchies Hi,Hs of a set S = {a,b,¢,d, e, f} and their cover
graph G(H1,H2) (p(e) =1 for gray edges and p(e) = 2 for black edges).

3.1. Emistence of a polynomial-time solution

We show here that the cover graph of hierarchies is a perfect graph. As
said before, we assume that each element of S belongs to the same number
of groups in both hierarchies. One important consequence of this is the fact
that H1, Ho have the same depth d.

Lemma 2. Let S’ C S and i > 0 such that G;[S’] is connected, the elements
of S" all belong to the same groups of depth lower than i in both Hi and H.

Proof. Assume G;[S'] is a connected subgraph but there exist at least two
non-overlapping subsets A and B of S’ that belong to different groups of
depth lower than 7 in both H; and #Hs. It means that either A and B belong
to the same groups in H; but not in Hs or both do not belong to the same
groups in both hierarchies. Notice that both cases are impossible otherwise
all edges would have value a value lower than ¢ (first case) or there would
be no edges between the two groups (second case). This contradicts our
hypothesis since we assume A U B is a connected component of G;. O

Lemma 3. Let S’ C S and i > 0 such that G;[S'] is connected, if there exist
u & S" such that (u,v) € E and p(u,v) = j < i then Yw € S', we have
(u,w) € E with p(u,w) = j.

Proof. According to Lemma [2] the elements in S all belongs to the same
groups of depth lower than ¢ in both hierarchies. If there exist u & S” such
that (u,v) € E and p(u,v) = j < i, it means there is a group at depth j in
H; that contain (v U S’) and a group at depth j in H, that contains S’ but
not u. Therefore u should be connected to every elements of S” with an edge
of value j. ]




One important consequence of Lemma 3] is that two connected compo-
nents of (G5 either have no edges between them or form a complete bipartite
subgraph in G.

Theorem 4. Let Hi, Hy be two hierarchies of finite depth of a set S, com-
puting ds(Hq,Hy1) can de done in polynomial time.

Proof. Let ¥, denote the set of hierarchies of a set S of depth d, we show
that the cover graph G (obtained after the removal of vertices with self-loops)
of any pair in U, is a perfect graph by induction over d.

For d = 1, the class ¥, corresponds to the class of partitions of S and the
graph G is therefore perfect (Theorem 3.4 of [4]).

Assume it true for any d we show it is also true for d + 1. Let G be the
graph obtained by contraction of edges of G5 in G. This graph is perfect.
Indeed, according to Lemma |2, elements within the same connected compo-
nents of Gy belongs to the same group at depth 1. The graph G is therefore
the cover graph of the two flat partitions (P, P;) obtained by fusioning each
group into a single new element in the partitions Ni(H:) and Ny (Ha).

According to Lemma |3 l the graph G can be recovered from G by expand-
ing each vertex u € V(G) by its corresponding connected component of G
and connecting each element to the vertices previously adjacent to u. Now,
since every connected subgraphs of (G5 is perfect as the cover graph of two
hierarchies of depth d, the graph G is also perfect according to the Theorem
1 of [7]. A minimum vertex cover of G can be found in polynomial time. [

3.2. A solution based on recursive maximum assignment

It has been shown that, if P; and Py are partitions, the distance ds(P1, Po)
can be computed by solving a MAXIMUM ASSIGNMENT problem based on the
size of intersections between all pairs of groups in P; and P, [4]. The com-
putation of the intersections takes O(n) and the assignment is computed in
O((|P1] + |P2])?). The set of elements to be removed are the elements in the
sets that are not covered by the maximum assignment.

Notice two hierarchies are equal if all their levels are equal i.e. if the set
of couple {(N;(H1), N;(H2))}1<i<a are all pairwise equal. However, finding a
suppression set S’ using a greedy “level-by-level” approach (either top-down
or bottom-up) may not lead to a optimal solution. Consider the example
given in Figure [1| where d (H1, H2) = 3, a top-down approach may fail since



either {a,b,c} or {d,e, f} can be chosen at level 1 to be part of S’. But
choosing {d, e, f} would lead to a distance of 4. Alternatively, consider the
sub-hierarchies induced by the set {a, b, c}, a bottom-top approach may also
fail since either a or b can belongs to S” at the last level. Choosing b would

lead to a distance of 2 whereas ds(H1[{a, b, c}], Ha[{a,b,c}]) = 1.

We provide here an algorithm for computing a suppression set for two hi-
erarchies and therefore the distance between them. The idea is to recursively
compute a suppression set for two sub-hierarchies whose element belongs to
the same groups at the current level.

Algorithm 1: suppressionSet(H;, Ho)

Input: H;,Hs two hierarchies of a set S
Output: S’ C S a suppression set

1 if H; = Hy = () then

2 | return ()

3 else

4 S+

5 | for C € maxCommonGroups(Ni(H1), N1(Hsz)) do

6 | 5"« S U suppressionSet(H,[C] — C, Hy[C] - C)

7 end

8 return S’ U flatSuppressionSet(Ny(H1[S \ S']), N1(Hz[S \ 5']))
9 end

The function maxCommonGroups(Py, Py) returns the maximal subsets of
vertices that are together in both partitions P and P». The function flatSup-
pressionSet( Py, Py) returns a minimum suppression set of elements S’ such
that ds(Py, P) = |S’|. This function can used the Hungarian algorithm [5].
The following result is used to show that the set returned by a recursion call
is a subset of one optimal solution.

Lemma 4. Let G = (S, E) be the cover graph of two hierarchies of S, any
minimum vertex cover of G; is a subset of a minimum vertex cover of G;_1.

Proof. Let C be a minimum vertex cover of GG;, S’ be a maximal connected
component of G;. The set C' = S'NC' is a minimum vertex cover of G;_1[5’].
According to Lemma |3 the edge cut (S5',5”) forms a complete bipartite
graph where S” is the set of vertices in (S \ S’) connected to S’. Therefore,

7



the minimum vertex cover of G;_; should contain either all S” or all S” U’
i.e. C"is a subset of the cover in both cases. Since it is true for the minimum
cover of every maximal connected components of G;, the set C' is a subset a
minimum vertex cover of G;_;. O

Theorem 5. For two hierarchies Hi, Ha of a set S, Algorithm (1] always
terminates and returns a suppression set S" such that ds(Hy, Ha) = |5

Proof. Termination: First the algorithm will terminate since the hierarchies
are of finite depth and the recursive call is used on two sub hierarchies of lower
depth (the “root” group is removed in both hierarchies in line 6). Moreover,
the condition in line 1 is always met at some point since we assume elements
of S appears the same number of times in both hierarchies.

Correctness: Observe the function mazCommonGroups(Py, Py) returns
sets that correspond to either independent or maximal connected components
of Gy. Let C be one of these sets, the sub-hierarchies H;[C]—C and Hy[C]-C
correspond to the sub-hierarchies induced by C' minus the first level. Assume
that at the end of the loop 5-7, the set S’ is the union of the elements to
be removed so that those sub-hierarchies are equal. According to Lemma [4]
the set S’ is a subset of a minimum suppression set between (Hi, Hsa) i.e.
a minimum vertex cover of (Ga. A possible solution is therefore the union
of S" and a suppression set of H;[S \ S'] and Hz[S \ S’]. The latter can be
found only looking at the first level of both hierarchies. We can show the
assumption on S’ to be true by induction since the Algorithm will return a
minimum suppression set if H;, Hy are flat partitions. m

We shall discuss the complexity of Algorithm [I} The function maxCom-
monGroups can be implemented in O(nlog(n)). Notice the worst case sce-
nario is achieved when H; = Hs since the results of each recursive call will
be the empty set. Assuming the first ©(d) levels correspond to one repeated
group S and the last levels correspond to ©(n) repeated groups, the time
complexity is O(n? + dnlogn).
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