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Abstract. The ozone (O3) variability over south Asia dur-
ing the 2008 post-monsoon season has been assessed using
measurements from the MetOP-A/IASI instrument and O3
profiles retrieved with the SOftware for a Fast Retrieval of
IASI Data (SOFRID). The information content study and er-
ror analyses carried out in this paper show that IASI Level 1
data can be used to retrieve tropospheric O3 columns (TOC,
surface-225 hPa) and UTLS columns (225–70 hPa) with er-
rors smaller than 20 %. Validation with global radiosonde O3
profiles obtained during a period of 6 months show the excel-
lent agreement between IASI and radiosonde for the UTLS
with correlation coefficientR > 0.91 and good agreement in
the troposphere with correlation coefficientR > 0.74. For
both the UTLS and the troposphere Relative Standard Devi-
ations (RSD) are lower than 23 %. Comparison with in-situ
measurements from the MOZAIC program around Hyder-
abad demonstrates that IASI is able to capture the TOC in-
ter and intra-seasonal variability in central India. Neverthe-
less, the agreement is mitigated by the fact that the smoothing
of the true O3 profiles by the retrieval results in a reduction
of the TOC variability detected by IASI relative to the vari-
ability observed by in situ instruments. The post-monsoon
temporal variability of the vertical profile of O3 around Hy-
derabad has been investigated with MOZAIC observations.
These observations from airborne instruments show that tro-
pospheric O3 is steadily elevated during most of the stud-
ied period with the exception of two sharp drops following
the crossing of tropical storms over India. Lagrangian sim-
ulations with the FLEXPART model indicate that elevated
O3 concentrations in the middle troposphere near Hyderabad
are associated with the transport of UTLS air-masses that
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have followed the Subtropical Westerly Jet (SWJ) and sub-
sided over northern India together with boundary layer pol-
luted air-masses transported from the Indo-gangetic plain by
the north-easterly trades. Low O3 concentrations result from
the uplift and westward transport of pristine air-masses from
the marine boundary layer of the Bay of Bengal by tropical
storms. In order to extend the analysis of tropospheric O3
variability to the whole of south Asia, we have used IASI-
SOFRID O3 data. We show that IASI O3 data around Hy-
derabad were able to capture the fast variability revealed
by MOZAIC. Furthermore, their spatio-temporal coverage
demonstrates that the behaviour of tropospheric O3 observed
near Hyderabad extended over most of central and south In-
dia and part of the Bay of Bengal. This result highlights the
ability of the IASI sensor to capture fast changes in chemical
composition related to dramatic tropical weather conditions.

1 Introduction

According toDentener et al.(2006), south Asia may become
the most O3 polluted region with an average 52.2 ppbv sur-
face concentration by 2030. The outflow of pollution from
south Asia towards the Indian Ocean during the winter sea-
son has been investigated through the Indian Ocean Exper-
iment (INDOEX) multiplatform field campaign (Lelieveld
et al., 2001). Cloud-free conditions promote strong pho-
tochemical activity within the polluted air masses exported
from India, leading to elevated O3 concentrations off the In-
dian coasts (Lawrence and Lelieveld, 2010). This fast pho-
tochemical O3 production within the continental outflow is
supported by shipboard measurements of surface O3 mix-
ing ratios exceeding 70 ppbv over the Arabian Sea in con-
trast with lower concentrations (25–35 ppbv) measured in
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coastal cities (Lal and Lawrence, 2001). According toLal
et al.(2006) high levels of surface O3 over the Bay of Bengal
can also be explained by transport from the continent. Based
on shipboard radiosoundings and on Total Tropospheric O3
(TTO) derived from the TOMS satellite sensor,Chatfield et
al. (2007) proposed some mechanisms to explain the vari-
ability of tropospheric O3 during the winter season over the
Indian Ocean. They have shown that O3 maxima in the mid-
dle troposphere over the northern Indian Ocean originate al-
ternatively from venting of lower tropospheric pollution and
from stratospheric intrusion.

Most of the above-mentioned studies are based on
campaign-based measurements because south Asia lacks of
regular in-situ observations of tropospheric O3. Concerning
space-based observations, TTO from TOMS used byChat-
field et al. (2007) are mostly sensitive to the upper tropo-
sphere. Furthermore TTO data as derived fromChatfield
et al. (2007) assign the zonal wavenumber 1 component of
the TOMS signal to the troposphere, an assumption valid
only between 10◦S and 10◦N. The nadir thermal infrared
Aura/TES sensor (Beer et al., 2001) is able to discriminate
middle-tropospheric from upper tropospheric O3 but is char-
acterized by a limited spatial coverage (nadir only). O3
data from TES have in particular been used to characterize
the monthly mid-tropospheric distributions of O3 over Asia
during the summer monsoon season (Worden et al., 2009).
The chemical and dynamical processes that control tropical
O3 have interannual to daily variabilities and further under-
standing of these processes requires data with a daily sam-
pling as mentioned in the concluding remarks ofChatfield
et al. (2007) . Thanks to its large across-track scanning an-
gle, the thermal infrared Metop/IASI sensor permits a global
daily coverage. Eremenko et al.(2009) have shown that
the Metop/IASI sensor was able to capture increased con-
centrations of tropospheric O3 over eastern Europe during
a heatwave. Our aim is to demonstrate the ability of IASI
to provide daily global tropospheric O3 soundings enabling
the monitoring and forecast of chemical, as well as conven-
tional, weather. Our case study is focused over south Asia
during the post-monsoon period. This choice has been made
mainly because during this period south Asia is characterized
by heavy pollution and by fast and large-scale variability of
the tropospheric circulation potentially impacting the tropo-
spheric O3 distribution. Secondly IASI tropospheric O3 data
have not yet been used over tropical regions at the continen-
tal scale. Our aim is also to further understand the factors
controlling this observed variability. In Sect.2, we introduce
our IASI O3 retrievals, their characterization in terms of ver-
tical sensitivity and error budget and their validation with in
situ radiosounding measurements and observations from the
MOZAIC program. Section3 is dedicated to the characteri-
zation of the post-monsoon tropospheric O3 variability over
south Asia. We use high precision O3 in situ MOZAIC obser-
vations to study the situation near Hyderabad in central India.
A detailed transport analysis relying on Lagrangian disper-

sion modelling is performed to determine the main factors
controlling the observed O3 variability. IASI data are finally
put forward to characterize the post-monsoon O3 variability
over the whole south Asian region.

2 The IASI-SOFRID O3 retrievals

2.1 The IASI instrument

The IASI instrument has been developed to fly on board the
MetOp platforms (the first platform, MetOp-A, successfully
launched in 2006). IASI is a nadir viewing Fourier trans-
form spectrometer observing the Earth-atmosphere Thermal
Infrared Radiation (TIR) in the 645–2760 cm−1 wavenumber
region (see e.g.Clerbaux et al., 2009). It is characterized by
a moderate spectral resolution of 0.5 cm−1 after apodization,
and a low noise level. IASI scans the Earth surface across the
satellite flight track with a maximum 48.3◦ angle from nadir
corresponding to a 1100 km distance. From the MetOp sun-
synchronous orbit IASI is recording about 1.4 million pix-
els per day during daytime (09:30 local time) and nightime
(21:30). At nadir, each view is 50× 50 km wide and consists
of an array of 2× 2 individual pixels each characterized by a
12 km footprint. Aimed primarily at retrieving atmospheric
humidity and temperature in order to improve weather fore-
casting, IASI also allows us to determine concentrations of
atmospheric trace gases such as O3 (Eremenko et al., 2009;
Boynard et al., 2009) and CO (George et al., 2009).

2.2 The SOFRID retrieval algorithm

In order to retrieve O3 vertical profiles from IASI radiances,
we have developed the Software for a Fast Retrieval of IASI
Data (SOFRID) based on the RTTOV (Radiative Transfer
for TOVS) fast radiative transfer model. The RTTOV model
(Saunders, 1999; Matricardi et al., 2004) is developed jointly
by the UK Met Office (UKMO), the European Center for
Medium Range Weather Forecasts (ECMWF) and Meteo
France. RTTOV uses a parameterization of atmospheric op-
tical depths that makes the model accurate and fast enough
to be used for the operational assimilation of satellite radi-
ance data in Numerical Weather Prediction (NWP). In RT-
TOV, the optical depths are expressed as a linear combination
of profile dependent predictors that are functions of temper-
ature, absorber amount, pressure and viewing angle. The
RTTOV optical depths are computed using regression co-
efficients derived from accurate line-by-line (LBL) compu-
tations performed using the LBL Radiative Transfer Model
(LBLRTM Clough et al., 2005). For IASI, RTTOV can re-
produce the underlying LBL radiances to an accuracy that
is typically below 0.1 K. The overall accuracy of RTTOV is
discussed in detail byMatricardi et al.(2009). In this paper
we use RTTOV regression coefficients based on LBL com-
putations performed using the HITRAN2004 spectroscopic
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Fig. 1. a priori O3 data computed from the WOUDC, SHADOZ and MOZAIC database:(a) mean profile and associated variabilities,(b)
Relative Standard Deviations (RSD),(c) relative covariance matrix in %.

database (Rothman et al., 2005). The land surface emmisiv-
ity is computed with the RTTOV UW-IRemis module (Bor-
bas et al., 2010). This module is based on a principal com-
ponent analysis regression relationship between the MODIS
MOD11-based UW Global Infrared Land Surface Emissivity
Database (Seemann et al., 2008) and a set of selected labora-
tory emissivity measurements (ICESS/UCSB) that are repre-
sentative of surfaces and soils present in global ecosystems.

The retrieval of O3 concentration profiles from TIR space-
borne radiances is an underconstrained problem that requires
additional information to be regularised. Our retrievals are
performed with the UKMO 1D-Var algorithm (Pavelin et
al., 2008) based on the Optimal Estimation Method (OEM)
(Rodgers, 2000). In the OEM, the additional regularisation
constraint comes from an ensemble representing the best a
priori knowledge of the atmospheric state to be retrieved (in
our case, the O3 vertical profile). The retrieved state is the
combination of the measured radiances and the a priori state
inversely weighted by their covariance matrices. The re-
trieval being also a non-linear problem requires linearization
of the radiative transfer equation and iteration until conver-
gence is obtained.

Our O3 a priori state,xa and covariance matrix,Sa are
based on an ensemble of in-situ O3 profiles measured in
2008 by radiosounding (∼ 800 profiles) from the WOUDC
(World Ozone and Ultraviolet Radiation Data Centre) and
SHADOZ (Southern Hemisphere ADditional OZonesondes,
Thompson et al., 2003) networks and taken at landing and
take-off by the MOZAIC (Measurements of OZone, water
vapour, carbon monoxide and nitrogen oxides by in-service
AIrbus airCraft,Thouret et al., 1998) instrumented aircraft
(∼1600 profiles). Because of the WOUDC and MOZAIC
geographical sampling, the a priori is biased towards mid-
latitudes with relatively high O3 concentrations in the lower
troposphere and a steep increase above 300 hPa characteris-

tic of a mid-latitude tropopause height (Fig.1a). The profiles
are completed above 220 hPa by coincident O3 profiles from
Aura/MLS assimilated data. The MLS UTLS O3 data are
described and validated inLivesey et al.(2007). El Amraoui
et al. (2010) provide a brief description of the MLS assimi-
lated data and show that they agree very well with MOZAIC
UTLS observations in the mid-latitudes in summer. A com-
plete description and a thorough validation of the assimilated
O3 profiles are given inMassart et al.(2011). In particu-
lar, Massart et al.(2011) show that above 220 hPa the as-
similated profiles have biases lower than 20 % and RSD of
the differences lower than 40 % (20 % in the tropics) relative
to ozonesondes in the different latitude regions. The biases
and the RSD of the differences decrease to less than 10 % in
the stratosphere. The corresponding a priori O3 variability
is shown in Fig.1b. The highest O3 variability (∼90 %) in
the Upper Troposphere-Lower Stratosphere (UTLS) is due
to the large tropopause variations within the ensemble of
O3 profiles from 300 hPa (9 km) at high latitudes in win-
ter to 100 hPa (16 km) in the tropics. On both side of the
tropopause, the O3 vmr variations are very steep from less
than 100 ppbv in the upper troposphere to several ppmv in
the lower stratosphere. The relative covariance matrix is dis-
played in Fig.1c. The ith x jth element of this matrix is
computed as the ratio of the correponding covariance matrix
element by the product of the ith and jth elements of the mean
O3 profile. It shows that O3 concentrations are highly corre-
lated throughout the lower to middle stratosphere where O3
is controlled by transport processes whilst lower tropospheric
O3 is little correlated to upper tropospheric O3.

We use EUMETSAT operational IASI level 2 products
for the temperature and water vapor atmospheric profiles re-
quired for the radiative transfer computations. These atmo-
spheric parameters are held constant during the retrieval. The
O3 profiles are retrieved from the 980–1100 cm−1 spectral
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Fig. 1. a priori O3 data computed from the WOUDC, SHADOZ and MOZAIC database: (a) mean profile and associated variabilities, (b)
Relative Standard Deviations (RSD), (c) relative covariance matrix in %.
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Fig. 2. Characterization of O3 retrievals based on 300 pixels recorded by IASI over the Arabian Sea (15-20◦N, 65-70◦E) on 17/11/2008.
(a) O3 averaging kernels (vertical resolution functions) for individual retrieval layers below 70 hPa (color lines and upper x axis). The mean
altitudes of the retrieval layers are the colored ticks on the left y axis. Averaging kernels for integrated partial columns (lower x axis) are
given for the TOC (1013-225 hPa, black solid line) and the UTLS (225-70 hPa, black dashed line). (b) a priori O3 uncertainty (black solid
line) and IASI O3 retrieval error (black dashed line).

Fig. 2. Characterization of O3 retrievals based on 300 pixels
recorded by IASI over the Arabian Sea (15-20◦N, 65–70◦ E) on
17/11/2008.(a) O3 averaging kernels (vertical resolution functions)
for individual retrieval layers below 70 hPa (color lines and upper x-
axis). The mean altitudes of the retrieval layers are the colored ticks
on the left y-axis. Averaging kernels for integrated partial columns
(lower x-axis) are given for the TOC (1013–225 hPa, black solid
line) and the UTLS (225–70 hPa, black dashed line).(b) a priori
O3 uncertainty (black solid line) and IASI O3 retrieval error (black
dashed line).

window encompassing the 9.6 µm O3 absorption band. In or-
der to avoid interferences, spectral regions with strong H2O
absorptions are excluded. The IASI measurement noise co-
variance matrix set up in the 1D-Var scheme is based on an
early pre-flight calibration (Ed Pavelin, private communica-
tion, 2011). This matrix is tridiagonal in order to take the
correlation of radiometric noise between adjacent channels
into account. The average noise computed from the diag-
onal elements of the covariance matrix in the O3 retrieval
window is 28 nW (cm2 cm−1 str). This value is close to the
IASI radiometric noise estimated more recently to be of the
order of 20 nW (cm−2 cm−1 str) around 900 cm−1 in Cler-
baux et al.(2009). Because the radiative transfer simula-
tions are impacted by sources of error other than the radio-
metric noise (such as uncertainties on the temperature and
water vapor profiles, the surface emisivity and, the spectro-
scopic parameters) the radiometric noise level used for the
retrieval has to be taken conservatively. Based on sensi-
tivity tests, we scale the noise covariance matrix from the
1D-Var scheme by a factor of 8 leading to a mean noise
level of 80 nW (cm−2 cm−1 str). This value is very close to
70 nW (cm−2 cm−1 str), value used byBoynard et al.(2009)
to retrieve O3 profiles from IASI with the Atmosphit LBL
radiative transfer and retrieval algorithm.

The O3 retrievals are performed only for cloud free pixels
or pixels weakly contaminated by clouds. The cloud filtering
was performed according toClerbaux et al.(2009), based
on the AVHRR-derived fractional cloud cover from the IASI
EUMETSAT L2 products. All pixels corresponding to a frac-
tional cloud cover between 0 and 25 % are processed. For
pixels with unavailable cloud fraction, we use a cloud filter

based upon retrieved surface temperature at 11 (T11) and 12
(T12) microns in a way comparable to what is done byEre-
menko et al.(2009). When T12 is biased low by more than
10◦K relative to the surface temperature from the ECMWF
analyses, we remove the pixel as contaminated by a thick
cloud. If T11 and T12 are differing by more than 10◦K, we
remove the pixel as contaminated by a thin cloud.

The data that are described here correspond to the
SOFRID O3 version 1.2 and are produced in HDF-EOS 5
files available on demand by email at the corresponding au-
thor.

2.3 Characterization of the O3 retrievals

Since our O3 inverse problem is not strongly non-linear, we
can use the linear approximation for the characterization of
the retrievals (Rodgers, 2000; Barret et al., 2005). For a lin-
ear retrieval, the retrieved statex̂ can be written as:

x̂ = xa +A(x −xa)+G(ε+Kb(b− b̂)) (1)

wherex is the true state,b is the vector of the true model pa-
rameters (such as atmospheric temperature and water vapor,
surface emissivity, spectroscopic parameters) andb̂ is the ap-
proximate ofb available to the user. The Jacobian,Kb =

∂F
∂b

,
characterizes the sensitivity of the forward modelF to the
model parameters. The gain matrix,G, is the matrix whose
rows are the derivatives of the retrieved state with respect to
the spectral points andε is the measurement noise.

The averaging kernel matrix,A, characterizes the sensitiv-
ity of the retrieved state to the true state. The elementA(i,j)

is the relative contribution of the elementx(j) of the true
state to the element̂x(i) of the retrieved state. The vertical
resolution of the retrieved profile can be defined as the Full
Width at Half Maximum (FWHM) of the rows of the aver-
aging kernel matrix. The number of independent elements of
information contained in the measurement can also be esti-
mated as the Degrees of Freedom for Signal (DFS) defined
as the trace of the averaging kernel matrix (Rodgers, 2000).

IASI-SOFRID O3 averaging kernels representative of the
south Asian region during the post-monsoon season are dis-
played in Fig. 2a for retrieval levels in the troposphere
and UTLS (below 70 hPa). They correspond to the mean
of the averaging kernels from hundreds of pixels recorded
on the Arabian Sea on 17 November 2008. The DFS for
this atmospheric layer is 1.7 meaning almost 2 independent
pieces of information. With DFS of 0.78 and 0.9, we can
approximately attribute these pieces of information to the
troposphere (Tropospheric Ozone Column (TOC), surface-
225 hPa) and the UTLS (225–70 hPa). The averaging ker-
nels correponding to O3 partial columns for these two layers
(see Fig.2a) are clearly well separated with peaks at 500 and
150 hPa. The averaging kernels show that the sensitivity to
the O3 content is the lowest in the lower troposphere below
about 700 hPa.

Atmos. Chem. Phys., 11, 9533–9548, 2011 www.atmos-chem-phys.net/11/9533/2011/
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Table 1. Errors of IASI-SOFRID O3 columns.

Pressure a priori Retrieval
boundaries error (%) error (%)

Troposphere Surface-225 hPa 33 15
UTLS 225–70 hPa 61 10

From Eq. (1), it is easy to compute the retrieval error as
the difference between the true and the retrieved states. The
dominant source of error (Barret et al., 2005; Coheur et al.,
2005; Boynard et al., 2009) is due to the smoothing of the
true profile by the averaging kernel matrix accounting for the
limited vertical resolution. The smoothing error covariance
matrix is given by:

Ss = (A−I )Sa(A−I )T (2)

The measurement error,Gε, is due to the instrumental
noise. Its covariance matrix is given by:

Sm = GSεGT (3)

whereSε is the noise covariance matrix. The sum of the
smoothing and measurement errors is called the retrieval er-
ror (Rodgers, 2000). The remaining error is the model pa-
rameters error and accounts from uncertainties in the fixed
model parameters.

The retrieval does not bring information below 900 hPa
where the retrieval error is almost equal to the a priori vari-
ability and brings maximum information between 400 and
50 hPa (see Fig.2b). These differences in vertical sensitiv-
ity, already shown with the averaging kernels, are partly due
to the low (high) thermal contrast between the surface and
the lowermost troposphere (UTLS). Concerning integrated
columns, the reduction of uncertainty relative to the a priori
is ∼2. (resp.∼6) correponding to 15 % (resp. 10 %) error for
the TOC (resp. UTLS) (Table1).

2.4 Validation of the O3 profiles

This section is dedicated to the validation of IASI-SOFRID
O3 retrievals from the troposphere to the UTLS. We have
used WOUDC and SHADOZ profiles from the database de-
scribed above (Sect.2.2) for the period July–December 2008.
We have used coincidence criteria of± 1◦ and± 12 h for
the comparisons between IASI and sonde data. These crite-
ria are identical to the ones used byKeim et al.(2009) who
have validated IASI preliminary tropospheric O3 products.
MOZAIC profiles measured at take-off and landing near Hy-
derabad (17.2◦N, 78.3◦E) during the same period are also
used to demonstrate the ability of IASI to capture the tropo-
spheric O3 variability over Central India. Because MOZAIC
profiles are limited to roughly 220–250 hPa, they cannot be

used for validating IASI UTLS columns. The aircraft is trav-
eling about 400 km between the ground and its flight altitude
at takeoff and landing. We have therefore used a relaxed
spatial coincidence criterion of 1.5◦ around the position of
the aircraft half way of its ascent or descent (about 200 km
from Hyderabad) for comparisons of IASI and MOZAIC.
The MOZAIC data from Hyderabad are further used in de-
tails to help characterize the tropospheric O3 post-monsoon
intra-seasonal variabilty in Sect.3.4.

Raw comparison between in situ and IASI data are impor-
tant because they allow us to evaluate the real quality of the
retrieved O3 data. In order to remove the intrinsic impact of
smoothing and a priori data and to perform more meaning-
ful comparisons, the high resolution validation profiles,xvl ,
have to be smoothed with the averaging kernels matrix of the
low resolution IASI retrievals according toRodgers(2000):

xvl Smoothed= xa +A(xvl −xa) (4)

wherexvl (xvl Smoothed) is the raw (smoothed) O3 validation
profile. As can be understood from Eq. (4), the validation
profile has to cover the whole retrieval altitude range from
the ground up to 10 hPa. As mentioned above (Sect.2.2), the
O3 profiles from our database are based on in situ radiosonde
and MOZAIC profiles completed by coincident MLS assim-
ilated data above their uppermost altitudes. The comparisons
of IASI and sonde data performed for July–December 2008
are presented for both high (poleward of 40◦) and low (equa-
torward of 40◦) latitudes in Fig.3 for profiles and in Fig.4
and Table2 for integrated columns. Comparisons of TOC
(below 250 hPa) from IASI and MOZAIC near Hyderabad
are presented in Fig.5 and Table2. For both high and low lat-
itudes, absolute biases between IASI and O3 raw sonde data
are mostly within±30 % with Relative Standard Deviations
(RSDs) of the differences between 20 and 60 %. At low lat-
itudes, the a priori weighted towards mid-latitude combined
with the low sensitivity of IASI to lower tropospheric O3 are
responsible for the high bias below 700 hPa (Fig.3e). The
bias is therefore largely removed when the sonde profiles are
smoothed using Eq. (4) (Fig. 3f). The retrievals are able to
obtain realistically low O3 in the tropical UTLS where the
differences relative to the a priori are the highest. This result
supports the use of a retrieval method based on the lineariza-
tion of the radiative transfer model. The RSD profile for high
latitudes is very similar to the retrieval error profile displayed
in Fig. 2 with a maximum around the tropopause, validating
the error analysis provided in Sect.2.3. For low latitudes, the
RSD is higher than for high latitudes especially between 300
and 100 hPa. This difference in RSDs is mostly due to the
reduction of the O3 mixing ratios by factors ranging from 2
to 3 at low relative to high latitudes.

Concerning the TOC and UTLS column (Table2), the
RSDs from the differences between raw sonde and IASI data
are ranging from∼ 15 % at high latitudes to∼ 23 % at low
latitudes in good agreement with the retrieval errors from
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Fig. 3. Statistical comparison between O3 profiles retrieved from IASI and coincident (± 1◦, ± 12 hours) sonde profiles for July-December
2008. (a) Mean profiles for high latitudes [90◦S-40◦S,40◦N-90◦N] (solid line) sonde, (dashed line) sonde convolved with IASI Averaging
Kernels (Eq. 4), (dotted line) IASI retrieval (dashed-dotted line) IASI a priori profile. (b) Statistics for high latitudes profiles for raw
ozonesonde data (black solid lines) mean differences (black dashed lines) RSD. (c) Same as (b) for ozonesonde data convolved with IASI
averaging kernels according to Eqn. 4. (d) (e) and (f) Same as (a)(b) and (c) for low latitudes [40◦S-40◦N].
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Fig. 4. Correlation plots between O3 columns retrieved from IASI and computed from coincident sonde profiles for Jul.-Dec. 2008. (a)
UTLS columns. (b) UTLS columns with sonde profiles convolved with IASI Averaging Kernels. (c) Same as (a) for TOC. (d) Same as (c)
for TOC. (blue) low latitudes (orange) high latitudes.

Fig. 3. Statistical comparison between O3 profiles retrieved from IASI and coincident (±1◦, ±12 h) sonde profiles for July-December 2008.
(a) Mean profiles for high latitudes [90◦ S–40◦ S, 40◦N–90◦ N] (solid line) sonde, (dashed line) sonde convolved with IASI Averaging
Kernels (Eq.4), (dotted line) IASI retrieval (dashed-dotted line) IASI a priori profile.(b) Statistics for high latitudes profiles for raw
ozonesonde data (black solid lines) mean differences (black dashed lines) RSD.(c) Same as(b) for ozonesonde data convolved with IASI
averaging kernels according to Eqs.4. (d) (e)and(f) Same as(a) (b) and(c) for low latitudes [40◦ S-40◦ N].

Table 2. Validation of IASI-SOFRID O3 columns with global ozonesonde data and MOZAIC data from Hyderabad during July–December
2008 for the troposphere (ground-225 hPa for ozonesondes and ground-250 hPa for MOZAIC) and the UTLS (225–70 hPa).

Raw sondes Smoothed sondes
bias± RSD (%) R (slope) bias± RSD (%) R (slope)

High latitudesN = 163
Troposphere 13± 16 0.81 (0.65) 13± 9 0.92 (0.91)
UTLS 2± 14 0.93 (1.01) 8± 12 0.96 (1.07)

Low latitudesN = 146
Troposphere 8± 22 0.74 (0.45) 5± 15 0.78 (0.65)
UTLS 20± 23 0.94 (0.99) 10± 10 0.95 (1.00)

Hyderabad (MOZAIC)N = 40
Troposphere 15± 15 0.72 (0.42) 12± 6 0.87 (0.98)
(below 250 hPa)

Sect.2.3. The IASI O3 TOC and UTLS columns are biased
high relative to raw sonde with biases ranging from 2 % for
high latitudes UTLS to 20 % for low latitudes UTLS. This
difference is again due to the difference in UTLS O3 concen-
trations between high and low latitudes. For UTLS O3 partial
columns (Table2), little difference is found between low and
high latitudes and between raw and smoothed ozonesonde
data with correlation coefficients and slopes close to unity

(see Fig.4a and b), highlighting the high sensitivity of IASI
to this atmospheric layer. For the TOC, sonde versus IASI
agreement is still good (R > 0.74, see Fig.4c and d), but the
lower correlation coefficients and slopes for low versus high
latitudes and for raw versus smoothed sonde data result from
the lower sensitivity of IASI to the lower troposphere.

The variations of TOC near Hyderabad from July to
December measured by MOZAIC (14–32 DU, Fig.5a)
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Fig. 4. Correlation plots between O3 columns retrieved from IASI and computed from coincident sonde profiles for July–December 2008.
(a) UTLS columns.(b) UTLS columns with sonde profiles convolved with IASI Averaging Kernels.(c) Same as(a) for TOC. (d) Same as
(c) for TOC. (blue) low latitudes (orange) high latitudes.

Fig. 5. Correlation plots between TOC (below 250 hPa) computed from MOZAIC profiles near Hyderabad and retrieved from IASI coincident
(± 1.5◦, ±12 h) pixels for Jul.–Dec. 2008.(a) TOC from raw MOZAIC data(b) TOC from MOZAIC profiles completed above flight altitude
by MLS data (see text for details) and convolved with IASI Averaging Kernels.

represent only one third of the variations measured by
ozonesondes at low latitudes (10–60 DU, Fig.4c). Never-
theless, IASI data are in good agreement with raw MOZAIC
data near Hyderabad with a similar correlation coefficient
and a similar slope than for the comparison with sonde data
at low latitudes (Table2). Once the validation profiles are
smoothed by the averaging kernels the correlation coefficient
and the slope become very close to unity (Fig.5b) highligth-

ing the ability of IASI to capture TOC variability over central
India. The positive bias of IASI is twice larger for Hyder-
abad than for the global low latitudes and is comparable to
the high latitudes bias. A possible explanation of this dif-
ference is that the highest bias at low latitudes correspond to
the lowest TOC values (below 30 DU, see Fig.4c) which are
comparable to the TOC values measured by MOZAIC near
Hyderabad.
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Fig. 6. Monthly (November 2008) IASI-SOFRID O3 tropospheric (surface-225 hPa) columns. Monthly (November 2008) horizontal winds
from Arpege averaged over 500–650 hPa are represented as black arrows and 500–650 hPa averaged vertical velocities in pressure coordinate
are represented as black contours hatched black at (i) 45◦ clockwise for descent (ω < −0.075 Pa s−1) (ii) 45◦ anticlockwise for ascent
(ω >0.075 Pa s−1). The location of Hyderabad is represented by a black asterisk. White areas are for missing data.

3 Post-monsoon tropospheric O3 variability over South
Asia in 2008

In this section, we will first examine post-monsoon O3 varia-
tions observed by MOZAIC near Hyderabad in central India.
Based on wind field analyses and lagrangian modeling we
will highlight the importance of transport and weather condi-
tions in controlling the observed tropospheric O3 variations.
We will then point out the benefit of IASI O3 data to charac-
terize the variations of O3 over the whole south Asian region.
We first give a brief description of the post-monsoon tropo-
spheric circulation and O3 distribution in November 2008.

3.1 Post-monsoon circulation and mean November 2008
O3 distribution

The withdrawal of the summer monsoon occurs rapidly from
September to early October and by November the wind fields
are similar as during the rest of the winter season (Lawrence
and Lelieveld, 2010). From September to December, the
Inter Tropical Convergence Zone (ITCZ) migrates from In-
dia where it was located during the summer monsoon to the
equatorial eastern Indian Ocean. During the winter season,
the lower tropospheric circulation over the Northern Indian
Ocean is dominated by northeasterly trades. Large-scale
subsidence over the continental source regions prevents up-
ward dispersion of pollutants (Lelieveld et al., 2001). The
mid-tropospheric circulation for November 2008 is displayed
in Fig. 6. It corresponds to the description of the Asian

monsoon autumn byBarry and Chorley(1995). After the
summer monsoon circulation break-up, Pacific easterlies at
500 hPa affect the Bay of Bengal and monsoon westerlies
are established over the Equator. In October, the Subtropi-
cal Westerly Jet (SWJ) migrates south of the Tibetan plateau
and the cool season starts over most of southern and eastern
Asia. The area of high pressure, cold temperature and sub-
sidence (see vertical velocities in Fig.6) over northern India
is connected to the monsoon convection and its associated
ascending velocities (Fig.6) over the equatorial eastern In-
dian ocean by the lateral monsoon circulation (de Laat and
Lelieveld, 2002).

During the post-monsoon season (November 2008), the
distribution of TOC observed by IASI over south Asia
(Fig. 6) is characterized by a strong SE-NW gradient with
values of 20–25 DU over the equatorial Indian Ocean ris-
ing to 30–36 DU over the Arabian Sea. This O3 distribu-
tion clearly results from the mean circulation. Mid tropo-
spheric O3-rich air masses are trapped within the anticyclone
bounded by the westerly jet and the easterly trades over the
Arabian Sea and northern India. Low O3 concentrations are
associated with the equatorial westerly monsoon flow bring-
ing pristine air from the western Indian Ocean towards In-
donesia. The CO and O3 latitudinal gradient observed dur-
ing INDOEX also highlighted the role of the ITCZ as a
barrier for mixing between clean maritime air masses from
the southern Indian ocean and polluted air masses from the
northern hemisphere (Stehr et al., 2002).
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Fig. 7. O3 tropospheric profiles from MOZAIC during landing and take-off at Hyderabad: (solid line) Oct. to Dec. mean profile .(Dashed
line) 9-13-23-26 Nov. average corresponding to high ozone conditions .(Dotted line) 16-19-27 Nov. average corresponding to low ozone
conditions. Error bars correspond to 1σ standard deviations.
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Fig. 8. Time series of O3 tropospheric (surface-250 hPa) columns near Hyderabad from Nov. 1 2008 until Dec. 10 2008 from (asterisque)
MOZAIC (solid line) IASI-SOFRID coincident (± 1.5◦, ± 12 hours) pixels. Error bars correspond to IASI 1σ standard deviations .

Fig. 7. O3 tropospheric profiles from MOZAIC during landing and take-off at Hyderabad: (solid line) October to December mean profile.
(Dashed line) 9–13 and 23–26 November average corresponding to high ozone conditions .(Dotted line) 16–19 19–27 November average
corresponding to low ozone conditions. Error bars correspond to 1σ standard deviations.

Fig. 8. Time series of O3 tropospheric (surface-250 hPa) columns
near Hyderabad from 1 November 2008 until 10 December 2008
from (asterisque) MOZAIC (diamonds) MOZAIC convolved with
IASI Averaging Kernels (solid line) IASI-SOFRID coincident
(±1.5◦, ±12 h) pixels. Error bars correspond to IASI 1σ standard
deviations.

3.2 Observed O3 variability near Hyderabad:
MOZAIC data

Only a few studies have characterized the tropospheric O3
distribution over India especially during the post-summer
monsoon period. Mean data from 6 radiosondes launched
from Kanpur in northern India (26◦ N, 80◦ E) in December
2004 (Gupta et al., 2007) give evidence of almost constant
tropospheric O3 with mixing ratios around 50 ppbv through-
out the troposphere. Based on MOZAIC aircraft data for
1996–2001,Sahu et al.(2009) determined the seasonal vari-
ations of tropospheric O3 over Dehli (28.6◦ N, 77.1◦ E). For
the October–December season, the mean O3 profile over
Delhi shows little vertical variability in the mid-troposphere
with mixing ratios between 50 and 60 ppbv.

The MOZAIC data measured after take-off and before
landing at Hyderabad represent a unique source to docu-
ment tropospheric O3 over central India. The mean post-
monsoon (October–December 2008) O3 profile computed
from MOZAIC data over Hyderabad displayed in Fig.7 is
in good agreement withSahu et al.(2009) and Gupta et
al. (2007) with mixing ratios between 45 and 50 ppbv be-
low 300 hPa. Figure8 presents the TOC derived from the
MOZAIC data from 1 November until 10 December 2008.
During this period, tropospheric O3 varies from 30 DU (9 and
13 November) to less than 15 DU (19 and 27 November). In
order to characterize the vertical extent of these variations,
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Fig. 9. METEOSAT-7 images of November 2008 storms over India: (a) storm Khai-Muk on November 16 at 00 GMT, (b) storm Nisha on
November 27 at 12 GMT.
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Fig. 10. FLEXPART retroplume mean residence time fraction (MRTF, in %) for particles reaching the mid-troposphere (4000-6000 m a.g.l.)
over Hyderabad on November 11 for layers: (a) BL (0-3 km) (b) UT (8-15 km).
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Fig. 11. Same as Fig. 10 for November 29.

Fig. 9. METEOSAT-7 images of November 2008 storms over India:(a) storm Khai-Muk on 16 November at 00:00 GMT,(b) storm Nisha
on 27 November at 12:00 GMT.

Fig. 10.FLEXPART retroplume mean residence time fraction (MRTF, in %) for particles reaching the mid-troposphere (4000–6000 m a.g.l.)
over Hyderabad on 11 November for layers:(a) BL (0–3 km)(b) UT (8–15 km).

Fig. 7 displays mean MOZAIC O3 profiles for periods of el-
evated (9, 13, 23 and 26 November) and low (16, 19 and
27 November) TOC. For the low O3 period, the decrease of
O3 relative to the mean post-monsoon profile (15–20 ppbv)
is significant within the whole sampled vertical range. As
can be seen from Fig.7, the profile corresponding to periods
of elevated O3 during November–December. is closer to the
post-monsoon mean profile with increases of∼10 ppbv.

The question arising from MOZAIC observations is: what
causes a factor of 2 variation in the tropospheric O3 concen-
tration over central India within a couple of days ? A detailed
analysis of the regional weather conditions and of air-mass
transport pathways presented in Sect.3.3will help to address
this question.

3.3 O3 weather relationship over Hyderabad

The severe and fast drops of O3 concentration affecting
the whole troposphere over Hyderabad as observed with
MOZAIC must be correlated to dramatic changes of the tro-
pospheric circulation. In October–November, the confluence
between easterlies at 500 hPa and equatorial westerlies gen-

erate disturbances resulting in the formation of major storms
over the Bay of Bengal and maximum rainfall in south-east
India (Barry and Chorley, 1995). Examining weather fore-
cast information and satellite cloud images, we found that
in November 2008, India was hit by two particularly strong
cyclonic storms.

The Khai Muk storm built up over the Bay of Bengal on
15 November 2008 and moved north/north westward towards
India. It came inland over the state of Andrah Pradesh dur-
ing the night and became a deep depression on 16 November
(see Fig.9a). The strong rainfalls caused by the storm be-
tween Guntur and Vishakhapatnam were responsible for the
destruction of crop fields and the displacement of thousands
of inhabitants. Cyclone Khai-Muk weakened rapidly once
encountering land, and only a remnant cyclonic circulation
managed to cross the peninsular landmass and slide into the
Arabian Sea off the Karnataka-Goa coasts on 17 November.
We see in Fig.8 that the TOC dropped near Hyderabad the
first time on 17 November just after the crossing of Khai-
Muk over Andrah Pradesh.
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Fig. 11. Same as Fig.10 for 29 November.

A depression formed over Sri Lanka on November 25 and
intensified into a cyclonic storm called Nisha on 26 Novem-
ber close to the coast of Tamil Nadu. It caused heavy rains,
floods and hundreds of death in Tamil Nadu. Nisha crossed
the coast close to Karaikal in south-east India in the early
morning of 27 November and headed northwest towards the
Karnataka state (see Fig.9b). Here again, the strong drop in
O3 near Hyderabad on 27 November follows the crossing of
Nisha.

In order to determine long range and meso-scale trans-
port pathways as well as geographical regions influenc-
ing MOZAIC O3 observations, we use simulations with
the FLEXPART Lagrangian particle dispersion model (ver-
sion 6.2) (Stohl et al., 1998, 2005). FLEXPART enables to
establish a relationship between a source which may be a
region characterized by pollutant emissions and a receptor
which may be a location impacted by these emissions. A
large number of particles is released from the receptor lo-
cation and transported backward in time. FLEXPART out-
puts the residence time of all the particles which is a four-
dimensional variable that represents the sensitivity of the
source to the receptor. In our simulation, the residence time is
output every 6 h of integration on a uniform grid of 2◦ latitude
× 3◦ longitude and in 22 vertical layers. Because the relative
values of residence time are more meaningful than the ab-
solute values (that depends on the number of particles re-
leased), we use the mean residence time fraction (MRTF) to
describe the transport pathways highlighted by FLEXPART
simulations. For each gridcell, this variable is computed as
the residence time integrated over the whole simulation pe-
riod, divided by the residence time integrated over the global
domain and also over the whole simulation.

The model is driven by ECMWF wind fields with a tempo-
ral resolution of 3 h, with 0.3× 0.3◦ horizontal resolution and
91 vertical levels. FLEXPART parameterizes turbulence by
solving Langevin equations (Stohl and Thomson, 1999), and
uses the parameterization scheme ofEmanuel and Zivkovic-
Rothman(1999) to describe all types of convection. Vertical
transport of air-masses result from the combination of large-

scale advection by the ECMWF winds and vertical mixing
by the mass-fluxes computed by the convective scheme.

We used FLEXPART to make 10 days backward simu-
lations with 1M particles released from 3-D boxes between
4000 and 6000 m above ground level (a.g.l.) around Hyder-
abad. Simulations performed with 3-D boxes of 0.5◦ and 3◦

around Hyderabad give very similar results. In the follow-
ing, we discuss results from simulations with 3◦ 3-D boxes.
In order to synthesize the results of the FLEXPART runs,
we show the results in only 2 layers : the Boundary Layer
(BL) 0–3 km and the Upper Troposphere (UT) 8–15 km. Fig-
ures10 and11 display the MRTF integrated over these two
layers, for 11 and 29 November, respectively.

Based on the variations observed by MOZAIC and IASI
(Fig. 8) we investigated 4 cases corresponding to high and
low tropospheric O3 over central India.

The first case, 11 November, corresponds to conditions
close to the mean November conditions with high TOC ob-
served near Hyderabad by MOZAIC and by IASI from 9 to
15 November (Fig.8). The MRTFs in the two layers defined
above are displayed in Fig.10. An important fraction of the
particles reaching the middle troposphere over Hyderabad
have spent some time in the BL over the Indo-Gangetic plain
within the 10 days prior to their arrival (Fig.10a). They fol-
lowed the low-level anticyclonic circulation which is ending
with the northeasterly trades flowing from the Bay of Bengal
towards Hyderabad. BL air masses from the highly popu-
lated and polluted Indo-gangetic plain are loaded with O3
precursors and partly responsible for enhanced O3 concentra-
tions in the mid-troposphere at Hyderabad. Based upon ob-
servations over the Indian Ocean, studies performed within
the INDOEX project (see e.g.Lawrence and Lelieveld, 2010;
Lelieveld et al., 2001; Verver et al., 2001) have shown that
this transport pathway contributed to the Indian continental
outflow over the Bay of Bengal and the Indian Ocean during
the winter season. The results presented here, based upon
MOZAIC observations at Hyderabad, complement INDOEX
in showing that this transport pathway also impact the tropo-
spheric composition over central India. Air masses from the
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Fig. 12. Same as Fig.6 for (a) 10–12 November 2008,(b) 16–18 November 2008,(c) 24–26 November 2008,(d) 28–30 November 2008.
The Arpege winds presented correpsond to averages for the 5 days prior to the middle day of the 4 periods. White areas are for missing data.

UT are transported eastward following the SWJ and are sub-
siding over the cold regions of northern India before reaching
Hyderabad. During 1–11 November, the SWJ is undulating
around its main position at 25◦ N, with an excursion above
the eastern Mediterranean and a large wave over central Asia
(not shown). As a consequence, O3-rich air masses originat-
ing from the Mediterranean and central Asian mid-latitude
UTLS are reaching the mid-troposphere at Hyderabad on 11
November as can be seen on Fig.10b. The global integration
of the MRTFs shows that the UT/UTLS is contributing more
(42 %) to the air masses reaching the middle troposphere
around Hyderabad on 11 November than the BL (24 %) fur-
ther highlighting the importance of the UTLS in controling
the high O3 concentrations over south Asia in winter. FLEX-
PART simulations for 25 November (not shown) character-
ized by similar TOC over Hyderabad also show air masses
coming eastward from the UTLS along the SWJ.

Before 25 November, the circulation has been strongly
perturbed by the crossing of Khai-Muk with in particular the
suppression of the northeasterly trades over the Bay of Ben-
gal and no air masses are coming from the Indian BL to Hy-
derabad on 25 November.

The third case, 29 November, corresponds to the situation
left after tropical storm Nisha crossed over India. The cross-
ing of the storm resulted in large-scale modifications of the
circulation over south Asia. As can be seen in Fig.11, air
masses from the BL are travelling from the Bay of Bengal

and the Indian Ocean following the storm track and UT air
masses are mostly originating from the Indian Ocean south
of India. The uplift of pristine air-masses from the Marine
Boundary Layer (MBL) to the mid-troposphere within the
storm results in the large decrease in tropospheric O3 near
Hyderabad. Moreover, UT air masses from the Indian Ocean
are poor in O3 relative to mid-latitude UTLS air-masses, and
their north-westward transport is also contributing to the de-
crease in O3 over Hyderabad. Contrary to what has been
shown for 11 November, on 29 November the global BL
contribution (37 %) is higher than the global UT contribution
(32 %) further demonstrating the large impact of the MBL’s
airmass transport upon the drop of O3 at Hyderabad. The last
case (not shown) corresponds to 17 November, characterized
by low TOC over Hyderabad after tropical storm Khai-Muk
crossed over India. The results are very similar to those of 29
November, with air masses mostly coming from the MBL of
the Bay of Bengal.

This analysis has led us to the following questions: does
the variability determined from the MOZAIC data extend
over a large region? Is IASI able to capture the fast varia-
tions of tropospheric O3 at the continental scale? We now
present our IASI O3 data that will provide answers to those
questions.
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3.4 O3 variability over the Indian region: IASI data

The comparison of TOC measured by IASI and MOZAIC
over Hyderabad during the studied period is displayed in
Fig. 8. As already shown in Sect.2 for the July–December
period, the agreement between IASI and MOZAIC raw data
is better for high than for low TOC that are overestimated
by IASI. Figure8 highlights an excellent agreement between
IASI and MOZAIC after smoothing of the validation profiles
with the averaging kernels as was demonstrated in Sect.2. It
is noteworthy that IASI is able to capture the fast variability
of O3 and particularly the sharp drops of TOC from 14 to
16 and from 27 to 29 November with amplitudes very close
to those observed by MOZAIC smoothed with the averag-
ing kernels. The variations measured by both instruments
on both occasions, which range from 12 to 26 %, are much
larger than the 6 % RMS of the differences between the two
datasets (see Table2). Based on the time series from Fig.8
we have focused our attention on periods corresponding to
low (16–18 and 28–30 November) and elevated (10–12 and
24–26 November) TOC over Hyderabad. The distributions
of TOC for the elevated O3 cases and the tropospheric cir-
culation prior to the correponding periods (Fig.12a and c)
are similar to the November mean (Fig.6). These two pe-
riods are also characterized by missing data over large parts
of the southern Indian Ocean and the Bay of Bengal corre-
lated to cloudy conditions (low OLR values, not shown). The
two low O3 cases (Fig.12b and d) show very similar O3 dis-
tributions north of 10◦N with decreased TOC over the Bay
of Bengal and most of India relative to the mean November
distribution. As highlighted for the Hyderabad case with the
MOZAIC data, these large deviations in O3 are correlated
to the crossing of the two tropical storms over India (see
Sect.3.1 and Fig.9). The storms are responsible for large
scale perturbations of the weather pattern characterized by
a cyclonic circulation associated with ascending vertical ve-
locities over the southern Bay of Bengal and southern India
as shown in Fig.12b and d. We have performed FLEXPART
simulations over a large 3-D box roughly encompasing the
region of decreased TOC from 75 to 85◦ E and from 10 to
25◦ N. The results (not shown) are very close to the results
corresponding to the Hyderabad simulations (Sect.3.3). The
only noticeable difference concerns enhanced MRTFs in the
BL over the eastern coast of the Bay of Bengal, probably cor-
responding to transport to the south of the domain by north-
easterly trades.

4 Conclusions

This study made use of data from the Metop/IASI sensor to
determine the variability of tropospheric O3 over south Asia
during the post-monsoon season of 2008. The first step has
been to characterize and to validate the IASI O3 retrievals
performed with the SOFRID algorithm dedicated to the op-

erational processing of global IASI data. Tropospheric O3
profiles are retrieved from IASI radiances with almost two
independent pieces of information (DFS = 1.7), namely the
TOC between the surface and 225 hPa, and the UTLS col-
umn from 225 to 70 hPa. Theoretical retrieval errors are 18 %
for UTLS and 15 % for the troposphere while RSD of com-
parisons with radiosonde data are ranging from 15 % at high
latitude to 23 % at low latitude. Both for high and low lat-
itudes, IASI UTLS O3 columns are in excellent agreement
with radiosonde data with correlation coefficient and correla-
tion slopes very close to unity. IASI TOC are in good agree-
ment with sonde data with slightly better results concerning
high than low latitudes. The effect of the smoothing by the
retrieval averaging kernels is also more pronounced when
dealing with TOC than with UTLS columns highlighting dif-
ferences in sensitivity in the two layers. MOZAIC airborne
data at Hyderabad have been used to validate IASI TOC over
central India. Thanks to their high frequency, MOZAIC data
have demonstrated that IASI was able to capture the intra-
seasonal O3 variability in that particular region. Neverthe-
less, IASI detects a lower TOC variability than MOZAIC
with, in particular, an overestimation of the lowest TOC.
The excellent agreement between IASI TOC and MOZAIC
smoothed TOC clearly indicates that the smoothing applied
to the true O3 profiles by the retrieval is responsible for this
partial loss of information.

More specifically, MOZAIC O3 observations allowed us
to characterize variations of tropospheric O3 near Hyderabad
during November and early December 2008. MOZAIC mea-
sured relatively high TOC during the post-monsoon period
studied, with two important and rapid decreases. From satel-
lite cloud images and meteorological reports we have linked
these two O3 drops to the crossing of large tropical storms
over central India during November 2008. We performed La-
grangian dispersion modelling with the FLEXPART model
to quantify the transport pathways corresponding to high and
low TOC over Hyderabad. According to FLEXPART La-
grangian simulations, the elevated O3 concentrations in the
mid-troposphere mainly result from two different causes: (1)
BL air-masses transported by the north-easterly trades from
the polluted Indo-Gangetic plain and photochemically pro-
cessed during transport (2) eastward transport of UT air-
masses along the SWJ followed by subsidence over northern
India, and further transport by the north-easterly trades. The
anomalously low tropospheric O3 concentrations during two
periods in November 2008 near Hyderabad were caused by
the upward and north-westward transport of pristine MBL air
masses from the Bay of Bengal associated with the crossing
of the two severe tropical storms.

IASI data were used for the first time to study tropospheric
O3 near a tropical region, namely south Asia. Thanks to its
exceptional spatio-temporal coverage, IASI enabled to ex-
tend the determination of tropospheric O3 variability with a
daily frequency at the continental scale. Comparisons with
MOZAIC over Hyderabad have validated the TOC observed
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by IASI over India. IASI data have shown that the Hyderabad
variability was representative of the whole of central and
southern India with elevated TOC during most of the period
and large drops associated to the crossing of the two tropi-
cal storms. This study has therefore highlighted the potential
of IASI to characterize tropospheric O3 mesoscale variability
over a tropical region, paving the way to a number of applica-
tions. The operational processing with the SOFRID software
will in particular enable the use of IASI tropospheric O3 data
for (i) case studies involving chemistry and transport pro-
cesses, (ii) the determination of seasonal and intra-sesonal
variations, and (iii) near-real time processing with an assim-
ilation system to produce chemical weather forecasts.
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