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Abstract  27 

With 300,000 paraplegic persons only in France, ischial pressure ulcers represent a major 28 

public health issue. They result from the buttocks' soft tissues compression by the bony 29 

prominences. Unfortunately, the current clinical techniques, with – in the best case – 30 

embedded pressure sensor mats, are insufficient to prevent them because most are due to high 31 

internal strains which can occur even with low pressures at the skin surface. Therefore, 32 

improving prevention requires using a biomechanical model to estimate internal strains from 33 

skin surface pressures. However, the buttocks’ soft tissues’ stiffness is still unknown. This 34 

paper provides a stiffness sensitivity analysis using a finite element model. Different layers 35 

with distinct Neo Hookean materials simulate the skin, fat and muscles. With Young moduli 36 

in the range [100 - 500 kPa], [25 - 35 kPa], and [80 - 140 kPa] for the skin, fat, and muscles 37 

respectively, maximum internal strains reach realistic 50 to 60 % values. The fat and muscle 38 

stiffnesses have an important influence on the strain variations, while skin stiffness is less 39 

influent. Simulating different sitting postures and changing the muscle thickness also result in 40 

a variation in the internal strains. 41 

 42 
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 43 

1. Introduction 44 

With more than 300,000 paraplegic persons only in France among which 80 % will 45 

develop a pressure ulcer in their life because they do not change posture by reflex, preventing 46 

ischial pressure ulcer is critical. Pressure ulcers start at the interface between bones and soft 47 

tissues underneath an intact skin and advance outwards rapidly causing substantial 48 

subcutaneous damages before being visible at the skin surface. Usual prevention in the 49 

clinical routine consists in using cushions to reduce the pressure below the patients’ buttocks 50 

and regularly changing their sitting posture. This procedure is not always effective as it 51 

demands a constant monitoring. When prevention fails, pressure ulcers develop and patients 52 

must stay in bed for months before healing and/or undergo heavy surgery. 53 

Measuring surface pressures can help in alerting users against skin injuries (Pipkin and 54 

Sprigle, 2008), but these measurements cannot predict dangerous internal tissue loadings 55 

(Linder-Ganz et al., 2008) responsible for most of the deep pressure ulcers. For example, a 56 

similar pressure map may be observed under the buttocks of a heavy paraplegic person with 57 

sharp ischial tuberosity (IT) and a thin person with blunt ITs; however, deep pressure ulcer 58 

formation depends on the IT curvature as well as the thickness of the soft tissues (Sopher et 59 

al., 2010). Quantitatively estimating the internal strains from the interface pressures while 60 

taking into account the anatomical variability is only possible by (1) building a patient-61 

specific biomechanical model of the soft tissues/bony prominence and (2) using this 62 

numerical model to compute the internal strains (Elsner and Gefen, 2008, Loerakker et al., 63 

2011).  64 

Several biomechanical models of the gluteal region have already been proposed. (Linder-65 

Ganz et al., 2009) proposed a 2D biomechanical model using a Neo Hookean constitutive law 66 
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for the muscles (E = 31 kPa, υ = 0.49) and the other soft tissues (E = 9 kPa, υ = 0.49) to 67 

evaluate the internal strains in the buttocks of a paraplegic patient. This study was completed 68 

by a MRI analysis (Shabshin et al., 2010) of several patients and showed an average maximal 69 

internal strain of 72 % for the muscles and 35 % for the fat tissues when the subjects sit on a 70 

rigid chair. While sitting on a softer material (foam), the average maximal internal strain 71 

decreases to 64 % for the muscles and to 23 % for the fat tissues. (Oomens et al., 2003) 72 

presented a 2D biomechanical model of the buttock with a simplified ischium and three layers 73 

of tissues (skin, fat and muscles) modeled with an Ogden material (αskin = 10, �skin = 8 kPa, 74 

αfat = 5, �fat = 10 kPa, αmuscle = 30, �muscle = 3 kPa). The simulation showed that the maximal 75 

internal strain, when lying on a cushion, was below the IT in the fat layer. Another study from 76 

(Verver et al., 2004) used a Neo Hookean constitutive law to model the skin (E = 150 kPa, υ = 77 

0.46) and a Mooney Rivlin constitutive law to model the other soft tissues (A1 = 1.65 kPa, 78 

A2 = 3.35 kPa, υ = 0.49) in a 3D biomechanical model. It showed that the pressure 79 

distribution depends on the stiffness of the chair cushion, on the stiffness of the buttocks’ soft 80 

tissues, and on the posture of the subject. A three-value sensitivity analysis of the stiffness 81 

was performed for the soft tissue layer (muscle and fat combined), showing some influences 82 

on the resulting stresses. 83 

It appears that the literature has proposed many values for stiffness parameters as well as 84 

various modeling hypotheses (homogeneous model, different layers with or without the 85 

skin…) from one study to the other. In order to quantify these differences, this paper presents 86 

a sensitivity analysis of the buttocks soft tissues’ stiffness using a 3D biomechanical model of 87 

the gluteal soft tissues in sitting position. The study separates the soft tissues in different 88 

materials for each of the three layers of the buttocks: skin, fat, and muscles. The mechanical 89 

parameter ranges are defined iteratively. The algorithm starts with the values found in the 90 

literature and refines them in order to obtain an average deformation between 50% and 60 %, 91 
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considering the range of maximal internal VM strains observed in the literature (Linder-Ganz 92 

et al., 2009, Oomens et al., 2003,
 
Shabshin et al., 2010, Verver et al., 2004), within a patient-93 

specific model. The second part of the study focuses on two different sitting postures and on 94 

the influence of the muscle layer thickness. 95 

 96 

2. Materials and Methods 97 

The first step of this study is to build the finite element (FE) mesh from a dataset. The 98 

boundary conditions are defined before specifying the different material properties applied to 99 

the buttocks soft tissues. The modeling and simulation are performed within the ArtiSynth 100 

open source framework (Lloyd et al., 2012) (www.artisynth.org).  101 

a. Creation of the finite element mesh 102 

The anatomy of our model is extracted from the dataset of a young healthy male 103 

subject (38 years old, 100 Kg and 1.90 m). The subject’s CT exam (image size 512x512x403, 104 

and resolution 0.97x0.97x1 mm
3
, fig. 1d) was semi-automatically segmented to acquire the 105 

external surfaces of the skin, the muscles and the bones, using the ITK-Snap software’s snake 106 

segmentation (Yushkevich et al., 2006). Because the subject was lying on his right side 107 

(which was therefore compressed), only his left buttock was segmented. The right side was 108 

reconstructed by symmetry. The muscles were segmented as a single entity as it was too 109 

difficult to separate them on the dataset. 110 

 Using an automatic hexahedrons-dominant FE mesh generator (Lobos et al., 2010), the 111 

segmented skin surface was filled with finite elements as illustrated in fig 1a. Because we 112 

assume the bones to be rigid, they are represented as non-deformable solids. The different 113 

layers are also taken into account by this mesh generator which creates a finite element mesh 114 



6 

 

with clear and precise boundaries between each of them, fig. 1b and c. The mesh is composed 115 

of 164,690 linear elements (including 45,374 hexahedrons, 40,470 pyramids, 54,778 116 

tetrahedrons, and 24,068 wedges) and 89,136 nodes. 117 

b. Boundary conditions 118 

In our simulation, gravity is not taken into account since it was shown that its 119 

influence is limited when buttocks are in a sitting configuration (there is at least a 100 fold 120 

difference between the influence of the subject weight on the whole buttocks and the 121 

influence of the gravity when applied to those tissues). The finite element nodes at tissue/bone 122 

interface are fixed, fig. 1b and c, as a no sliding binding between the soft tissues and the bones 123 

is assumed.  124 

The model is subject to a set of pressures measured with a commercial pressure sensor 125 

(www.zebris.de, with 50x51 sensors of 0.8 cm² each). The subject was sitting on the sensor 126 

with the feet not touching the ground and his back not on the chair rest so that all his weight 127 

was on the pressure sensor, his arms crossed on his chest. The recorded pressure map is 128 

shown on fig 2. The highest pressure reaches 4 N.cm
-2

. The finite element nodes of the skin 129 

surface are orthogonally projected onto this pressure map to determine the pressure values for 130 

each of them. To ensure the convergence of the simulation this pressure is applied as a linear 131 

ramp from 0 % of the pressure at 0.1 s to 100 % of the pressure at 1.1 s. The pressure is 132 

applied along the normal at each of the nodes and taking into account the surface of the 133 

neighboring elements. These normal and surface are recomputed at each time step. 134 

c. Buttocks model 135 

In order to enhance the anatomical realism of the model, the three main soft structures 136 

of the buttocks are considered for the finite element model, namely the skin, fat, and muscles. 137 

Fig 1b and c show cross sections of the mesh after identifying these structures. There are 138 
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83,001 elements in the fat layer, 73,623 in the muscle layer and 8066 in the skin layer. The 139 

first step consists of representing the skin as a thin layer of elements at the outer surface of the 140 

finite element mesh built in section 2.a. This 1.5 mm layer (Hendriks et al., 2006) is extruded 141 

from the finite element mesh. It results in a 1-element thick layer representing the skin. 142 

In a second step, the elements representing the muscle layer, fig 1b and c, are 143 

identified by finding the elements of the finite element mesh located inside the muscle surface 144 

segmented from the medical dataset. Finally, the elements between the skin layer and the 145 

muscle layer are considered as fat tissues.  146 

These three layers are modeled using a compressible Neo Hookean constitutive 147 

material (Bonnet & Wood, 1997). Such material exhibits characteristics that can be identified 148 

with the familiar material parameters found in linear elastic analysis. Its energy function 149 

depends on the two Lamé parameters and can also be expressed as a function of the shear and 150 

bulk modulus as well as a function of the Young modulus E and Poisson’s ratio ν (see Bonnet 151 

& Wood, 1997 for details). We have chosen in this paper to provide E and ν values so that the 152 

material can be compared with other constitutive materials proposed in the literature. Since 153 

the main objective of our study was to provide a sensitivity analysis as concerns the tissues’ 154 

stiffness (modeled with the Young modulus), a fixed value of 0.49 was assumed for the 155 

Poisson’s ratio. This value was already proposed by other groups (Linder-Ganz et al.,  2009, 156 

Verver et al., 2004) since it has the advantage of representing the quasi-incompressibility for 157 

the buttocks soft tissues. To evaluate the influence of the stiffness parameters of each layer, a 158 

sensitivity analysis was carried out by setting the layers’ Young moduli to different values 159 

ranging from 5 to 40 kPa for the fat layer (every 5 kPa), from 40 to 160 kPa for the muscles 160 

(every 20 kPa), and from 100 to 500 kPa for the skin (every 100 kPa).  Those values were 161 

chosen according to the ones reported in the literature. 162 
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d. Evaluation of three different sitting postures 163 

Based on the existing literature
 
(Linder-Ganz et al., 2009, Oomens et al., 2003, 164 

Shabshin et al., 2010, Verver et al., 2004), further simulations are carried out, using the 165 

“reference” constitutive parameters derived from the biomechanical model. From this model, 166 

a study of the influence of two different sitting postures is performed: in the initial position 167 

(with the trunk forming a 110 degree angle with the legs) and in a more upright sitting 168 

position (with the body forming a 90 degree angle with the legs). To perform this change of 169 

angle, the segmented surface of the skin and bones are deformed using the lattice tool in 170 

Blender (blender.org). The same pressure map is applied in both cases.  171 

A second posture test is performed by comparing the initial sitting posture constrained 172 

with the initial pressure map, fig 2, and the initial sitting posture constrained with a different 173 

pressure map of the same healthy young subject. In this case, the subject’s weight is deported 174 

to his right side, fig 3, to simulate unilateral sitting posture. Comparing those two postures 175 

allows simulating the change of postures that a paraplegic patient might experience during the 176 

day. 177 

Finally, the influence of the thickness of the muscle layer is also considered in the 178 

initial sitting posture (with the 110 degree angle). The muscle layer is reduced by 10 mm and 179 

20 mm (from about 19 cm at its most) to study the consequences of the decrease of its 180 

thickness in conjunction with the increase of fat thickness. These simulations were chosen 181 

because the subject who participated to the development of our biomechanical model is young 182 

and healthy and consequently has a fairly important layer of muscles whereas older and/or 183 

paraplegic patients may have thinner muscle layers. 184 

 185 

 186 
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3. Results 187 

As mentioned in the introduction, pressure ulcers are due to high internal strains even 188 

though low pressures are measured at the skin surface. The risk of formation of a pressure 189 

ulcer should therefore be assessed based on the level of maximal internal strains in the FE 190 

mesh. The strain measure commonly used in the literature is the Von Mises (VM) equivalent 191 

strain (Linder-Ganz et al., 2008, Oomens et al., 2003). Based on the work of (Loerakker et al., 192 

2011), another criterion, namely the volume of the largest zone with contiguous nodes with 193 

VM strains over 20 %, was measured during the simulations and is discussed in the appendix. 194 

a. Buttocks model sensitivity analysis 195 

The influence of the Young moduli chosen for the three types of soft tissues is 196 

displayed in figure 4 which shows the maximal VM strains below the ischial tuberosities for 197 

the 245 simulations made with different Young moduli defined for the skin (Eskin), fat (Efat), 198 

and muscle (Emuscle) layers. From left to right, the fat Young’s modulus varies from 10 kPa to 199 

40 kPa. For a given fat Young’s modulus, the moduli for the skin and muscle vary 200 

respectively from 100 kPa to 500 kPa and from 40 to 160 kPa. 201 

An example of a map of the maximal VM strains is given in Figure 5. It shows that 202 

they are located below the IT, in the fat layer, close to the muscle/fat interface. This is the 203 

case for most of the simulations. It must be noted that occasionally the maximal VM strains 204 

are located inside the muscle layer, close to the bone/muscle interface, when the muscles’ 205 

Young’s modulus is close to the fat’s Young’s modulus, for example when (Emuscle, Efat) = (40 206 

kPa, 40 kPa) or (Emuscle, Efat) = (60 kPa, 40 kPa). 207 

As concerns the Young moduli chosen for the fat, it appears that values below 20 kPa 208 

lead to huge strains (more than 100%), far above the deformations mentioned in the literature. 209 

It seems therefore that such values are not realistic. 210 
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Looking at figure 4 in more details, it appears that the strains levels are not very 211 

sensitive to the Young moduli chosen for the skin tissues. Indeed, with skin moduli ranging 212 

between 100 and 500 kPa, there is an average variation of 3.7 % of the VM strains with a 213 

standard deviation of 3.3 percentage points (PPs). The minimum VM strains variation is 0.1% 214 

for (Emuscle, Efat) = (120 kPa, 40 kPa) while the maximum VM strains variation only reaches 215 

17.1 % for (Emuscle, Efat) = (40 kPa, 10 kPa).  216 

On the contrary, the strain sensitivity to the Young’s modulus of the muscle is more 217 

important with a VM strain variation of 38.5 % with a standard deviation of 15.9 PPs. For 218 

Emuscle’s range, minimum and maximum VM strains of 1.5 % and 54.8 % are measured 219 

respectively for (Efat, Eskin) = (5 kPa, 500 kPa) and (40 kPa, 500 kPa). Finally, the most 220 

sensitive parameter is the Young’s modulus of the fat with a strain variation of 71.1 % and a 221 

standard deviation of 21.6 PPs. For Efat’s range, minimum and maximum VM strains of 22.8 222 

% and 92.7 % are measured for respectively (Emuscle, Eskin) = (40 kPa, 100 kPa) and (160 kPa, 223 

100 kPa). Overall, it appears that the influence of the skin stiffness can be neglected compared 224 

to ones of the fat and muscle, among which the influence of fat stiffness is the most important. 225 

Finally, considering the range of maximal internal VM strains observed in the 226 

literature and in Figure 4 (i.e. between 50 % and 60 %), the following material parameter 227 

values could lead to these deformations and are therefore assumed to be realistic: Eskin in the 228 

range [100 - 500 kPa], Efat in the range [25 - 35 kPa], and Emuscle in the range [80 - 140 kPa].  229 

In the rest of the paper, we propose to define a “reference” set of values inside these 230 

realistic ranges, namely Eskin = 200 kPa, Efat = 30 kPa, and Emuscle = 100 kPa. These values 231 

lead to a maximal strain of 57.4 %. They will be used as a reference for the simulations 232 

provided to study the influence of two different sitting postures and muscle layer thickness.  233 

b. Consequences of the different sitting postures on the internal VM strains 234 
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The two sitting postures described in section 2.d (on one side or sitting upright) are 235 

simulated in order to evaluate their respective effect on the maximal internal strains. As 236 

mentioned above, those simulations are performed with the biomechanical model using the 237 

“reference” parameters. 238 

When sitting in the upright position, the maximal internal strain observed is 64.1 %, 239 

which represents an increase of 6.7 VM strain PPs compared to the initial position (a maximal 240 

VM strain of 57.4 % was observed at 110 degrees). 241 

When sitting on the right side of the buttocks - a situation represented by the pressure 242 

map of fig. 3 - the maximal internal strain observed is 64.2 %, which represents an increase of 243 

6.8 VM strain PPs compared to the initial position (where the buttocks are evenly positioned 244 

on the platform with an angle of 110 degrees).  245 

c. Effect of the variation of muscle thickness on internal strains 246 

To assess the influence of the thickness of the muscle layer on maximal VM strains, 247 

two new biomechanical models were created by reducing the muscle thickness by 10 mm and 248 

20 mm, as explained in section 2.d. Note that by consequences, the fat layer thickness 249 

increases by 10 and 20 mm. Again, the simulations are performed with the “reference” 250 

mechanical parameters. 251 

With 10 mm and 20 mm muscle layer thinnings, maximal internal VM strains of 71.9 252 

% and 97.7 % are observed respectively, which represent an increase of 14.5 and 40.3 PPs 253 

compared to the initial case. Those maximal strains are again located below the IT, in the fat 254 

layer, close to the muscle/fat interface. Of course, because of the reduction of the muscle 255 

thickness, this interface is closer to the bony structure than in the initial model. 256 

 257 
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4. Discussion and conclusion 258 

A subject-specific 3D finite element biomechanical model of the buttocks was 259 

introduced to study the influence of material stiffness, soft tissue layers thicknesses and 260 

postures onto internal strains. The model is built from the segmentation of a CT scan which 261 

provided the surfaces of the skin, muscles and bones. It includes the main structures that 262 

constitute the buttock soft tissues, namely the skin, fat and muscles. This model uses a 263 

compressible Neo Hookean constitutive law, with a Poisson ratio of 0.49. A wide range of 264 

Young moduli was implemented to evaluate the influence of each soft tissue layer (Efat = 10 265 

to 40 kPa, Emuscles = 40 to 160 kPa, and Eskin = 100 to 500 kPa). These evaluations show that 266 

the skin layer has little influence on the maximal strains. This is probably due to the fact that 267 

this layer is very thin and quite stiff. On the other hand, because of their comparatively large 268 

thicknesses and lower stiffnesses, the fat and muscle layers have much more influence. Based 269 

on the results for this subject and given the maximal VM strains observed in the literature, a 270 

maximal internal strain between 50 and 60 % was assumed to be the most realistic one and 271 

was obtained with Eskin in the range [100 - 500 kPa], Efat in the range [25 - 35 kPa], and Emuscle 272 

in the range [80 - 140 kPa]. Furthermore, this sensitivity analysis shows that the maximal VM 273 

strains are mainly located below the IT, in the fat layer, close to the muscle/fat interface. This 274 

tissue will consequently be suffering the most from pressure ulcers. The maximal VM strains 275 

occasionally appear inside the muscle layer, close to the bone/muscle interface, but only when 276 

the muscles’ Young’s modulus is similar to the fat’s Young’s modulus, which is probably the 277 

case for paraplegic or elderly persons. 278 

This study also allowed evaluating the influence of three different sitting postures: 279 

sitting with a 110 degree angle between legs and torso (initial posture), sitting with a 90 280 

degree angle between legs and torso (upright), and sitting only on the right side of the 281 

buttocks. Simulations showed that sitting in the upright posture increases the maximal internal 282 
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VM strain by 6.7 PPs as compared to 57.4 %. This could be explained by the position of the 283 

ischial tuberosity: at 90 degrees, the ischia protrude more and probably act more like picks 284 

stabbing the soft tissues than in the 110 degree sitting posture. The displacements of the 285 

cushioning muscle layer with respect to the more or less protruding ischia, not simulated here, 286 

should also be considered as a possible cause. This observation could be different for other 287 

subjects because of the distinct morphology of their ischia or different soft tissues layer 288 

thicknesses. When sitting on the right side of the buttocks, the maximal internal strain 289 

increases by 6.8 PPs compared to the initial posture. This increase is due to the weight 290 

transfer on the right side. Intuitively, a larger increase could be expected. This discrepancy 291 

can be explained by the fact that the subject’s total weight was not only transferred on his 292 

right buttocks, but also on his right leg (light blue zone on fig. 3), which is not included in our 293 

model. Therefore the recorded pressure pattern does not reflect an unsupported unilateral 294 

weight transfer and the resulting strains are probably lower than they should be. This 295 

observation indicates that the buttocks model should consequently be extended to include the 296 

upper thigh. 297 

Finally, the influence of the muscle layer thickness has been studied by reducing it by 298 

10 and 20 mm. It showed an increase of the maximal internal strains by 14.5 and 40.3 VM 299 

strain PPs, respectively. The location of those strains in the fat layer below the ischia indicates 300 

that paraplegic patients with a thinner muscle layer or fatter patients might be more likely to 301 

develop a pressure ulcer. Again, this has to be verified on more than one subject but this 302 

conclusion is in accordance with Gefen and colleagues’ studies
 
(Elsner and Gefen, 2008, 303 

Sopher et al., 2010). 304 

Overall, using our biomechanical model allows studying the formation of pressure 305 

ulcers and could help developing different strategies to prevent them. To this aim, the use of a 306 

pressure sensor mat embedded on the patient wheelchair and coupled with a biomechanical 307 
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model seems relevant provided that such a model is able to evaluate in real time the gluteal 308 

tissues internal strains and consequently to raise warnings in case of pressure ulcers risks. 309 

Nevertheless, before proposing such pressure ulcer prevention tools for a routine use, 310 

several points still need to be improved. The first one is the necessity, for each patient 311 

modeled with our method, to automatically import patient-specific data: anatomical surfaces 312 

and biomechanical parameters. It is indeed critical to be able to differentiate each tissue layer, 313 

especially the skin, muscles, and the bones, as their positions can play a key role in the 314 

location of pressure ulcers. Other imaging modalities with corresponding image processing 315 

would probably have to be studied to improve this point. Finally, the definition of the patient-316 

specific mechanical parameters will also need to be addressed since soft tissue stiffness, 317 

especially for the fat and muscle tissues, impacts significantly the range of internal strains and 318 

consequently the risks for pressure ulcer formation. Using elastography (from MRI or 319 

Ultrasound) or classical indentation could help in estimating these elastic parameters in vivo. 320 

It could also help in defining a more precise Poisson ratio as the value chosen in this study is 321 

for now inspired by the literature. A preliminary sensitivity analysis of this parameter indeed 322 

showed large variations of the VM strains even with small variations of the Poisson ratio (as 323 

pointed in Gefen, 2010).  324 

 325 
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Figure captions: 382 

Figure 1. (a) Finite element model of the buttocks, (b) and (c) Frontal and sagittal cross 383 

sections showing the three layers of materials defining the buttocks model: skin (in grey), fat 384 

(in yellow) and muscles (in red), the bones are represented in white and are simulated as fixed 385 

nodes, (d) CT scan slice showing the ischial tuberosity surrounded by muscles and fat tissues. 386 

Figure 2. Pressure map measured with the Zebris platform. In this example, the maximum 387 

pressure (in red) is 4 N.cm
-2

 due to a non-symmetrical posture of the subject. 388 

Figure 3. Pressure map corresponding to the subject’s weight being only applied on his right 389 

side. The maximal pressure reaches 5 N.cm
-
² (in red). 390 

Figure 4. Evolution of the maximal internal strain as a function of the Young moduli chosen 391 

for the skin, fat, and muscle tissues. 392 

Figure 5. The 57.4 % maximal Von Mises strains (red dots) are mainly located in the fat layer 393 

under the ischial tuberosities at the interface with the muscle layer: (a) view from the back, 394 

(b), view from the side.  395 
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