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We consider three layer optical waveguides and present a method to measure

simultaneously the refractive index and the thickness of each layer with m-lines

spectroscopy. We establish the three layer waveguide modal dispersion equations

and describe a numerical method to solve these equations. The accuracy of the

method is evaluated by numerical simulations with noisy data and experimentally

demonstrated using a PZT thin film placed between two ZnO layers.

1. INTRODUCTION

The considerable progress in thin film etching allows today the realization of almost any

waveguide structure requiring submicron resolution. For example, the fabrication of sin-

gle mode optical waveguides, couplers, interferometers or ring resonators is well controlled.

Whatever their function, these structures are made of a superposition of several thin layers

and they have to guide light. Therefore it is essential to accurately characterize the optical

and geometrical properties of each layer of the stack. Several techniques exist to perform

such a characterization in the case of a single layer film, such as those based on the measure-

ments of the reflection and transmission coefficients of the sample [1–3], the ellipsometry [4],

and the m-lines spectroscopy [5–7]. The case of multilayer waveguides has been much less

investigated, although the assumption that a layer in a stack shows the same properties as
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it has when measured individually, can become wrong. The characterization of the whole

structure then becomes necessary. Some work was done on the case of two layers [8–13]

(sometimes denoted as a ”four layer film” since the stack is deposited on a substrate and the

air is considered as a top layer), however, no literature is available for three layer structures.

These structures are of special interest since they consist of the minimum number of layers

required in order to obtain a single mode waveguide which is thick enough to enable efficient

coupling of the light. In this paper we will focus on three layer waveguides and show how

the refractive indices and thicknesses of the individual layers can be retrieved simultaneously

from m-lines spectroscopy measurements.

In classical m-lines devices, the sample is pressed against a face of a prism. The prism

and the film are mounted on a rotating stage in order to allow the variation of the light

incidence angle. A thin air gap between the sample and the prism face is maintained whose

thickness should be approximately the fourth of the light probe wavelength. The incoming

light is refracted inside the prism and reaches the interface between the prism and the

sample. Since the refractive index of the prism is higher than that of the sample, the light

is totally reflected at this interface, for a given range of incidence angles, and then emerges

from the prism to be detected. For some angles, called ”synchronous angles”, however,

part of the light is coupled into the waveguide, hence substracted from the detected light.

Therefore, a typical m-lines spectrum consists in several absorption-like peaks, centered

around the synchronous angles. From the positions of the synchronous angles, it is possible

to deduce the propagation constants of the guided modes of the sample under test and derive

the optical and geometrical properties of the structure (refractive index and thickness) by

solving the modal dispersion equations.

The first part of this paper is devoted to the determination of the explicit form of modal

dispersion equations of the three layer waveguide. We will then describe the numerical

method used in order to solve these equations and present numerical tests that prove its

accuracy. The validity of the method will be finally demonstrated experimentally by the

analysis of m-lines spectra produced by three layer ZnO/PZT/ZnO waveguides.
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2. THREE LAYER DISPERSION EQUATIONS

The studied structure is a stack of five transparent homogeneous layers shown on Fig. 1.

The substrate (layer #0) and the superstrate (layer #5) are considered as semi-infinite since

n1

n2 d2

d1

n3

n4

d3

n 0

x

z

superstrate

substrate

FIG. 1: Three layer waveguide.

their thicknesses are several orders of magnitude greater than those of layers 1, 2 and 3. The

light is confined only in these three central layers and presents an evanescent decay in the

substrate and the superstrate. We call this structure a ”three layer waveguide”, whereas in

the nomenclature of other authors [10] it would be called a ”5 layer waveguide”. The central

layer (layer #2) is the core of the structure and the layers #1 and #3 are the claddings

(true waveguide [14]). As a consequence, we assume for the refractive indices of the different

layers that:

n2 > n1, n3 > n0, n4 (1)

In the following, we will restrict ourselves to the case of TE modes, the extension to

the case of TM modes is straightforward. The only component of the electrical field of

the TE modes is along the (Oy) axis, so the electric field in the layer j can be written as:

Eyj(x, z) = Aj exp[i(γjx+ βmz)] + Bj exp[i(−γjx+ βmz)] and the tangential component of

the magnetic field is Hzj(x, z) = i(ωµ0)
−1∂Eyj/∂x. In these expressions, ω is the angular

frequency and βm is the propagation constant of the mth guided mode. It is usually written

as βm = kNm, where k is the wavevector modulus in vacuum and Nm the effective index of
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the mth mode. Using the condensed notation aj = k |n2
j − N2|1/2, the x component of the

wavevector, γj, which gives the nature of the wave in the layer j, becomes γj = (ωµ0)
−1aj for

a travelling wave and γj = i(ωµ0)
−1aj for an evanescent wave. A transfer matrix Mj , which

binds the electromagnetic fields at the backplane of the layer to the fields at its frontplane,

can be associated to each layer [15]:

Mj =







cos(ωµ0γjdj)
i

γj
sin(ωµ0γjdj)

i γj sin(ωµ0γjdj) cos(ωµ0γjdj)






(2)

The boundary conditions imply that the tangential components of the magnetic and electri-

cal fields must be continuous at the interface of the layers. These conditions together with

the condition for obtaining guiding lead to:





1

−γ4



E4y = M3M2M1





1

γ0



E0y = M





1

γ0



E0y (3)

which has solutions only for:

γ4m11 + γ4γ0m12 +m21 + γ0m22 = 0 (4)

where mij are the components of the matrix M . With the definition (2) of the transfert

matrix, this equation can be written as [16]:

a2 d2 + arctan

[

iγ0 γ1 + γ2
1 tan(ωµ0γ1 d1)

γ1 γ2 − iγ0 γ2 tan(ωµ0γ1 d1)

]

+ arctan

[

iγ3 γ4 + γ2
3 tan(ωµ0γ3 d3)

γ2 γ3 − iγ2 γ4 tan(ωµ0γ3 d3)

]

− mπ = 0

(5)

which is the general modal dispersion equation for the true three layer waveguides.

As stated above, the γj terms are either real or imaginary depending on the nature of

the waves in the jth layer. As a consequence, an analysis in the complex plane is required in

order to solve directly the equation 5. It is better to take advantage of physical arguments

to split the problem in several simpler ones. Under the condition of Eq. 1, three kinds of

guided waves can exist:

• The lowest order modes can only propagate in the layer #2. Then γ2 only is real and
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Eq. 5 becomes:

a2 d2 − arctan

[

a0 a1 + a21 tanh(a1 d1)

a1 a2 + a0 a2 tanh(a1 d1)

]

− arctan

[

a3 a4 + a23 tanh(a3 d3)

a2 a3 + a2 a4 tanh(a3 d3)

]

− mπ = 0

(6)

• As the order of the mode increases, the wavevector approaches the normal of the inter-

faces. For a given mode m2, the incidence angle on the interface between the central layer

and one cladding layer becomes smaller than the limit angle for total internal reflection

and the light propagates inside these two layers. If n3 > n1 then the light is guided in

the layers #2 and #3 and Eq. 5 becomes:

a2 d2 − arctan

[

a0 a1 + a21 tanh(a1 d1)

a1 a2 + a0 a2 tanh(a1 d1)

]

− arctan

[

a3 a4 − a23 tan(a3 d3)

a2 a3 + a2 a4 tan(a3 d3)

]

− mπ = 0

(7)

Otherwise, the light propagates in the layers #1 and #2. The corresponding modal

dispersion equation is obtained by interverting the functions tan and tanh in Eq. 7.

• Finally, highest order modes can propagate in the three layers. The dispersion equation

for these modes is:

a2 d2 − arctan

[

a0 a1 − a21 tan(a1 d1)

a1 a2 + a0 a2 tan(a1 d1)

]

− arctan

[

a3 a4 − a23 tan(a3 d3)

a2 a3 + a2 a4 tan(a3 d3)

]

− mπ = 0

(8)

3. DATA ANALYSIS : ALGORITHM AND NUMERICAL TESTS

At a first glance, the problem contains 6 unknown parameters which are the refractive

indices and thicknesses of the layers #1, 2 and 3.

However, depending on the guiding regime, one has to associate correctly the dispersion

equation to each measured synchronous angle. Consequently, further parameters have to be

determined:

• m1, the order of the first measured mode. It is often equal to 0, but the lower order modes

are sometimes difficult to excite, and hence may be not visible in the m-lines spectrum.

There is no evidence on the value of m1 in practice.
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FIG. 2: Algorithm of the resolution of the system of 6 equations in 6 unknowns and M measured

modes.

• m2, the order of the first mode guided by two layers. Numerical simulations with noisy

data showed that m2 is the value of m such that |Nm − Nm−1| > |Nm+1 − Nm|. This

criterion results in a correct value of m2 or with a mismatch of +1 [17]. In the following

we will call mth
2 the value given by this criterion.

• m3, the order of the first mode guided by three layers.

• Finally, the modal dispersion equation in the case of two guiding layers is not the same

according to whether n1 is smaller or greater than n3. Hence it is also necessary to make

an initial hypothesis on the relative values of n1 and n3 and to verify this assumption

during the resolution.

The analysis of a m-lines spectrum thus requires a somewhat complicated algorithm. For

clarity reasons, we splitted the presentation of this algorithm into two parts (Fig. 2 and 3).
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FIG. 3: Algorithm of the m-lines spectra analysis.
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FIG. 4: Distribution of errors on the parameter n2.

The details of the ”resolution” box of the full algorithm (shown on Fig. 3) are presented in

Fig. 2, aiming to solve a system of 6 equations in 6 unknowns form1, m2, m3 given and for an

assumption on the relative values of n1 and n3. Obviously, this problem can be solved only

if the m-lines spectrum contains more than 6 modes. Let us call M the number of measured
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synchronous angles. There is CM
6 combinations of 6 modes. For a given combination j, we

firstly use a Newton-Raphson method to get a solution {n1, n2, n3, d1, d2, d3}j. Then, we start
from this solution and use a bissection algorithm to calculate the set of M corresponding

synchronous angles : {φcal
ij }, i ∈ {1, 2, . . . ,M}. The validity of the solution is evaluated by

the standard deviation of the differences between the values of the calculated synchronous

angles and the measured ones:

S2
j =

M
∑

i=1

(

φmeas
i − φcal

ij

)2

M
(9)

If Sj is smaller than 0.1◦ (upper limit of experimental uncertainty), the solution is considered

as correct. This procedure is used for the CM
6 combinations but it does not find roots in

all cases. Let us call Γ the number of combinations for which the procedure succeeds. The

solution we finally retain is the mean value of these Γ solutions and we associate a fitness σ

to this solution defined by:

σ2 =
Γ

∑

j=1

S2
j

Γ2
(10)

Γ2 was used rather than Γ, in order to give more weight to the configurations which lead to

a high number of acceptable solutions.

The parameters m1, m2, and m3 are obtained with an iterative procedure schematized

on Fig. 3. We start with the M measured synchronous angles and under the hypothesis

H : n1 > n3. The value of m2 is set to mth
2 , m1 to 0 and m3 to m2 and the procedure

of resolution described above is used in order to get a solution and its associated fitness

σH,m1,m2,m3
. This procedure is repeated with firstly an incrementation of m3 from m2 to M ,

secondly an incrementation of m1 from 0 to 5 (which in general is sufficient) and thirdly

by setting m2 to mth
2 − 1. For the case where no solution was obtained at the end of these

iterations, the whole procedure is repeated with the opposite hypothesis (n1 < n3). The

refractive indices and thicknesses finally selected are those which are associated to the lowest

value of σ thus defining the values m1, m2, m3 and H .

The validity of the method was verified by numerical simulations. Starting from a the-

oretical waveguide defined by the parameters {nth
1 , nth

2 , nth
3 , dth1 , d

th
2 , d

th
3 }, we calculated the

corresponding set of synchronous angles {φth
i }, 0 ≤ i ≤ 8. In order to test the sensitivity to

the noise, this set was used for building one hundred sets of noisy data {φnoisy
i } by adding to

each theoretical synchronous angle, φth
i , a random value, εi, standing in the interval [−δφ, δφ]
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TABLE I: Range of parameters explored with the statistical study.

Start End Step

n1, n3 1.6 n2-0.1 0.1

n2 1.7 2.4 0.1

d1, d2 1.0 µm 2.0 µm 0.1 µm

d3 100 nm

with a uniform probability density. The values of δφ used in the simulations were chosen in

order to correspond to the experimentally observed noise.

The hundred noisy data sets were analysed, giving rise to a number Λ of sets of solutions

{nsol
1 , nsol

2 , nsol
3 , dsol1 , dsol2 , dsol3 }. Λ depends on the magnitude of the noise, it is very close to

100 for δφ = 0.01◦ and about 80 for δφ = 0.1◦. Each value psolj, 1≤j≤Λ of the parameter p

(p = n1, n2, n3, d1, d2 or d3) differed from the theoretical value pthj . The distribution of errors

δpj = psolj − pthj followed a normal law for all parameters p and all noises [16], as showed

on Fig. 4 for the example of n2. Finally, we defined the uncertainty ∆p on the parameter

p as three times the standard deviation of the distribution, in order to be in the confidence

interval of 99%: ∆p = 3
[

∑Λ

j=1Λ
−1(δpj − 〈δp〉)2

]1/2

.

A total of eight thousands waveguides were simulated, whose characteristics are summa-

rized in Tab. I. The thickness of the upper layer, d3, was constant and smaller than the

penetration depth of the light, in order to make possible the evanescent coupling between

the prism and the central layer. In order to get global estimators, we studied the distribution

of uncertainties ∆p of each parameter for p for all the simulated guides and for each noise.

It was always possible to fit the distribution with a log-normal law (see Fig. 5):

f(∆p) =
1

w∆p
√
2π

e
−(ln∆p− µ)2

2w2 (11)

where w and µ are the free parameters of the model. Hence, the mean error was

〈∆p〉 = exp (µ+ w2/2) and the standard deviation of the distribution was: σ2
∆p =

(exp(w2)− 1) exp(2µ+w2). It followed that 85% of the errors were in the range 〈∆p〉±σ∆p.

We then used 〈∆p〉 as an estimate of the error on the parameter p with an uncertainty σ∆p.

The results of the simulations are summarized on the graphics of Fig. 6 and Fig. 7. For
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FIG. 5: Distribution of the uncertainties ∆n2 over all the simulated guides, fitted by a lognormal

law.
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FIG. 6: Evolution of the error on the refractive indices as a function of the noise on the synchronous

angles.

the central layer, the error on the refractive index is lower than 1 × 10−3 and the error

on the thickness remains lower than ten nanometers for a noise on the synchronous angles

below 0.1◦. For the other layers the errors on the refractive indices remain acceptable.

They are smaller than 1× 10−3 for the layer #1 and of the order of 1× 10−2 for the upper

layer. Nethertheless, the errors on the thicknesses can reach large values, especially for

d3. However, it should be emphasized that the number of synchronous angles used for the

statistical study was limited to 9 in order to limit the computation time. A closer inspection
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of the guides leading to unaccurate results showed that the accuracy can be considerably

enhanced when increasing the number of modes taken into account. As an example, Fig 8

and Fig 9 show the evolution of the errors on the different parameters as a function of the

number of modes for a noise of 0.01◦ and a guide defined by n1 = 1.9, n2 = 2.3, n3 = 2.2,

d1 = 1.1 µm, d2 = 1.9 µm, and d3 = 100 nm.
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FIG. 7: Evolution of the error on the thicknesses as a function of the noise on the synchronous

angles.

The errors on d1 and n1 can be reduced by two orders of magnitude while the error on d3

and n3 is divided by 2 when the number of modes used in the calculation is increased from

9 to 15.

This means that one should always use the maximum number of modes in order to reach

the best accuracy. However, the computation time also increases.

4. EXPERIMENTAL RESULTS

In order to experimentally validate the method, several multilayer structures were elabo-

rated. They were deposited on glass substrates and were composed of lead zirconate titanate

(PZT) for the core layer and Al doped zinc oxide (ZnO) for the claddings. A SEM picture

of one of these samples is shown on Fig. 10.

The zinc oxide layers were grown by RF magnetron sputtering at room temperature
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FIG. 8: Evolution of the error on the refractive indices as a function of the number of synchronous

angles used in the resolution.

from a 3” in diameter ZnO/Al2O3 (98/2 wt.%) ceramic target. Prior to the deposition, a

pressure lower than 5× 10−7 mbar was reached and pure argon was used as a sputter gas at

a partial pressure of 2 × 10−3 mbar during the deposition process. An on-axis growth rate

of approximately 100 nm/min was achieved at a RF power of 200 W at a target-substrate

distance of 7.5 cm. The films were annealed at 650◦C during 3 min and cooled down to

room temperature during 3 hours. Four substrates were placed side by side under the ZnO

target, resulting in a non homogeneous thickness of the films.
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FIG. 9: Evolution of the error on the thicknesses as a function of the number of synchronous angles

used in the resolution.

In the following we will call ”Aℓ” and ”Ar” the samples directly on the left and on the

right side of the center of deposition, ”Bℓ” the sample on the left of Aℓ and ”Br” the sample

on the right of Ar. For symmetry reasons, we expect ZnO layers Aℓ and Ar as well as Bℓ

and Br, to be identical.
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ZnO PZT ZnO

FIG. 10: SEM photograph of a three layer waveguide.

The PZT 36/64 layers were elaborated by Chemical Solution Deposition technique [18].

A modified Sol-gel process was used for the elaboration of the PZT precursor solution, which

consisted of lead acetate dissolved in acetic acid, zirconium and titanium n-propoxide; ethy-

lene glycol was added in order to prevent from crack formation during the annealing process.

The final solution was spin-coated on the ZnO layer at 1000 rpm and a Rapid Thermal An-

nealing procedure at 650◦C resulted in the formation of a polycrystalline perovskite without

remaining pyrochlore phases. A layer of PZT was spin-coated individually on samples Aℓ,

Ar, Bℓ and Br. After cristallisation, we expect a repeatability of 8 × 10−3 on the refractive

index and of 20 nm on the thickness [18].

The upper ZnO cladding layer was only deposited on samples Ar and Br with a thickness

smaller than the penetration depth of the light. These two samples were not characterized,

neither with m-lines nor with other technique, until the third layer was deposited, in order

to avoid pollution or any other deterioration of the structure. The two layers waveguides Aℓ

and Bℓ were used as control samples.

Another three layer sample, called ”C” in the following, was elaborated in the same way

as the samples A and B, but it was characterized by m-lines after each deposition step.

We first consider the samples A and B. An example of m-lines spectrum, obtained with

sample Br, is shown on Fig. 11. The transition from the single guiding layer to the two

guiding layer regime appears clearly in the spectrum. Indeed, the broad peaks correspond

to the waves guided in the PZT layer only, while the narrow peaks are associated to the waves

also guided in the ZnO. This broadening is not a peculiarity of the three layer structure, it
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can be also observed for PZT single layers and may be due to light diffusion resulting in a

loss along the direction of propagation [14].
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FIG. 11: m-lines spectrum obtained with sample Br measured at 29 mm from the center of

deposition.

The transition from the two guiding layer regime to the three guiding layer regime can

not be infered from the spectrum and has to be determined by numerical computation.
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FIG. 12: Evolution of the thicknesses of the different layers of the three layer samples Ar, Br

(d1 : �, d2 : ◦, d3 : △ ) and the two layer samples Aℓ, Bℓ (d1 : �, d2 : •).

The spectrum of Fig. 11 was analyzed with the numerical method described in section 2,

resulting in the following characteristics:
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• layer #1 : n1 = 1.9701± 6× 10−4, d1 = 1.588± 3× 10−3µm

• layer #2 : n2 = 22702± 6× 10−4, d2 = 0.894± 6× 10−3µm

• layer #3 : n3 = 2.037± 9× 10−3, d3 = 0.122± 3× 10−3µm

Due to the complexity of the system to solve, the uncertainties were estimated with Monte

Carlo simulations, in a similar way to what is described in section 3. Starting from the so-

lution {n1, n2, n3, d1, d2, d3}, we calculated the associated synchronous angles {φi} and built

one hundred sets of noisy angles by adding a random value in the range of the experimental

uncertainties. We then computed the solutions corresponding to the differents noisy sets

and considered their distributions. The uncertainty on each parameter is defined as three

times the standard deviation of the distribution of the values of this parameter.

We performed m-lines measurements every 4 mm from the center of the ZnO deposition.

Fig. 12 and Fig. 13 show respectively the evolution of the thickness and the refractive indices

of the different layers of the samples A and B. If we except the point located at 41 mm from

the deposition center, where few modes were available due to the low thickness of the lower

ZnO layer, the error bars do not clearly appear since the uncertainties are small. They are

of the order of 5× 10−4 for n1 and n2, and 1× 10−2 for n3.
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FIG. 13: Evolution of the refractive indices of the different layers of the three layer samples Ar,

Br (n1 : �, n2 : ◦, n3 : △ ) and the two layer samples Aℓ, Bℓ (n1 : �, n2 : • ).

The uncertainties on the thicknesses are of the order of 10 nm, which corresponds to a

relative accuracy of 0.5% for d1 and d2, and 10% for d3. As expected, the thickness of the
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TABLE II: Comparison of the measured characteristics of a waveguide (sample C), before and

after the deposition of the upper cladding layer.

n1 d1 (µm) n2 d2 (µm) n3 d3 (µm)

Two layers 1.978 1.11 2.360 1.02

Three layers 1.979 1.09 2.368 0.96 1.987 0.13

lower ZnO layers decreases with the distance from the ZnO deposition center (Fig. 12). The

thickness of the PZT films is rather constant except at the border of the samples where a

slight increase can be observed which is typical for the spin-coating process.

The refractive index of the PZT layer varies from 2.2227±5× 10−4 to 2.3610±5× 10−4.

It is slightly higher than the refractive index of the PZT deposited on glass under the same

conditions [18]. This may be due to a structural change of the PZT thin film induced by the

ZnO buffer layer which acts as a diffusion barrier thus hindering diffusion of the lead from

the PZT into the glass substrate. The index of the ZnO lower layer is rather constant, it

oscillates between 1.9667±6× 10−4 and 1.991±5× 10−3. On the contrary, the index of the

upper ZnO layer exhibits strong variations from 2.015±8 × 10−3 to 2.123±8 × 10−3. This

may be explained by the existence of two different cristalline structures arising when the

thicknesses of the ZnO film is below 500 nm [19].

The differences between the thicknesses and refractive indices obtained for the three layer

waveguides (Ar, Br) and the two layer waveguides (Aℓ, Bℓ) essentially stay in the range of

the repeatability of the elaboration procedure and the measurement techniques. So the

method of analysis of three layer guides m-lines spectra gives results in accordance to those

obtained with two layer guides. This is confirmed by the measurements realized from sample

C, where the refractive index and the thickness of the layers where measured before and

after deposition of the upper cladding layer. The results are summarized in Tab. II showing

that the differences between the values obtained before and after the third deposition remain

always smaller than the uncertainty and the repeatability of the elaboration procedure and

the measurement techniques. This good agreement proves the validity of our method.
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5. CONCLUSION

In this paper, the general modal dispersion equation for a three layer planar waveguide

is shown, from which the modal dispersion equations that hold for different guiding regimes

are derived. A method to solve these equations is proposed, where the input data are the

synchronous angles measured by m-lines spectroscopy. Monte Carlo simulations show that

the values of the refractives indices and the thicknesses of the central layer given by this

method are as accurate as those obtained for a single layer. The accuracy is not so good

for the upper layer, however, the error remains smaller than 2.10−2 for the index and below

30 nm for the thickness when the uncertainty on the measured angles remains smaller than

0.1◦. The method was applied to the characterization of real three layer planar waveguide

structures made of one PZT layer embedded between two ZnO cladding layers deposited

on glass substrate. The agreement between the results obtained with three layer structures

and those obtained with two layer structures ensures the validity of our method. Moreover,

the three layer analysis revealed changes in material properties, such as increasing of the

refractive index of PZT deposited on ZnO in comparison to deposition on glass and increasing

of the refractive index of ZnO deposited on PZT in comparison to deposition on glass.

The proposed method allows to simultaneously characterize the optical and geometrical

properties of each layer of three layer waveguides. Consequently, it is a very interesting

instrument in order to verify whether the three layer structures are matching the parameters

defined during the design process of waveguide.
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