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A RICE METHOD PROOF OF THE NULL-SPACE PROPERTY

OVER THE GRASSMANNIAN

J.-M. AZAÏS, Y. DE CASTRO, AND S. MOURAREAU

Abstract. The Null-Space Property (NSP) is a necessary and sufficient con-
dition for the recovery of the largest coefficients of solutions to an under-
determined system of linear equations. Interestingly, this property governs
also the success and the failure of recent developments in high-dimensional
statistics, signal processing, error-correcting codes and the theory of polytopes.

Although this property is the keystone of ℓ1-minimization techniques, it is
an open problem to derive a closed form for the phase transition on NSP. In
this article, we provide the first proof of NSP using random processes theory
and the Rice method. As a matter of fact, our analysis gives non-asymptotic
bounds for NSP with respect to unitarily invariant distributions. Furthermore,
we derive a simple sufficient condition for NSP.

1. Introduction

1.1. Null-Space Property. One of the simplest inverse problem can be described
as follows: given a matrix X ∈ Rn×p and y ∈ Im(X), can we faithfully recover
β⋆ such that the identity y = Xβ⋆ holds? In the ideal case where n ≥ p and
the matrix X is one to one (namely, the model is identifiable), this problem is
elementary. However, in view of recent applications in genetics, signal processing,
or medical imaging, the frame of high-dimensional statistics is governed by the
opposite situation where n < p. To bypass the limitations due to the lack of iden-
tifiability, one usually assumes that the matrix X is at random and one considers
the ℓ1-minimization procedure [14]:

(Pℓ1) ∆X(β⋆) ∈ arg min
Xβ=Xβ⋆

‖β‖1 ,

where β⋆ ∈ Rp is a “target” vector we aim to recover. Interestingly, Program (Pℓ1)
can be solved efficiently using linear programming, e.g. [11]. Furthermore, the high-
dimensional models often assume that the target vector β⋆ belongs to the space Σs

of s-sparse vectors:

Σs := {β ∈ R
p , ‖β‖0≤ s} ,

where ‖β‖0 denotes the size of the support of β. Note that this framework is the
baseline of the flourishing Compressed Sensing (CS), see [10, 19, 15, 13] and ref-
erences therein. A breakthrough brought by CS states that if the matrix X is
drawn at random (e.g. X has i.i.d. standard Gaussian entries) then, with over-
whelming probability, one can faithfully recovers β⋆ ∈ Σs using (Pℓ1). More pre-
cisely, the interplay between randomness and ℓ1-minimization shows that with only
n = O(s log(p/s)), one can faithfully reconstruct any s-sparse vector β⋆ from the
knowledge of X and y := Xβ⋆. Notably, this striking fact is governed by the
Null-Space Property (NSP).
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Definition (Null-Space Property of order s and dilatation C) — Let 0 < s < p
be two integers and G be a sub-space of Rp. One says that the sub-space G satisfies
NSP(s, C), the Null-Space Property of order s and dilatation C ≥ 1, if and only if:

∀ γ ∈ G , ∀S ⊂ {1, . . . , p} s.t. |S| ≤ s , C‖γS‖1≤ ‖γSc‖1 ,
where Sc denotes the complement of S, the vector γS has entry equal to γi if i ∈ S
and 0 otherwise, and |S| is the size of the set S.

As a matter of fact, one can prove [15] that the operator ∆X is the identity on Σs

if and only if the kernel of X satisfies NSP(s, C) for some C > 1.

Theorem 1 ([15]) — For all β⋆ ∈ Σs there is a unique solution to (Pℓ1) and
∆X(β⋆) = β⋆ if and only if the nullspace ker(X) of the matrix X enjoys NSP(s, C)
for some C > 1. Moreover, if ker(X) enjoys NSP(s, C) for some C > 1 then for
all β⋆ ∈ Rp,

‖β⋆ −∆X(β⋆)‖1≤
2(C + 1)

C − 1
min
|S|≤s

‖β⋆ − β⋆
S‖1 .

Additionally, NSP suffices to show that any solution to (Pℓ1) is comparable to
the s-best approximation of the target vector β⋆. Theorem 1 demonstrates that
NSP is a natural property that should be required in CS and High-dimensional
statistics. This analysis can be lead a step further considering Lasso [33] or Dantzig
selector [12]. Indeed, in the frame of noisy observations, ℓ1-minimization procedures
are based on sufficient conditions like Restricted Isometry Property (RIP) [12],
Restricted Eigenvalue Condition (REC) [9], Compatibility Condition (CC) [34],
Universal Distortion Property (UDP) [18], or Hs,1 condition [25]. Note that all of
these properties imply that the kernel of the matrix X satisfies NSP. While there
exists pleasingly ingenious and simple proofs of RIP, see [13] for instance, a direct
proof of NSP (without the use of RIP) remains a challenging issue.

1.2. Contribution. Given (ρ, δ) ∈]0, 1[2, set sn = ⌊ρn⌋ and pn = ⌊n
δ ⌋ where ⌊.⌋

denotes the integer part. Consider a matrix X(n, pn) ∈ Rn×pn with i.i.d. centered
Gaussian entries. In this paper, we describe a region of parameters (ρ, δ) such that
P[ker(X(n, pn)) enjoys NSP(sn, C)] tends to one as n goes to infinity. Our result
provides a new and simple description of such region of parameters (ρ, δ).

Theorem 2 — Let C ≥ 1. For all n ≥ 1, set sn = ⌊ρn⌋ and pn = ⌊n
δ ⌋.

Let G(n, pn) be uniformly distributed on the Grassmannian Grm(Rpn) where m =
pn − n. If δ ≥ (1 + π/2)−1 and:

ρ log

(√
π

2eC2

(1 − ρ)2

ρ2

)
+ log

(
Ce

√
ρ(1− δ)(1 + (C2 − 1)ρ)

(1 − ρ)(1 + (2C2 − 1)ρ)
√
δ

)

+
1

δ
log

(√
2

eπ

1 + (2C2 − 1)ρ

(1− ρ)
√
δ(1− δ)(1 + (C2 − 1)ρ)

)
≤ 0

then P[G(n, pn) enjoys NSP(sn, C)] tends exponentially to one as n goes to infinity.

Remark. The condition {δ ≥ (1 + π/2)−1} is a technical restriction. Indeed, in
the proof, we need to consider an union bound on spheres of decreasing dimension.
However, concentration bounds are less efficient on smaller spheres and lead to a
limitation of the argument. This is explained into more details further. Interest-
ingly, for C = 1, the transition of Theorem 2 compares to the phase transition of
Donoho and Tanner [21], see Figure 2. However, numerically, our lower bound is
less interesting when n ≪ p so we cannot extract the classical n ∼ c1s log(c2p/s)
result. To underline this fact, we only exhibit a result for δ ≥ (1 + π/2)−1 ≃ 0.389.
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Figure 1. The phase transition of Theorem 2. From top to bot-
tom, C = 1, 2, 3, 4.
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Figure 2. The panel illustrates numerically the border of the
region described by Theorem 4 (blue line) for which NSP holds
(Π ≃ 0) and the strong phase transition of Donoho and Tanner
(green line). Note that the region (ρ, δ) such that Π ≃ 0, i.e.
NSP(s, 1) holds, is located below the curve. Simulations have been
performed with n = 200.000.

Exemple 1 — In the case C = 1, we can compare our result (see Theorem 4)
given by the set of (ρ, δ) ∈]0, 1[2 such that δ ≥ (1 + π/2)−1 and such that:

ρ log

[√
π

2e

(1− ρ)2

ρ2

]
+ log

[
e

√
ρ(1 − δ)

(1− ρ)(1 + ρ)
√
δ

]
+

1

δ
log

[√
2

eπ

1 + ρ

(1− ρ)
√
δ(1 − δ)

]

is non-positive to the work of Donoho and Tanner [21] (see Figure 3). Observe that,
up to a constant bounded by 2, we recover the initial result.
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Figure 3. On the left, comparison between the border of the re-
gion described by Theorem 2 (blue line) and the strong phase tran-
sition of Donoho and Tanner (green line) for δ ≥ 0.39. On the right,
ratio between the green and the blue line.

We outline that explicit expressions of lower bounds on the phase transition can be
found in Section 2.

1.3. Direct proofs of NSP with dilatation C = 1. To the best of our knowl-
edge, all the direct proofs of NSP with dilatation C = 1 are based either on integral
convex geometry theory, Gaussian widths, the approximate kinematic formula, or
empirical process theory. This section is devoted to a short review of some state-
of-the-art results on direct proofs of NSP.

1.3.1. Grassmann angles. In a captivating series of papers [21, 20, 23, 22], Donoho
and Tanner have proved that the kernel of a matrix X(n, pn) ∈ Rn×pn with i.i.d.
centered Gaussian entries enjoys a phase transition, i.e. there exists a function ρS :
]0, 1[→]0, 1[ such that for all (ρ, δ) ∈]0, 1[2,

lim
n→+∞

P[ker(X(n, pn)) enjoys NSP(sn, 1)] =

{
0 if ρ > ρS(δ),

1 if ρ < ρS(δ),

where we recall that sn = ⌊ρn⌋ and pn = ⌊n
δ ⌋. Moreover, they have characterized

implicitly and computed numerically the function ρS (note that the subscript S
stands for “Strong” since ρS is often named the “strong threshold”). Observe their
approach is based on computation of Grassmann angles of a polytope due to Affen-
tranger and Schneider [3] and Vershik and Sporyshev [35]. Furthermore, note their
phase transition is characterized implicitly using an equation involving inverse Mills
ratio of the standard normal density. However, they have derived a nice explicit
expression of the phase transition for small values of δ, i.e. when δ → 0. Hence,
they uncover that, in the regime n ≪ p, NSP(s,1) holds when n ≥ Cs log(ps ) for n
large enough.

1.3.2. Gaussian widths. In recent works [31, 32], Stojnic has shown a simple char-
acterization of the sign of the exponent appearing in the expression of the “weak
threshold” given by Donoho and Tanner. Note the weak threshold governs the exact
reconstruction by ℓ1-minimization of s-sparse vectors with prescribed support and
signs, while NSP characterizes the exact reconstruction of all s-sparse vectors. In
the paper [31], using "Gordon’s escape through a mesh" theorem, Stojnic have de-
rived a simpler implicit characterization of the strong threshold ρS . As in Donoho
and Tanner’s work, observe this implicit characterization involves inverse Mill’s
ratio of the normal distribution and no explicit formulation of ρS can be given.
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Predating Stojnic’s work, Rudelson and Vershynin (Theorem 4.1 in [30]) were
the first to use "Gordon’s escape through the mesh" theorem to derive a non-
asymptotic bound on sparse recovery. A similar result can found in the astonishing
book of Foucart and Rauhut, see Theorem 9.29 in [24]. Observe that these results
hold with a probability at least 1 − α and their bounds depend on log(α) so one
needs one more step to derive a lower bound on the strong phase transition. We
did not pursue in this direction.

1.3.3. Approximate kinematic formula. In the papers [27, 4], the authors present
appealing and rigorous quantitative estimates of weak thresholds appearing in con-
vex optimization, including the location and the width of the transition region.
Recall that NSP is characterized by the strong threshold. Nevertheless, the weak
threshold describes a region where NSP cannot be satisfied, i.e.

lim
n→+∞

P[G(n, pn) enjoys NSP(sn, 1)] = 0 .

Based on the approximate kinematic formula, the authors have derived recent fine
estimates of the weak threshold. Although their result has not been stated for
the strong threshold, their work should provide, invoking a simple union bound
argument, a direct proof of NSP with dilatation C = 1.

1.3.4. Empirical process theory. Using empirical process theory, Lecué and Mendel-
son [26] gives a direct proof of NSP for matrices X with sub-exponential rows. Al-
though the authors do not pursue an expression of the strong threshold, their work
shows that NSP with dilatation C = 1 holds, with overwhelming probability, when:

(1) n ≥ c0s log(
ep

s
) ,

with c0 > 0 a universal (unknown) constant.

1.3.5. A previous direct proof of NSP with dilatation C ≥ 1. Using integral convex
geometry theory as in Donoho and Tanner’s works [21, 20, 23, 22], Xu and Hassibi
have investigated [36, 37] the property NSP(s, C) for values C ≥ 1. Their result
uses an implicit equation involving inverse Mill’s ratio of the normal distribution
and no explicit formulation of their thresholds can be derived. To the best of our
knowledge, this is the only proof of NSP(s, C) for values C > 1 predating this
paper.

1.4. Simple bounds on the phase transition. As mentioned in Proposition
2.2.17 of [13], if NSP holds then

(2) n ≥ c1s log(
c2p

s
) ,

with c1, c2 > 0 are universal (unknown) constants. The result of Section 1.3.4 shows
that a similar bound is also sufficient to get NSP. What can be understood is that
the true phase transition (as presented in [21, 20, 23, 22]) lies between the two
bounds described by (1) (lower bound) and (2) (upper bound). Observe that these
bounds can be equivalently expressed in terms of ρ = s/n and δ = n/p. Indeed,
one has:

(3) {n ≥ c1s log(
c2p

s
)} ⇔ {A⋆ρδ log(A⋆ρδ)) ≥ −B⋆δ} ,

where A⋆ = c−1
2 > 0 and 1/e ≥ B⋆ = c−1

1 c−1
2 > 0. Denote by W0 (resp. W−1) the

first (resp. the second) Lambert W function, see [16] for a definition. We deduce
that (3) is equivalent to:

(4) ρ ≤ exp(W−1(−B⋆δ))

A⋆δ
or ρ ≥ exp(W0(−B⋆δ))

A⋆δ
.
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Figure 4. The strong threshold ρS and the mapping δ 7→ exp(W−1(−0.3394δ))
1.38δ .

Furthermore, the papers [21, 20, 23, 22] show that NSP enjoys a phase transition
that can be described as a region ρ ≤ ρS(δ), see Section 1.3. In particular, one can
check that the region described by the right hand term of (4) cannot be a region
of solutions of the phase transition problem. We deduce from [13, 26] that ρS , the
phase transition of Donoho and Tanner [21, 20, 23, 22], can be bounded by the left
hand term of (4). Hence, it holds the following result.

Theorem 3 — The strong threshold ρS (phase transition of NSP) of Donoho
and Tanner [21, 20, 23, 22] is bounded by:

(5) ∀δ ∈]0, 1[, exp(W−1(−B1δ))

A1δ
≤ ρS(δ) ≤

exp(W−1(−B2δ))

A2δ

where A1, A2 > 0 and 1/e ≥ B1, B2 > 0 are universal (unknown) constants.

Although bounds (1) (lower bound) and (2) (upper bound) are known, their
expressions as exponential of second Lambert W functions remain overlooked in
the literature. As a matter of fact, Figure 4 depicts a comparison between ρS and:

(6) δ 7→ exp(W−1(−0.3394δ))

1.38δ
,

where the strong threshold curve has been taken from [21, 20, 23, 22]. Roughly
speaking, the curve (6) shows empirically that NSP holds when:

n ≥ 4s log(0.7p/s) ,

for large values of s, n, p. Recall that it is still an open problem to find a closed
form for the weak and the strong thresholds. In the regime δ → 0, Donoho and
Tanner [21, 20, 23, 22] have proved that the phase transition enjoys

n ≥ 2es log(p/(
√
πs)) ≃ 5.4s log(0.6p/s) ,

in the asymptotic.

1.5. Outline of the paper. The main theorem (Theorem 4) is stated in the next
section and Section 3 proves it. Section 4 is devoted to the proof of Theorem 2. All
the numerical experiments can be reproduced using the codes available at [28].
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2. Rice method bound for NSP with dilatation C ≥ 1

In this paper, we prove NSP following a newt path based on stochastic processes
theory and more precisely on the Rice method [7, 8]. This latter is specially design
to study the tail of the maximum of differentiable random processes or random
fields. Similarly to the case of a deterministic function, it consists of studying the
maximum through the zeros of the derivative. For the tail of a stationary Gaussian
process defined on the real line, it is known from the work of Piterbarg [29] that it
is super-exponentially sharp.

However, the situation here is more involved than in the aforementioned papers
since the considered process X(t) is defined on the sphere (as in the recent work
[6] for example), non Gaussian and, last but not least, non differentiable. Note
that the paper [17] studies the maximum of locally linear process by a smoothing
argument. A contrario to this paper, we will use a partition of the sphere and
directly the Rice method. This provides a short and direct proof of NSP(s, C) for
any value C ≥ 1.

2.1. An explicit sufficient condition. Our main result reads as follows.

Theorem 4 (Explicit lower bound) — Let 0 < s < n < p and m = p − n.
Let G(n, p) be the Kernel of X(n, p), a (n× p) random matrix with i.i.d. centered
Gaussian entries, then for all C ≥ 1, it holds:

P[G(n, p) enjoys NSP(s, C)] = 1−Π ,

with Π satisfying
(7)

Π ≤ √
π
[ p−n−1∑

k=0

(
p

k

)(C2s

p̃C,k

) p−n−1−k
2 Γ(2p−2k−n−1

2 )

Γ(p−k
2 )Γ(p−n−k

2 )
ψp−k(C)Q(k, p̃C,k,m)

]
,

where Γ denotes the Gamma function, ψp−k(C) is defined by Lemma 4, Q(k, p̃C,k,m)
is defined by Lemma 2 and p̃C,k := (C2 − 1)s+ p− k.
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Figure 5. Numerical computation of the lower bound (Π ≃ 0) on
the phase transition for C = 1, 2, 3, 4 (from bottom to top). An
explicit expression can be found in Theorem 4 . Simulations have
been performed with n = 200.000.
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3. Proof of Theorem 4

3.1. Model and notation. Let 0 < s < n < p, let C > 1 and set m = p − n.
Let G(n, p) be uniformly distributed on the Grassmannian Grm(Rp). Observe that
it can be generated by m independent standard Gaussian vectors gi ∈ Rp for
i = 1, . . .m. Define {Z(t) ; t ∈ Sm−1} the process with values in Rp given by:

Z(t) :=

m∑

i=1

tigi .

Note this process spans G(n, p) and it can be written as

for j = 1, . . . , p , Zj(t) = 〈t, gj〉 ,

where (gj)pj=1 are independent Gaussian random vectors with standard distribution

in Rm. Let Op and Om two orthogonal matrices of size, respectively, (p × p) and
(m×m). Thanks to unitarily invariance of the Gaussian distribution, remark that:

∀t ∈ S
m−1 , OpZ(t)Om ∼ Z(t) .

Consider now the ordered statistics of the absolute values of the coordinates of Z(t):

|Z(1)(t)| ≥ · · · ≥ |Z(p)(t)| ,

where the ordering ((1), . . . , (p)) is always uniquely defined if we adopt the con-
vention of keeping the natural order in case of ties. Given a sparsity s, a de-
gree of freedom m, and a degree of constraint p, consider the real valued process
{X(t) ; t ∈ Sm−1} such that:

(8) X(t) = C|Z(1)(t)|+ · · ·+ C|Z(s)(t)| −
[
|Z(s+1)(t)|+ · · ·+ |Z(p)(t)|

]
.

NSP is equivalent to the fact that this process is always non positive. We will prove
that it happens with an overwhelming probability.

3.2. Cutting the sphere out. As we will see later, the process X(.) is locally
linear over some subsets and to take benefit of that, we need to consider a particular
partition of the sphere.

Let A ⊆ {1, . . . , p}, define the random subsets SA and ṠA of the unit sphere
Sm−1 by:

SA = {t ∈ S
m−1 ; ZA(t) = 0} ,

ṠA = {t ∈ S
m−1 ; ZA(t) = 0 and ∀j /∈ A, Zj(t) 6= 0},

where we denote ZA(t) = (Zj(t))j∈A. One can check that SA is the unit sphere of
the orthogonal of VA := Span{gj ; j ∈ A}. This implies that a.s. SA is a random
sphere of dimension m − 1 − |A| if |A| ≤ m − 1 and is almost surely empty if
|A| > m− 1. It follows that the quantities |Z(1)(t)|, ... ,|Z(n+1)(t)| are a.s. positive
and that a.s.

S
m−1 =

⋃

|A|≤m−1

ṠA ,

giving a partition of the sphere. We define also, for later use, the random subset
W by:

W := {t ∈ S
m−1 ; |Z(s)(t)| = |Z(s+1)(t)|} .

Observe that, conditionally to gj, the set W is closed with empty interior.
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3.3. Probability of failure. We consider the probability:

(9) Π = P
{
M > 0

}
≤

∑

|A|≤m−1

P
{
M

ṠA
> 0
}
,

where M and M
ṠA

are respectively the number of positive local maximum of X(.)

along Sm−1 and ṠA. The baseline of our proof is to upper-bound each right hand
side probabilities, using the expected number of positive local maximum above zero
and Markov inequality. The first element is Lemma 4 proving that:

∀t ∈ ṠA , P{X(t) > 0} ≤ ψp−k(C) ,

where k := |A| and:

ψp−k(C) =

(
p− k

s

)(
C24s

π

) p−k−s
2 Γ((p− k)/2)

Γ(s/2)Γ(p− k − s+ 1)
,

where Γ denotes the Gamma function. The second element is that X(t) admits a
density pX(t). To check that, note that |Z(1)(t)|, . . . |Z(p)(t)| are the order statistics
of the absolute values of i.i.d. Gaussian variables and thus they have a known joint
density on the simplex |Z(1)| ≥ . . . ≥ |Z(p)|. Formula (8) implies the existence of a
density for X(t). Moreover, this density does not depend on t due to invariance of
Gaussian distribution.

3.4. Initialization: local maxima on Ṡ∅. By considering the symmetry proper-
ties of the sphere Ṡ∅, we have:

P
{
M

Ṡ∅
> 0
}
≤ 1

2
E(M

Ṡ∅
) .

In this part, our aim will be to give bound to the expectation using a Kac-Rice
formula. One can check that if t belongs to Ṡ∅ and does not belong to W , X(.) is
locally the sum of the absolute values of some s coordinates multiplied by C minus
the sum of the absolute values of the other coordinates. It can be written as:

X(u) = Cε1Z(1)(u) + · · ·+ CεsZ(s)(u) + εs+1Z(s+1)(u) + · · ·+ εpZ(p)(u),

where ε1, ..., εp are random variables taking values ±1.

Lemma 1 — Let t ∈ Sm−1 then, almost surely, it holds t ∈ Ṡ∅ and t /∈ W.
Furthermore, the spherical gradient X ′(t) and the spherical Hessian X ′′(t) of X(.)
along Sm−1 at t exist and:

• X ′′(t) = −X(t)Im−1.
•
(
X(t), X ′′(t)

)
and X ′(t) are independent.

• X ′(t) has a Gaussian centered isotropic distribution onto t⊥ with variance
p̃C,0 = (sC2 + (p− s)) .

Proof. The fact that, with probability 1, t ∈ Ṡ∅ and t /∈ W implies that the process
X(.) is locally given by

X(u) = Cε1Z(1)(u) + · · ·+ CεsZ(s)(u) + εs+1Z(s+1)(u) + · · ·+ εpZ(p)(u),

where the signs (ε1, ..., εp) and the ordering (1), . . . , (p) are those of t. The process
X(.) is locally linear and thus differentiable around t and its gradient in Rm at t,

denoted Ẋ(t), is given by

Cε1g
(1) + · · ·+ Cεsg

(s) + εs+1g
(s+1) + · · ·+ εpg

(p).

Moreover, note that its Hessian on Rm vanishes.
Let us consider now the spherical gradientX ′(t) and the spherical HessianX ′′(t).

It is well known that X ′(t) = Pt⊥Ẋ(t), where Pt⊥ is the orthogonal projection onto
the orthogonal of t. As for the spherical Hessian, it is defined on the tangent space
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t⊥ and is equal to the projection of the Hessian in Rm, which vanishes, minus the
product of the normal derivative by the identity matrix. This is detailed in Lemma
5. In the case of the unit sphere, the vector normal to the sphere at t is t itself and

X ′′(t) = −〈Ẋ(t), t〉Im−1 = −X(t)Im−1.

In the case of X ′(t), remark that Z(t) and thus X(t), (ε1, . . . , εp, (1), . . . , (p)) are
functions of (Pt(g

1), . . . , Pt(g
p)) = (Z1(t)t, . . . , Zp(t)t) (with obvious notation).

They are therefore independent ofX ′(t) which is a function of (Pt⊥(g
1), . . . , Pt⊥(g

p)).
Conditionally to (ε1, . . . , εp, (1), . . . , (p)), X

′(t) can be written as

X ′(t) = (Cε1Pt⊥g
(1) + · · ·+ CεsPt⊥g

(s) + εs+1Pt⊥g
(s+1) + · · ·+ εpPt⊥g

(p)) ,

which implies that the conditional distribution of X ′(t) is Gaussian with variance-
covariance matrix (sC2 + (p − s))Idt⊥ , where Idt⊥ is the identity operator on t⊥.
Since X ′(t) is independent of (ε1, . . . , εp, (1), . . . , (p)) this conditional distribution
is in fact equal to the unconditional distribution. �

The next step is to prove that a.s. there is no local maximum on W . The case
where there are tied among the |Zi(t)| has to be considered (though it happens
with probability 0 for a fixed t). Note that the order statistics and the ordering
remain uniquely defined because of our convention.
Suppose that t ∈ W . Since all the possible ordering ((1), . . . , (p)) and signs
(ε1, . . . , εp) play the same role by unitarily invariance of the distribution of Z(t) for
all t, we make the proof in the particular case where ((1), . . . , (p)) is the identity
and all the signs (ε1, . . . , εp) are positive:

Z1(t) ≥ ... ≥ Zs−h−1(t) > Zs−h(t) = . . . = Zs+k(t) > Zs+k+1(t) ≥ .. ≥ Zp(t) > 0.

Then, for w in some neighborhood N of t (not included in W), we have:

X(w) = CZ1(w) + · · ·+CZs−h−1(w) + (1 +C)Maxh
(
Zs−h(w) + · · ·+ Zs+k(w)

)

− (Zs−h(w) + · · ·+ Zp(w)),

where Maxh is the sum of the h largest element of its (h + k + 1) arguments. As

being the maximum of
(

h
(s+k)+1

)
linear forms the function Maxh is convex.

Let us consider in detail the vectors gs−h, . . . , gs+k. With probability 1, they are
pairwise different. The point t is chosen such that their projection on t coincide.
As a consequence the derivatives of the linear forms Zℓ(w) = 〈gℓ, w〉, ℓ = (s −
h) . . . (s+ k) on the tangent space t⊥ are pairwise different. This implies that the
function Maxh has some direction in which it is strictly convex and as a consequence
t cannot be a local maximum.
Suppose that t /∈W , and suppose that we limit our attention to points t such that
X(t) > 0, then Lemma 1 implies that X ′′(t) cannot be singular.

This last condition implies that we can apply Theorem 5.1.1 of [2]. This lemma
is a Kac type formula that shows that the zeros of the derivative X ′(t) are isolated
an thus in finite number. In addition recalling that M

Ṡ∅
is the number of positive

local maximum of X(.) and belonging to Ṡ∅, this number satisfies

M(Ṡ∅) = lim
δ→0

1

V (δ)

∫

Sm−1

E(| detX ′′(t)|1|X′(t)−0|<δ1t∈Ṡ∅
1X(t)>0)σ(dt),



A RICE METHOD PROOF OF NSP 11

where σ is the surfacic measure on Sm−1 and V (δ) is the volume of the ball B(δ)
with radius δ. Passing to the limit using the Fatou lemma gives:

E(M(Ṡ∅)) ≤ lim inf
δ→0

∫ ∞

0

dx

∫

Ṡ∅

dt pX(t)(x)

1

V (δ)

∫

B(δ)

dx′pX′(t)(x
′)E
(
| det(X ′′(t))|

∣∣∣X(t) = x,X ′(t) = x′)

≤ (2πp̃C,0

) 1−m
2 2

π
m
2

Γ(m2 )

∫ ∞

0

xm−1pX(t)(x)dx ,

where pX(t)(x) denotes the density of X(t) at x and Γ denotes the Gamma function.
Note that we have used:

• the fact that every point t is equivalent so we can replace the integral on
the unit sphere by the volume of the unit sphere 2π

m
2 /Γ(m2 ) and the value

at a given point,
• E

(
| det(X ′′(t))| |X(t) = x,X ′(t) = x′) = xm−1,

• the Gaussian density pX′(t)(x
′) is bounded by (2πp̃C,0

) 1−m
2 .

So it remains to bound E[(X(t)+)m−1]. For that purpose we write X(t) as the
independent product ‖Z(t)‖2Y (t), where the process Y (t) is constructed exactly as
the process X(t) but starting now from a uniform distribution U on the unit sphere
Sp−1 instead of the standard Gaussian distribution of Z(t). Using standard results
on the moments of the χ2 distribution we have:

E((X(t)+)m−1) = 2
m−1

2

Γ(m−1+p
2 )

Γ(p2 )
E((Y (t)+)m−1) .

We use now the fact that Y (t) ≤ C
√
s to get that:

E((Y (t)+)m−1) ≤ (C
√
s)m−1

P{Y (t) > 0} .
Moreover, Lemma 4 shows that, with probability greater than 1−ψp(C), a standard
Gaussian vector g in Rp enjoys:

C‖gS‖1 ≤ ‖gSc‖1 .
This implies that:

(10) P{Y (t) > 0} ≤ ψp(C) ,

and consequently the probability of having a local maximum above 0 on Ṡ∅ is
bounded by:
(11)

σ(Ṡ∅) (2πp̃0
) 1−m

2 2
m−1

2

Γ(m−1+p
2 )

Γ(p2 )
(C

√
s)m−1ψp(C) ≤ 2

√
π
(C2s

p̃C,0

)m−1

2 Γ(m−1+p
2 )

Γ(p2 )Γ(
m
2 )
ψp(C)

Denote the right hand side of this last inequality by hC(s,m, p).

3.5. Maximum on smaller spheres. Let us now consider the case of a maximum
on ṠA, A 6= ∅. A point t ∈ ṠA\W is a local maximum on Sm−1 if it satisfies the
following conditions:

• it is a local maximum along SA,
• its super-gradient along the orthogonal space VA contains zero,

where the super-gradient is defined as the opposite of the sub-gradient. One can
easily check that the two conditions are independent. Indeed, recall that k = |A| and
VA = Span{gi; i ∈ A} (see Section 3.2) and consider the process X(.) conditionally
to VA. In that case, SA becomes a deterministic sphere of dimension m − k − 1.
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Moreover, note that the behavior of X(.) on SA depends only on the gj , j /∈ A and
that for such j,

Zj(t) = 〈gj , t〉 = 〈ΠV ⊥
A
gj , t〉,

so, conditionaly to VA, the distribution of X(t) corresponds to the case S∅ in the
space of dimension m− k instead of m and with p− k vectors. In conclusion, the
first condition leads to the same computations as the case S∅ and is bounded by

hC(s,m− k, p− k) =2
√
π
(C2s

p̃C,k

) p−n−1−k
2 Γ(2p−2k−n−1

2 )

Γ(p−k
2 )Γ(p−n−k

2 )
ψp−k(C) .

Let us look to the second one which depends only on the gj , j ∈ A. Thus we have
to compute the probability of the super-gradient to contain zero. Indeed, locally
around t, the behavior ofX(w) along VA is the sum of some linear forms (for j /∈ A)
and of absolute value of linear forms (for j ∈ A) thus it is locally concave and we

can define its super-gradient. More precisely, for w in a neighborhood of t ∈ ṠA\W ,

X(w) = XA(w) +XAc(w) ,

where, because k ≤ p− s:

XA(w) = −
∑

i∈A

|Zi(w)| .

Around t, XAc(w) is differentiable and, with a possible harmless change of sign (see
Lemma 1), its gradient is given by:

∑

i∈Ac

Cig
i ,

where the coefficient Ci takes the value C for s of them and −1 for the others. This
gradient is distributed as an isotropic normal variable ξ ∈ VA with variance:

p̃C,k = (C2 − 1)s+ p− k .

By this we mean that the distribution of ξ, in a convenient basis, is N (0, p̃C,kIk).
Let us now consider the case i ∈ A. Observe that the super-gradient along VA
of the concave function −|Zi(t)| at point t is the segment [−gi, gi] and thus the
super-gradient of XA(t) is the zonotope:

(12) Zo =
∑

i∈A

[−gi, gi],

where the sum denotes the Minkowsky addition. Recall that the distribution of
X(t) does not depend on t.

In conclusion, the probability of the super-gradient to contain zero is equal to
P(k, p̃C,k,m) the probability of the following event:

• draw k standard Gaussian variables g1, . . . , gk in Rm and consider the zono-
tope Zo given by formula (12),

• draw in the space VA generated by g1, . . . , gk an independent isotropic
normal variable ξ of variance p̃C,k,

• define P(k, p̃C,k,m) as the probability of ξ to be in Zo.

Lemma 2 — Define the orthonormal basis e1, . . . , ek obtained by Gram-Schmidt
orthogonalization of the vectors g1, . . . gk. Then:

(a) P(k, p̃C,k,m) is less than the probability Q(k, p̃C,k,m) of ξ to be in the
hyper-rectangle:

R =
∑

i∈A

[−〈ei, gi〉ei, 〈ei, gi〉ei],
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Z̃ok−1
z1, . . . , zk−1

zk

Figure 6. The standard Gaussian measure of the zonotope (in

blue) is smaller than that of the rectangle (in red) with basis Z̃ok−1

(in green).

(b) this last probability satisfies:

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)Hk+k−m
Hk!

(m− k)!
,

with Hk = ⌊(π2 p̃C,k) ∧m⌋, where ⌊.⌋ is the integer part.

Proof. (a) We prove the result conditionally to the gi’s and by induction on k.
When k = 1 the result is trivial since the zonotope and the rectangle are simply
the same segment.
Let ϕh be the standard Gaussian distribution on Rh, P(k, p̃C,k,m) is equal to:

ϕk

(
(p̃C,k)

−1/2.Zo
)
=: ϕk

(
Z̃o
)
.

Via Gram-Schmidt ortogonalisation at step k, we can compute this probability
using the Fubini theorem:

P(k, p̃C,k,m) =

∫ 〈ek,gk〉√
p̃C,k

− 〈ek,gk〉√
p̃C,k

ϕk−1

(
Z̃ok−1 + vz

)
ϕ(z)dz,

where ϕ is the standard Gaussian density on R, Z̃ok−1 is the zonotope generated by
g1, . . . , gk−1 and normalized by (p̃C,k)

−1/2 and v is some vector in Rm. By use of

the Anderson inequality [5], the non-centered zonotope
(
Z̃ok−1 + vz

)
has a smaller

standard Gaussian measure than the centered one so

P(k, p̃C,k,m) ≤
∫ 〈ek,gk〉√

p̃C,k

− 〈ek,gk〉√
p̃C,k

ϕk−1

(
Z̃ok−1

)
ϕ(z)dz

≤
∫

R

ϕ(z1) . . . ϕ(zk)dz1 . . . dzk =: Q(k, p̃C,k,m).

The last inequality is due to the induction hypothesis. It achieves the proof.
(b) We use the relation above and deconditioning on the gi. Note the dimension

of the edges of the rectangle R are independent with distribution:

2χ(m), 2χ(m− 1), . . . , 2χ(m− k + 1) ,

where the law χ(d) is defined as the square root of a χ2(d). As a consequence, using
the independence of the components of ξ in the basis e1, . . . , ek and the fact that a
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Student density T is uniformly bounded by (2π)−1/2, we get that:

Q(k, p̃C,k,m) = P(ξ ∈ R) =

k−1∏

ℓ=0

P

[
|T (m− ℓ)| ≤

√
m− ℓ

p̃C,k

]

=

m∏

ℓ=m−k+1

P

[
|T (ℓ)| ≤

√
ℓ

p̃C,k

]
.

Suppose that πp̃C,k ≥ 2m, then a convenient bound is obtained by using the fact

that a Student density is uniformly bounded by (2π)−1/2:

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)k
m!

(m− k)!
.

In the other case, set Hk = ⌊(πp̃C,k)/2⌋, where ⌊.⌋ is the integer part. Observe
that Hk > m − k + 1 for k ≥ 1 to remove factors that are greater than 1 in the
computation and obtain

(
Q(k, p̃C,k,m)

)2 ≤
(

2

πp̃C,k

)Hk+k−m
Hk!

(m− k)!
,

which conclude the proof. �

Eventually, summing up over the
(
p
k

)
sets of size k, we get Theorem 4.

4. Influence of smaller spheres

4.1. General bound on the sum. In this part, we simplify the general bound
of Theorem 4 to derive a simpler one, exponentially decresing in n, as presented in
Theorem 2. Considering (7), we have:

(13) Π ≤ √
π

m∑

k=1

Bk(s, n, p)

where:

Bk(s, n, p) =

(
p

n+ k

)(
n+ k

s

)(
C2s

p̃m−k

) k+1

2 Γ(n2 + k − 1
2 )

Γ(n+k
2 )Γ(k2 )

×
(
C24s

π

)n+k−s
2 Γ(n+k

2 )
√
Hm−k!

Γ( s2 )(n+ k − s)!
√
k!

(
2

πp̃C,m−k

)Hm−k−k

2

In order to derive a lower bound (the aforementioned bound goes exponentially fast
towards zero), we limit our attention to the case described by

• (H1) ρ ≤ 1/2,
• (H2) 1

δ ≤ 1 + π/2(1 + ρ(C2 − 1)).

Observe that (H1) is not a restriction since we know that NSP does not hold for
ρ ≥ 0.2. Under (H2), note that ∀k, Hk = m, and hence

Π ≤ R(s, n, p)
p!

s!
√
m!Γ(s/2)

(
4C2s

π

)n−s
2

m∑

i=1

(
m

k

)
(2C2s)kΓ(n2 + k)

(n− s+ k)!2

(
2

πp̃C,m−k

)m
2

≤ R(s, n, p)
p!

s!(n− s)!
√
m!Γ(s/2)

(
4C2s

π

)n−s
2

×
m∑

i=1

(
m

k

)
(2C2s)kΓ(n2 + k)

(n− s)k(n− s+ k)!

(
2

πp̃C,m−k

)m
2

,
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Figure 7. Comparison between the phase transition of Theorem
2 and the numerical approximation given by Theorem 4 ( Π ≃ 0
with n = 200.000, dashed line). From top to bottom, C = 1, 2, 3, 4.

where R(s, n, p) is a polynomial term in (s, n, p). Consider now the quantity

α(k) :=
Γ(n2 + k)

(n− s+ k)!

which is a decreasing function of k under assumption (H1) and the fact that p̃C,k

is an increasing function of k, then we obtain

Π ≤ R(s, n, p)
p!Γ(n/2)

s!(n− s)!2
√
m!Γ(s/2)

(
4C2s

π

)n−s
2

m∑

i=1

(
m

k

)
(2C2s)k

(n− s)k

(
2

πp̃C,m−1

)m
2

.

At last, using Stirling Formula (see Lemma 3), it yields

Π ≤ R(s, n, p)
p!Γ(n/2)

s!(n− s)!2Γ(s/2)

(
4C2s

π

)n−s
2
(

2e

π(n+ (C2 − 1)s)m

)m
2
(
1 +

2C2s

n− s

)m

.

Gathering the piece, one has:

Π ≤ R(s, n, p)

(√
π

2eC2

(n− s)2

s2

)s
(
Ce

√
nsm(n+ (C2 − 1)s)

(n− s)(n+ (2C2 − 1)s)

)n

×
(√

2

eπ

p(n+ (2C2 − 1)s)

(n− s)
√
m(n+ (C2 − 1)s)

)p

,

which gives the result of Theorem 2.

Remark. The upper bound on α(k) and the lower bound on p̃C,k may seem weak
but they do not change the result on the phase transition because first terms of the
sum give the right order on ρ and δ. To ensure that, see figure 7, which compare
the numerical bound with the one of Theorem 2.

Appendix A. Stirling’s formula

Lemma 3 — Let z > 0 then there exists θ ∈ (0, 1) such that:

Γ(z + 1) = (2πz)
1
2

(z
e

)z
exp(

θ

12z
) .
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In particular, if z > 1/12,
(z
e

)z
≤ Γ(z + 1) ≤

√
2πz

(z
e

)z

Proof. See [1] Eq. 6.1.38. �

Appendix B. Concentration ψl(C)

Lemma 4 — Let C ≥ 1, then, except with a probability smaller than:

ψl(C) :=

(
l

s

)(
C24s

π

) l−s
2 Γ(l/2)

Γ(s/2)Γ(l − s+ 1)
,

a standard Gaussian vector g ∈ Rl enjoys for all S ⊂ {1, . . . , l}, |S| ≤ s,

C‖gS‖1 ≤ ‖gSc‖1.

Proof. Let ξC := {v ∈ Rl that does not satisfy NSP (s, C)} and consider the joint
law of standard Gaussian ordered statistics (W(1), . . . ,W(l)), then

P(ξ) = 2ll!

∫

Rl

1t∈ξC1t1≥···≥tlϕ(t1) . . . ϕ(tl)dt1 . . . dtl

=
2ll!

(l − s)!

∫

Rl−s×Rs

1t∈ξC1t1≥···≥tsϕ(t1) . . . ϕ(ts)ϕ(ts+1) . . . ϕ(tl)dt1 . . . dtl

≤ 2ll!

(l − s)!

(
1

2π

) l−s
2
∫

Rs

1t1≥···≥ts

λl−s(B1(C(t1 + · · ·+ tl)))

2l−s
ϕ(t1) . . . ϕ(ts)dt1 . . . dts ,

where the last inequality relies on P(N (0, Il−s) ∈ B1(t1 + · · ·+ ts)) is bounded by
the density function of N (0, Il−s) in 0 times the Lebesgue measure of the l1 ball of
radius C(t1 + · · ·+ ts) in Rl−s. Finally, as

λl−s(B1(R)) =
(2R)l−s

(l − s)!
,

it implies,

P(ξ) ≤
(
2C2

π

) l−s
2 2sl!

(l − s)!2

∫

Rs

(t1 + · · ·+ ts)
l−s

1t1≥···≥tsϕ(t1) . . . ϕ(ts)dt1 . . . dts

=

(
2C2

π

) l−s
2 l!

(l − s)!2s!
E
(
(|W1|+ · · ·+ |Ws|)l−s

)

=

(
2C2

π

) l−s
2
(
l

s

)
1

(l − s)!
E(‖W‖l−s

1 ) ,

where W is a standard Gaussian vector in Rs. At last, using bound on l1 norm, it
comes,

P(ξ) ≤
(
2C2

π

) l−s
2
(
l

s

)
1

(l − s)!
s

l−s
2 E(‖W‖l−s

2 )

=

(
2C2

π

) l−s
2
(
l

s

)
1

(l − s)!
s

l−s
2 2

l−s
2

Γ(l/2)

Γ(s/2)
,

where the last equality follows from classical results on the moment of the χ distri-
bution. �
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Appendix C. Spherical Hessian

Lemma 5 — Denote X ′′(.) the Hessian of X(.) along the sphere Sm−1 then

X ′′(t) = −X(t)Im−1.

Proof. To compute the spherical Hessian, since every point plays the same role, we
can compute it at the "east pole" t = e1, the first vector of the canonical basis.
Consider a basis (w2, . . . , wn) of the tangent space at t = e1 and use, as a chart of
the sphere, the orthogonal projection on this space.

Let Y (t2, . . . , tm) be the process X(.) written in this chart in some neighborhood
of e1. By the Pythagorean theorem,

Y (t2, . . . , tm) = X(
√
1− t22 − · · · − t2m, t2, . . . , tm).

Plugging this into the order two Taylor expansion of the process X(.) at t = e1
gives

Y (t2, . . . , tm) = X(e1) + t2X
′
2(e1) + · · ·+ tmX

′
m(e1) +

∑

2≤i,j≤m

titj
2
X ′′

ij(e1)

−X ′
1(e1)

t22 + · · ·+ t2m
2

+ o(t22 + · · ·+ t2m),

where X ′
k(e1) =

∂X
∂wk

(e1) and X ′′
ij(e1) =

∂X
∂wi∂wj

(e1). As the process is locally linear,

in a small enough neighborhood of e1, X
′′
ij is equal to zero and, by identification,

X ′′(e1) = −X ′
1(e1)Im−1 = −X(e1)Im−1

giving the desired result. �
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