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Random Measurable Sets and Covariogram

Realisability Problems

Bruno Galerne and Raphaël Lachièze-Rey∗

May 24, 2014

Abstract

We provide a characterization of the realisable set covariograms, bringing a rig-
orous yet abstract solution to the S2 problem in materials science. Our method is
based on the covariogram functional for random mesurable sets (RAMS) and on
a result about the representation of positive operators in a locally compact space.
RAMS are an alternative to the classical random closed sets in stochastic geom-
etry and geostatistics, they provide a weaker framework allowing to manipulate
more irregular functionals, such as the perimeter. We therefore use the illustration
provided by the S2 problem to advocate the use of RAMS for solving theoretical
problems of geometric nature. Along the way, we extend the theory of random mea-
surable sets, and in particular the local approximation of the perimeter by local
covariograms.

Keywords. Random measurable sets, realisability, S2 problem, covariogram, perime-
ter, truncated moment problem.
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Introduction

An old and difficult problem in materials science is the S2 problem, often posed in the
following terms: Given a real function S2 : R

d → [0, 1], is there a stationary random set
X ⊂ Rd whose standard two point correlation function is S2, that is, such that

P(x− y ∈ X) = S2(x− y), x, y ∈ Rd ? (0.1)

The S2 problem is a realisability problem concerned with the existence of a (translation
invariant) probability measure satisfying some prescribed marginal conditions.

One can see the S2 problem as a truncated version of the general moment problem
that deals with the existence of a process for which all moments are prescribed. The
main difficulty in only considering the moments up to some finite order is that this
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sequence of moments does not uniquely determine the possible solution. The appearance
of second order realisability problems for random sets goes back to the 1950’s, see for
instance [McM55] in the field of telecommunications. There are applications in materials
science and geostatistics, and marginal problems in general are present under different
occurrences in fields as various as quantum mechanics, computer science, or game theory,
see the recent work [FC13] and references therein.

Reconstruction of heterogeneous materials from a knowledge of limited microstruc-
tural information (a set of lower-order correlation functions) is a crucial stake in many
applications. It is an intriguing inverse problem, and would correspond here to a con-
structive solution for the realisability problem. This study can serve many purposes,
especially in spatial modeling, where one needs to know necessary admissibility condi-
tions to propose new covariance models.

In estimation and reconstruction, one should test whether an estimated covariance
indeed corresponds to a random structure, and propose an adapted reconstruction pro-
cedure. A series of works by Torquato and his coauthors in the field of materials science
gather known necessary conditions and illustrate them for many 2D and 3D theoreti-
cal models, along with reconstruction procedures (see [JST07] and the survey [Tor02,
Sec. 2.2] and references therein). This question was developed alongside in the field of
geostatistics, where some authors do not tackle directly this issue, but address the re-
alisability problem within some particular classes of models, e.g. Gaussian, mosaic, or
Boolean model (see [Mas72, CD99, Lan02, Eme10]).

A related question concerns the specific covariogram of a stationary random set X ,
defined for all non empty bounded open set U ⊂ Rd by

γs
X(y) =

ELd(X ∩ (y +X) ∩ U)

Ld(U)
= ELd(X ∩ (y +X) ∩ (0, 1)d). (0.2)

The associated realisability problem, which consists in determining whether there exists
a stationary random set X whose specific covariogram is a given function, is the (specific)
covariogram realisability problem. Note that a straightforward Fubini argument gives that
for any stationary random closed set X

γs
X(y) =

∫

(0,1)d
P(x ∈ X, x− y ∈ X)dx = S2(−y) = S2(y), (0.3)

and thus the S2 realisability problem and the specific covariogram problem are funda-
mentally the same.

Our main result provides an abstract and fully rigorous characterization of this prob-
lem for random measurable sets (RAMS) having locally finite mean perimeter. Further-
more, in the restrictive one-dimensional case (d = 1), results can be passed on to the
classical framework of random closed sets. It will become clear in this paper why the
covariogram approach in the framework of random measurable sets is more adapted to
a rigorous mathematical study. Random measurable sets are an alternative to the clas-
sical random closed sets in stochastic geometry and geostatistics, they provide a weaker
framework allowing to manipulate more irregular functionals, such as the perimeter. We
therefore use the illustration provided by the S2 problem to advocate the use of RAMS
for solving theoretical problems of geometric nature. Along the way, we extend the theory
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of random measurable sets, and in particular the local approximation of the perimeter
by local covariograms.

Our main result uses a fundamental relation between the Lipschitzness of the covar-
iogram function of a random set, and the finiteness of its mean variational perimeter,
unveiled in [Gal11]. Like in [LRM11, Th. 3.1] about point processes, we prove that the
realisability of a given function S2 : Rd → R can be characterized by two independent
conditions : a positivity condition, and a regularity condition, namely the Lipschitzness
of S2. The positivity condition deals with the positivity of a linear operator extending S2

on an appropriate space, and is of combinatorial nature. The proof of this main result
relies on a theorem dealing with positive operators in a locally compact space recently de-
rived in [LRM11] to treat realisability problems for point processes. This general method
therefore proves here its versatility by being applied in the framework of random sets in
a very similar manner.

Checking whether S2 satisfies the positivity condition is completely distinct from the
concerns of this paper. It is a difficult problem that has a long history. It is more or
less implicit in many articles, and has been, to the best of the authors’ knowledge, first
addressed directly by Shepp [She63], later on by Matheron [Mat93], and more recently
in [Qui08, LR13b, LR13a]. Still, a deep mathematical understanding of the problem
remains out of reach.

The plan of the paper is as follows. We give in Section 1 a quick overview of the
mathematical objects involved here, namely random measurable sets, positivity, perime-
ter, and realisability problems, and we also state the main result of the paper dealing
with the specific covariogram realisability problem for stationary random measurable sets
with finite specific perimeter. In section 2, we develop the theory of random measurable
sets, define different notions of perimeter, and explore the relations with random closed
sets, while section 3 is devoted the local covariogram functional and its use for perimeter
approximation. In section 4, we give the precise statement and the proof of the main
result. We also show that our main result extends to the framework of one-dimensional
stationary RACS.

1 Framework and main results

1.1 Random measurable sets and variational perimeter

Details about random measurable sets are presented in Section 2, and we give here the
essential notation for stating the results. Call M the class of Lebesgue measurable
sets of Rd. A random measurable set (RAMS) X is a random variable taking values
in M endowed with the Borel σ-algebra induced by the local convergence in measure
(which corresponds to the L1

loc(R
d)-topology for the indicator functions, see Section 2.1

for details). Remark that under this topology, one is bound to identify two sets A and A′

lying within the same Lebesgue class (that is, such that their symmetric difference A∆A′

is Lebesgue-negligible), and we indeed perform this identification on M. Say furthermore
that a RAMS is stationary if its law is invariant under translations of Rd.

One geometric notion that can be extended to RAMS is that of perimeter. For a
deterministic measurable set A, the perimeter of A in an open set U ⊂ Rd is defined as
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the variation of the indicator function 1A in U , that is,

Per(A;U) = sup

{∫

U

1A(x) divϕ(x)dx : ϕ ∈ C1
c (U,R

d), ‖ϕ(x)‖2 ≤ 1 for all x

}

, (1.1)

where C1
c

(
U,Rd

)
denotes the set of continuously differentiable functions ϕ : U → Rd

with compact support and ‖ · ‖2 is the Euclidean norm [AFP00]. See Section 2.2 for a
discussion and some properties of variational perimeters in the class of measurable sets. If
X is a RAMS then for all open sets U ⊂ Rd, Per(X ;U) is a well-defined random variable.
Besides, if X is stationary then U 7→ E(Per(X ;U)) extends into a measure invariant by
translation, and thus proportional to the Lebesgue measure. One calls specific perimeter
of X the constant of proportionality that will be denoted by Pers(X) and that is given
by Pers(X) = EPer(X ; (0, 1)d).

1.2 Covariogram realisability problems

For a deterministic set A, one calls local covariogram of A the map

Rd ×W → R

(y;W ) 7→ δy;W (A) := Ld(A ∩ (y + A) ∩W )

where W denotes the set of observation windows defined by

W =
{
W ⊂ Rd bounded open set such that Ld(∂W ) = 0

}
.

Given a RAMS X , we denote by γX(y;W ) = Eδy;W (X) the (mean) local covariogram
of X . If X is stationary, then the map W 7→ γX(y;W ) is translation invariant and
extends into a measure proportional to the Lebesgue measure. Hence, one calls specific
covariogram of X and denotes by y 7→ γs

X(y), the map such that γX(y;W ) = Eδy;W (X) =
γs
X(y)Ld(W ). Note that one simply has γs

X(y) = γX(y, (0, 1)
d).

We are interested in this paper in the specific covariogram realisability problem: Given
a function S2 : Rd → R, does there exists a stationary random measurable set X ∈ M
such that S2(y) = γs

X(y) for all y ∈ Rd ?
The specific covariogram candidate S2 has to verify some structural necessary condi-

tion to be realisable.

Definition 1.1 (Covariogram admissible). A function γ : Rd×W → R is said to be M-
local covariogram admissible, or just admissible, if for all 5-tuple (q ≥ 1, (ai) ∈ Rq, (yi) ∈
(Rd)q, (Wi) ∈ Wq, c ∈ R),

[

∀A ∈ M, c+

q
∑

i=1

aiδyi;Wi
(A) ≥ 0

]

⇒ c+

q
∑

i=1

aiγ(yi;Wi) ≥ 0.

A function S2 : Rd → R is said to be M-specific covariogram admissible, or just admis-
sible, if the function (y;W ) 7→ S2(y)Ld(W ) is M-local covariogram admissible.

It is an immediate consequence of the positivity and linearity of the mathematical
expectation that a realizable S2 function is necessarily admissible. Checking whether
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a given S2 is admissible, a problem of combinatorial nature, is difficult. It will not be
addressed here, but as emphasized in (0.3), it is directly related to the positivity problem
for two-point covering functions, which is studied in numerous articles (see [She63, Mat93,
Qui08, LR13b, LR13a], and references therein). Let us remark that being admissible is
a strong constraint on S2 that conveys the usual properties of covariogram functions,
and in particular, S2(y) ≥ 0 for all y ∈ Rd (since for all y ∈ Rd, W ∈ W and A ∈ M,
δy;W (A) ≥ 0).

In general, the admissibility of S2 is not sufficient for S2 to be realizable. Consider
the linear operator Φ

Φ

(

c +

q
∑

i=1

aiδyi;Wi

)

= c+

q
∑

i=1

aiS2(yi)Ld(Wi) (1.2)

on the subspace of functionals on M generated by the constant functions and the co-
variogram evaluations A 7→ δy;W (A), y ∈ Rd,W ∈ W. The realisability of S2 corre-
sponds to the existence of a probability measure µ on M representing Φ, i.e. such that
Φ(g) =

∫

M
gdµ for g in the forementionned subspace. In a non-compact space such as

M, the positivity of Φ, i.e. the admissibility of S2, is not sufficient to represent it by a
probability measure, as the σ-additivity is also needed.

It has been shown in [LRM11] that in such non-compact frameworks, the realisability
problem should better be accompanied with an additional condition involved with the
regularity of the set in some sense. This condition is carried on by a companion function,
called a regularity modulus, depending on the functions of interest in our realisability
problem. Without entering into details (see Section 4), the perimeter function fulfills this
role here, mostly because it can be approximated by linear combinations of covariograms,
and has compact level sets. The well-posed realisability problem with regularity condition
we consider here deals with the existence of a stationary random measurable set X ∈ M
such that {

S2(y) = γs
X(y), y ∈ Rd,

Pers(X) = EPer(X ; (0, 1)d) < ∞.

The main result of this paper is the following.

Theorem 1.2. Let S2 : R
d 7→ R be a function. Then S2 is the specific covariogram of a

stationary random measurable set X ∈ M such that Pers(X) < ∞ if and only if S2 is
admissible and Lipschitz in 0 along the d canonical directions.

This result is analogous to the one obtained in [LRM11] for point processes, since the
realisability condition is shown to be a positivity condition plus a regularity condition,
namely the Lipschitzness of S2. As already discussed, a realisable function S2 is necessar-
ily admissible. Besides, extending results from [Gal11], we show that a stationary RAMS
X has a finite specific perimeter if and only if its specific covariogram γs

X is Lipschitz,
and we obtain an explicit relation between the Lipschitz constant of S2 and the specific
perimeter (see Proposition 3.5). Hence the direct implication of Theorem 1.2 is somewhat
straightforward. The real difficulty consists in proving the converse implication. To do so
we adapt the techniques of [LRM11] to our context which involves several technicalities
regarding the approximation of the perimeter by linear combination of local covariogram

5



functional. We first establish the counterpart of Theorem 1.2 for the realisability of local
covariogram function γ : Rd ×W → R (see Theorem 4.1) and we then extend this result
to the case of specific covariogram of stationary RAMS (see Theorem 4.9).

In addition, we study the links between RAMS and the more usual framework of
random closed sets (RACS), which in fine enables us to obtain a result analogous to
Theorem 1.2 for RACS of the real line (see Theorem 4.12).

2 Random measurable sets

2.1 Definition of random measurable sets

Random measurable sets (RAMS) are a weak framework for random sets allowing for the
definition of irregular functionals. They are defined as random variable taking value in
the set M of Lebesgue (classes of) sets of Rd endowed with the Borel σ-algebra B(M)
induced by the natural topology, the so-called local convergence in measure. We recall
that a sequence of measurable sets (An)n∈N locally converges in measure to a measurable
set A if for all bounded open set U ⊂ Rd, the sequence Ld ((An∆A) ∩ U) tends to 0,
where ∆ denotes the symmetric difference. The local convergence in measure simply
corresponds to the convergence of the indicator functions 1An towards 1A in the space
of locally integrable functions L1

loc

(
Rd
)
, and consequently M is a complete metrizable

space1.

Definition 2.1 (Random measurable sets). A random measurable set (RAMS) X is a
measurable map

X : (Ω,A) → (M,B(M)) ,
ω 7→ X(ω)

where B(M) denotes the Borel σ-algebra induced by the local convergence in measure.

Note that if X is a RAMS, then ω 7→ 1X(ω) is a random integrable function. This
concept of random measurable (class of) set(s) is not standard. As mentioned in [Mol05],
measurable random subsets of the interval [0, 1] are defined following this definition
in [SŠ87].

In the remaining of this section, we will discuss the link between RAMS and other
classical random objects, namely random Radon measures, jointly measurable subsets of
Ω× Rd, and random closed sets.

Random Radon measures associated with random measurable sets Following
the usual construction of random objects, a random Radon measure is defined as a mea-
surable function from a probability space (Ω,A,P) to the space M+ of positive Radon
measures over Rd equipped with the appropriate σ-algebra M defined as the smallest
σ-algebra for which the evaluation maps µ 7→ µ(B), B ∈ B

(
Rd
)
relatively compact, are

measurable (see e.g [Kal86, SW08]). Any RAMS X ⊂ Rd canonically defines a random

1 This is a consequence of the facts that L1

loc

(
Rd
)
is a complete metrizable space and that the set of

indicator functions is closed in L1

loc

(
Rd
)
.
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Radon measure that is the restriction to X of the Lebesgue measure:

B
(
Rd
)

→ [0,+∞],
B 7→ Ld(X ∩ B).

The measurability of this restriction results from the observation that, for all B ∈ B
(
Rd
)
,

the map f 7→
∫

B
f(x)dx is measurable for the L1

loc-topology.

Existence of a jointly measurable representative For a RAMS X : Ω → M, one
can study the measurability properties of the graph Y = {(ω, x) : x ∈ X(ω)} ⊂ Ω× Rd.

Definition 2.2 (Jointly measurable representative). A subset Y ⊂ Ω × Rd is a jointly
measurable representative of a RAMS X if

1. Y is a jointly measurable subset of Ω× Rd (i.e. Y ∈ A⊗ B
(
Rd
)
),

2. For a.a. ω ∈ Ω, the ω-section Y (ω) = {x ∈ Rd, (ω, x) ∈ Y } is equivalent in measure
to X(ω) (i.e. Ld(Y (ω)∆X(ω)) = 0).

Proposition 2.3. Any jointly measurable set Y ∈ A ⊗ B
(
Rd
)
canonically defines a

RAMS by considering the Lebesgue class of its ω-sections:

ω 7→ Y (ω) = {x ∈ Rd, (ω, x) ∈ Y }.

Conversely, any RAMS X admits jointly measurable representatives Y ∈ A⊗ B
(
Rd
)
.

Proof. The first point is trivial. Let us prove the second point. Consider the random
Radon measure µ associated to X , that is

µ(ω,B) = Ld(X(ω) ∩B) =

∫

B

1X(ω)(x)dx.

By construction this random Radon measure is absolutely continuous with respect to the
Lebesgue measure. Then according to Radon-Nikodym theorem for random measures
(see Theorem A.1), there exists a jointly measurable map g : (Ω × Rd,A⊗ B(Rd)) → R

such that for all ω ∈ Ω,

µ(ω,B) =

∫

B

g(ω, x)dx, B ∈ B
(
Rd
)
.

Hence for all ω ∈ Ω, 1X(ω)(·) and g(ω, ·) are both Radon-Nikodym derivative of µ(ω, ·)
and thus are equal almost everywhere. In particular, for a.a. x ∈ Rd, g(ω, x) ∈ {0, 1}.
Consequently, the function (ω, x) 7→ 1(g(ω, x) = 1) is also jointly measurable and is a
Radon-Nikodym derivative of µ(ω, ·) for all ω ∈ Ω, and thus the set

Y = {(ω, x) ∈ Ω× Rd, g(ω, x) = 1}

is a jointly measurable representative of X .
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Remark 2.4. Given a jointly measurable representative Y of a RAMS X , one can con-
sider measurable events of Ω related to Y . However, only a subset of these events belongs
to the sub-σ-algebra σ(X) of B(M) induced by X . For example, for a given x ∈ Rd,
Fubini Theorem ensures that the x-section set {ω ∈ Ω, (ω, x) ∈ Y } is a measurable
subset of Ω, but it depends on the Lebesgue representative chosen for X (e.g. Y \ {x} is
another measurable representative for which the section set is always empty). However,
events such as {ω ∈ Ω, Ld(Y (ω, ·)∩B) ≥ a}, for some B ∈ B

(
Rd
)
and a > 0, are events

of σ(X) since they are invariant by a change of Lebesgue representative.

Random measurable sets and random closed sets Recall that (Ω,A,P) denote
our probability space. Let F = F

(
Rd
)
be the set of all closed subset of Rd. Follow-

ing [Mol05, p. 1] a random closed set is defined as follows.

Definition 2.5 (Random Closed Set). A map Z : Ω → F is called a random closed set
(RACS) if for every compact set K ⊂ Rd, {ω : Z(ω) ∩K 6= ∅} ∈ A.

The framework of random closed sets is standard in stochastic geometry [Mat75,
Mol05]. Let us now reproduce a result of C.J. Himmelberg that allows to link the different
notions of random sets (see [Mol05, Theorem 2.3 p. 26] or the original paper [Him75] for
the complete theorem),

Theorem 2.6 (Himmelberg). Let (Ω,A,P) be a probability space and Z : Ω → Z(ω) ∈
F be a map taking values into the set of closed subset of Rd. Consider the two following
assertions:

(i) {ω : Z ∩ F 6= ∅} ∈ A for every closed set F ⊂ Rd,

(ii) The graph of Z, i.e. the set {(ω, x) ∈ Ω× Rd : x ∈ Z(ω)}, belongs to the product
σ-algebra A⊗ B

(
Rd
)
,

Then the implication (i) ⇒ (ii) is always true, and if the probability space (Ω,A,P)
is complete (i.e. all P-negligible subsets of Ω are measurable) one has the equivalence
(i) ⇔ (ii).

In view of our definitions for random sets, Himmelberg’s theorem can be rephrased
in the following terms.

Proposition 2.7. Any RACS Z defines a jointly measurable set Y = {(ω, x) ∈ Ω ×
Rd : x ∈ Z(ω)}, and thus also defines a random measurable set.

Proof. By definition of a RACS, for every compact set K ⊂ Rd, {ω : Z ∩K 6= ∅} ∈ A.
Now, since we are in Rd, any closed set F ⊂ Rd can be expressed as the countable union
of compact sets F =

⋃

n Kn (e.g. take Kk = F ∩ (k + [0, 1]d) with k ∈ Zd). But then

{ω : Z ∩ F 6= ∅} =
⋃

n

{ω : Z ∩Kn 6= ∅} ∈ A.

Hence for every closed set F ⊂ Rd, {ω : Z ∩ F 6= ∅} ∈ A, and thus by (i) ⇒ (ii) of
Theorem 2.6, the graph Y of Z if jointly measurable, that is Y is a jointly measurable
set. According to Proposition 2.3, this jointly measurable set is canonically associated
with a random measurable set.
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The converse of the above proposition is obviously false since random measurable sets
take possibly non-closed set values (more precisely some Lebesgue classes do not contain
any closed set, see Example 2.10). However, if a jointly measurable set only takes closed
set values, then it also defines a RACS.

Proposition 2.8. Suppose that the probability space (Ω,A,P) is complete. Let Y ∈
A⊗ B

(
Rd
)
be a jointly measurable set such that for all ω ∈ Ω, its ω-section

Y (ω) = {x ∈ Rd, (ω, x) ∈ Y }

is a closed subset of Rd. Then, the map ω 7→ Y (ω) defines a random closed set.

Proof. Since ω 7→ Z(ω) takes only closed values and (Ω,A,P) is complete, by (ii) ⇒ (i)
of Theorem 2.6, for every closed sets F ⊂ Rd, {ω : Z ∩F 6= ∅} ∈ A. In particular this is
true for every compact set K ⊂ Rd and thus, by definition, ω 7→ Z(ω) defines a random
closed set.

2.2 Random measurable sets of finite perimeter

The perimeter is one of the main geometric characteristics of a set. For a closed set
F , the perimeter is generally defined by the length of the topological boundary, that is
Hd−1(∂F ). This definition is not valid for a measurable set A ⊂ Rd, in the sense that
Hd−1(∂A) strongly depends on the representative of A within its Lebesgue class. The
proper notion of perimeter for measurable sets is the variational perimeter that defines the
perimeter as the variation of the indicator function of the set. An important feature of the
variational perimeter is that it is lower semi-continuous for the convergence in measure,
while the functional F 7→ Hd−1(∂F ) is not lower semi-continuous on the set of closed
sets F endowed with the hit or miss topology. This is a key aspect for this paper since
it allows to consider the variational perimeter as a regularity modulus for realisability
problems in following the framework of [LRM11] (the definition of a regularity modulus
will be recalled in Section 4).

Variational perimeters Let U be an open set. As already recalled in the introduction,
the (variational) perimeter Per(A;U) of a measurable set A ∈ M in the open set U is
defined by

Per(A;U) = sup

{∫

U

1A(x) divϕ(x)dx : ϕ ∈ C1
c (U,R

d), ‖ϕ(x)‖2 ≤ 1 for all x

}

,

where C1
c (U, ·) denotes the set of continuously differentiable functions with compact sup-

port and ‖ · ‖2 is the Euclidean norm [AFP00]. Closely related to the perimeter, one also
defines the directional variation in the direction u ∈ Sd−1 of A in U by [AFP00, Section
3.11]

Vu(A;U) = sup

{∫

U

1A(x)〈∇ϕ(x), u〉dx : ϕ ∈ C1
c (U,R), ‖ϕ(x)‖2 ≤ 1 for all x

}

.
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For technical reasons, we also consider the anisotropic perimeter

A 7→ PerB(A;U) =

d∑

j=1

Vej(A;U)

which adds up the directional variations along the d directions of the canonical basis B =
{e1, . . . , ed}. In geometric measure theory, the functional A 7→ PerB(A;U) is described
as the anisotropic perimeter associated with the anisotropy function x 7→ ‖x‖∞ (see
e.g. [CCMN08] and the references therein). Indeed, one easily sees that

PerB(A;U) = sup

{∫

U

1A(x) divϕ(x)dx : ϕ ∈ C1
c (U,R

d), ‖ϕ(x)‖∞ ≤ 1 for all x

}

.

Hence the only difference between the variational definition of the isotropic perimeter
Per(A;U) and the one of the anisotropic perimeter PerB(A;U) is that the test functions
ϕ take values in the ‖ · ‖2-unit ball Bd for the former whereas they take values in the
‖ · ‖∞-unit ball [−1, 1]d for the latter. The set inclusions Bd ⊂ [−1, 1]d ⊂

√
dBd lead to

the tight inequalities

Per(A;U) ≤ PerB(A;U) ≤
√
dPer(A;U). (2.1)

Consequently a set A has a finite perimeter Per(A;U) in U if and only if it has a finite
anisotropic perimeter PerB(A;U) (let us mention that this equivalence is not true when
considering only one directional variation Vu(A;U)). One says that a measurable set
A ⊂ Rd has locally finite perimeter if A has a finite perimeter Per(A;U) in all bounded
open set U ⊂ Rd.

To finish let us mention that if X is a RAMS then Per(X ;U), PerB(X ;U), and
Vu(X ;U), u ∈ Sd−1, are well-defined random variables since the maps A 7→ Per(A;U),
A 7→ PerB(A;U) and A 7→ Vu(A;U) are lower semi-continuous for the convergence in
measure [AFP00]. Consequently one says that a RAMS X has a.s. finite perimeter in
U if the random variable Per(X ;U) is a.s. finite (or equivalently if PerB(X ;U) is a.s.
finite). One says that a RAMS X has a.s. locally finite perimeter in U if for all bounded
open set V ⊂ U the random variable Per(X ;V ) is a.s. finite.

Closed representative of one-dimensional sets of finite perimeter Although
the general geometric structure of sets of finite perimeter is well-known (see [AFP00,
Section 3.5]) it necessitates involved notions from geometric measure theory (rectifiable
sets, reduced and essential boundaries, etc.). However, when restricting to the case of
one-dimensional sets of finite perimeter, all the complexity vanishes since subsets of R
having finite perimeter all correspond to finite union of non empty and disjoint closed
intervals.

More precisely, according to Proposition 3.52 p. 153 of [AFP00], if a non-negligible
measurable set A ⊂ R has finite perimeter in an interval (a, b) ⊂ R, there exists an
integer p and p pairwise disjoint non empty and closed intervals Ji = [a2i−1, a2i] ⊂ R,
with a ≤ a1 < a2 < · · · < a2p ≤ b such that

• A ∩ (a, b) is equivalent in measure to the union
⋃

i Ji,
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• the perimeter of A in (a, b) is the number of interval endpoints belonging to (a, b)

Per(A; (a, b)) = #{a1, a2, . . . , a2p} ∩ (a, b).

Let us remark that a set of the form A =
⋃

i[a2i−1, a2i] is closed and that such a set
satisfies the identity Per(A; (a, b)) = H0(∂A ∩ (a, b)), where ∂A denotes the topological
boundary of A and H0 is the Hausdorff measure of dimension 0 on R (i.e. the counting
measure) while in the general case one only has Per(A; (a, b)) ≤ H0(∂A ∩ (a, b)) since A
may contain isolated points.

More generally, if A ⊂ R has locally finite perimeter, then there exists a unique
countable or finite family of closed and disjoint intervals Ji = [a2i−1, a2i], i ∈ I ⊂ Z,
such that A is equivalent in measure to

⋃

i∈I Ji and for all bounded open interval (a, b),
Per(A; (a, b)) is the number of interval endpoints belonging to (a, b).

Using both this observations and Proposition 2.8, one obtains the following proposi-
tion.

Proposition 2.9. Suppose that the probability space (Ω,A,P) is complete. Let X be
a RAMS of R that has a.s. locally finite perimeter. Then, there exists a RACS Z ⊂ R

such that for P-almost all ω ∈ Ω and for all a < b ∈ R,

L1(X(ω)∆Z(ω)) = 0 and Per(X(ω); (a, b)) = H0(∂Z(ω) ∩ (a, b)).

In Section 4, the above proposition will be used to extend the conclusions of Theo-
rem 1.2, that is valid for RAMS, to the case of one-dimensional RACS.

Proof of Proposition 2.9. Let us first remark that a measurable set of finite perimeter
A ⊂ R equivalent in measure to

⋃

i∈I [a2i−1, a2i] for some finite or countable index set
I ⊂ Z has the Lebesgue density

D(x,A) = lim
r→0+

L1(A ∩ (x− r, x+ r))

2r

=







1 if x is in some open interval (a2i−1, a2i),
1
2

if x is an interval endpoint a2i−1 or a2i for some i ∈ I,

0 if x /∈
⋃

i∈I

[a2i−1, a2i].

Let X be a RAMS of R that has a.s. locally finite perimeter. Let Ω′ ∈ A be a
subset of Ω of probability one such that for all ω ∈ Ω′, X has locally finite perimeter.
For all ω ∈ Ω′, the Lebesgue class X(ω) admits a representative that is the union of an
at most countable family of non empty and disjoint closed intervals. According to the
above observation, for a fixed ω ∈ Ω′, the density D(x,X(ω)) exists for all x ∈ R and the
good representative of X is given by {x ∈ R, D(x,X(ω)) > 0}. Let (rn)n∈N be a positive
sequence decreasing to 0, and let us define for all ω ∈ Ω,

g(ω, x) = lim
n→+∞

L1(X(ω) ∩ (x− rn, x+ rn))

2rn
.

According to the proof of Theorem A.1 and Proposition 2.3,

Y = {(ω, x) ∈ Ω× Rd, g(ω, x) > 0}

11



is a jointly measurable set that is a representative of X . Besides, for a given ω ∈ Ω′,
since D(x,X(ω)) exists for all x ∈ R, one has the equality

D(x,X(ω)) = g(ω, x), x ∈ R.

Hence, for all ω ∈ Ω′, the ω-section Y (ω) of Y is the union of an at most countable and
locally finite family of non empty and disjoint closed intervals, and in particular a closed
set. Thus, by Proposition 2.8, the map ω 7→ Y (ω) defines a random closed set.

Non-closed RAMS in dimension d > 1 In contrast to the one-dimensional case, in
dimension d > 1 there exists measurable sets of finite perimeter that do not have closed
representative in their Lebesgue class. In [AFP00, Example 3.53 p. 154], Ambrosio et al.
consider a set obtained as the union of an infinite family of open balls with small radii
which centers form a dense subset, which yields the following result.

Example 2.10. There exists a measurable subset A of [0, 1]d with finite perimeter, finite
measure Ld(A) < 1, and such that Ld(A ∩ U) > 0 for any open subset U of [0, 1]d.

Such a set clearly has no closed representative, because if it had one, say F , then F
would charge every open subset of [0, 1]d, and therefore it would be dense in [0, 1]d. But
since F is closed, one would have F = [0, 1]d, which contradicts Ld(F ) = Ld(A) < 1.

3 Local covariogram and perimeter approximation

In this section we establish general properties of the local covariogram of a measurable
set, as well as the mean local covariogram of a RAMS. A particular emphasis is given on
the relation between the local perimeter of a set and the Lipschitz constant of its local
covariogram in order to adapt the results of [Gal11] to the local covariogram functional.

3.1 Definition and continuity

The local covariogram of a measurable set A ∈ M is the function which to each vector
y ∈ Rd and observation window W ∈ W (recall that

W =
{
W ⊂ Rd bounded open set such that Ld(∂W ) = 0

}
)

associates the Lebesgue measure of A ∩ (A + y) ∩W . It will be denoted by

δy;W (A) = Ld(A ∩ (A+ y) ∩W ), y ∈ Rd, W ∈ W.

Remark that for all y ∈ Rd, and W ∈ W

δy;W (A) = δy;W (A ∩ (W ∪ (−y +W ))), A ∈ M, (3.1)

so that only the part of A included in the domain W ∪ (−y+W ) has an influence on the
value of δy;W (A) (hence local covariograms are indeed local). Before enunciating specific
results of interest for our realisability problem, let us prove that local covariograms are
continuous for the local convergence in measure.
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Proposition 3.1 (Continuity of local covariograms).

(i) For all A ∈ M(Rd) and W ∈ W the map y 7→ δy;W (A) is uniformly continuous over
Rd.

(ii) Let A ∈ M(Rd) and y ∈ Rd. Then for all U,W ∈ W, one has

|δy;U(A)− δy;W (A)| ≤ Ld(U∆W ).

In particular the map W 7→ δy;W (A) is continuous for the convergence in measure.

(iii) Let A, B ∈ M(Rd) and let W ∈ W. Then for all y ∈ Rd,

|δy;W (A)− δy;W (B)| ≤ 2Ld((A∆B) ∩ (W ∪ (−y +W ))).

In particular the map A 7→ δy;W (A) is continuous for the local convergence in
measure.

Proof. (i) Let us use the convolution interpretation for local covariograms, that is

δy;W (A) = Ld(A ∩ (y + A) ∩W ) =

∫

Rd

1A∩W (x)1−A(y − x)dx = 1A∩W ∗ 1−A(y).

Since 1A∩W ∈ L1(Rd) and 1−A ∈ L∞(Rd), the uniform continuity is ensured by the
Lp-Lp′-convolution theorem (see e.g. [HL99, Proposition 3.2 p. 171]).

(ii) Using the general inequality |Ld(A1)− Ld(A2)| ≤ Ld(A1∆A2) one gets

|δy;U(A)− δy;W (A)| ≤ Ld((A ∩ (A+ y) ∩ U)∆(A ∩ (A + y) ∩W )) ≤ Ld(U∆W ).

(iii) Suppose first that A and B have finite Lebesgue measure. Then, one has

|δy;W (A)− δy;W (B)| = |1A∩W ∗ 1−A(y)− 1B∩W ∗ 1−B (y)|
≤ |1A∩W ∗ 1−A(y)− 1A∩W ∗ 1−B (y) + 1A∩W ∗ 1−B (y)− 1B∩W ∗ 1−B (y)|
≤ |1A∩W ∗ (1−A − 1−B )(y)| + |(1A∩W − 1B∩W ) ∗ 1−B (y)|
≤ ‖1A∩W ‖∞‖1−A − 1−B‖1 + ‖1A∩W − 1B∩W ‖1‖1−B‖∞
≤ Ld(A∆B) + Ld((A ∩W )∆(B ∩W ))

≤ 2Ld(A∆B).

The above inequality is valid as soon as A and B have finite Lebesgue measure. The
announced general inequality is obtained thanks to Equation (3.1) which ensures that
one can replace A and B by A ∩ (W ∪ (−y + W )) and B ∩ (W ∪ (−y + W )) without
changing the values of δy;W (A) and δy;W (B).

3.2 Local covariogram and anisotropic perimeter

As for the case of covariogram [Gal11], difference quotients in zero of local covariograms
are related to the directional variations of the set A. This is clarified by the next results
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where Vu(f ;U) denotes the directional variation of f ∈ L1(U) in U in the direction
u ∈ Sd−1, that is

Vu(f ;U) = sup

{∫

U

f(x)〈∇ϕ(x), u〉dx : ϕ ∈ C1
c (U,R), ‖ϕ(x)‖2 ≤ 1 for all x

}

(recall that for a set A ∈ M, Vu(A;U) := Vu(1A ;U)).
For A,B two measurable sets, note

A⊖B = {x ∈ A : x+B ⊂ A}.

Proposition 3.2. Let U be an open subset of Rd and u ∈ Sd−1. Then for all functions
f ∈ L1(U) and ε ∈ R,

∫

U⊖[0,εu]

|f(x+ εu)− f(x)|
|ε| dx ≤ Vu(f ;U)

and

lim
ε→0

∫

U⊖[0,εu]

|f(x+ εu)− f(x)|
|ε| dx = Vu(f ;U). (3.2)

This proposition deals with general facts from the theory of functions of bounded
variation. We refer to [Gal14] for a complete proof.

The next two propositions show that when f is the indicator function of a set A, the
integral

∫

U⊖[0,εu]

|f(x+ εu)− f(x)|
|ε| dx

can be expressed as a linear combination of local covariograms δy;W (A). Since this linear
combination will be central in the next results, we introduce the notation

σu;W (A) =
1

‖u‖
(
δ0;W⊖[−u,0](A)− δu;W⊖[−u,0](A) + δ0;W⊖[0,u](A)− δ−u;W⊖[0,u](A)

)

for any A ∈ M, u 6= 0, and W ∈ W. Let us remark that for W ∈ W, y ∈ Rd, A ∈ M(Rd),

δ0;W (A)− δy;W (A) = Ld(A∩W )−Ld(A∩ (y+A)∩W ) = Ld((A \ (y+A))∩W ). (3.3)

Proposition 3.3 (Local covariogram and anisotropic perimeter). For all A ∈ M(Rd),
W ∈ W, ε ∈ R, and u ∈ Sd−1,

0 ≤ σεu;W (A) ≤ Vu(A;W ) and lim
ε→0

σεu;W (A) = Vu(A;W ). (3.4)

When summing along the d directions of the canonical basis B = {e1, e2, . . . , ed}, one
obtains similar results for the anisotropic perimeter, that is, for all A ∈ M(Rd) and
ε ∈ R,

0 ≤
d∑

j=1

σεej ;W (A) ≤ PerB(A;W ) and lim
ε→0

d∑

j=1

σεej ;W (A) = PerB(A;W ).
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Proof. The announced inequalities are immediate from Proposition 3.2 and the following
equality: Let A ∈ M(Rd), W ∈ W, u ∈ Sd−1, then for all ε ∈ R,

∫

W⊖[0,εu]

|1A(x+ εu)− 1A(x)|dx = |ε|σεu;W (A).

The proof is elementary.
∫

W⊖[0,εu]

|1A(x+ εu)− 1A(x)|dx
=

∫

W⊖[0,εu]

|1−εu+A(x)− 1A(x)|dx
= Ld (((−εu+ A)∆A) ∩ (W ⊖ [0, εu]))

= Ld (((−εu+ A) \A) ∩ (W ⊖ [0, εu])) + Ld ((A \ (−εu+ A)) ∩ (W ⊖ [0, εu])) .

Applying the translation of vector εu one has

Ld (((−εu+ A) \ A) ∩ (W ⊖ [0, εu])) = Ld ((A \ (εu+ A)) ∩ (εu+ (W ⊖ [0, εu]))) .

Now remark that εu+ (W ⊖ [0, εu]) = W ⊖ [−εu, 0] and thus, using (3.3)
∫

W⊖[0,εu]

|1A(x+ εu)− 1A(x)|dx
= Ld ((A \ (εu+ A)) ∩ (W ⊖ [−εu, 0])) + Ld ((A \ (−εu+ A)) ∩ (W ⊖ [0, εu]))

= δ0;W⊖[−εu,0](A)− δεu;W⊖[−εu,0](A) + δ0;W⊖[0,εu](A)− δ−εu;W⊖[0,εu](A).

We now turn to the counterpart of Proposition 3.3 for mean local covariograms of
RAMS. For a RAMS X , let γX be the (mean) local covariogram of the RAMS X defined
by

γX(y;W ) = Eδy;W (X), y ∈ Rd,W ∈ W,

and define similarly σX(u;W ) = Eσu;W (X).

Corollary 3.4. Let X be a RAMS. Then for all W ∈ W and u ∈ Sd−1,

EVu(X ;W ) = lim
ε→0

σX(εu;W ).

Proof. Apply Lebesgue theorem with the almost sure convergence and domination given
by (3.4).

We now turn to similar results for stationary RAMS. Let us first precise the defi-
nition of specific covariogram, specific perimeter, and specific directional variation of a
stationary RAMS. Remark that for any RAMS X , the map W 7→ γX(y;W ) extends into
a measure for each y ∈ Rd. If the law of X is invariant under translations then for all
u ∈ Rd,

γX(y; u+W ) = E
(
Ld(X ∩ (y +X) ∩ (u+W )

)

= E
(
Ld((−u+X) ∩ (y − u+X) ∩W

)

= E
(
Ld(X ∩ (y +X) ∩W

)

= γX(y;W ).

15



It follows that the measure W 7→ γX(y;W ) is proportional to the Lebesgue measure. The
constant of proportionality is called specific covariogram of X and is denoted by γs

X(y).
Hence for all W ∈ W, γX(y;W ) = γs

X(y)Ld(W ). In particular, γs
X(y) = γX(y; (0, 1)

d).
Similarly, ifX is stationary, the measure U 7→ EPerB(X ;U) is invariant by translation

and thus proportional to the Lebesgue measure. One calls specific perimeter the constant
of proportionality that will be denoted by Pers

B
(X) and that is given by

Pers
B
(X) = EPerB(X ; (0, 1)d) ∈ [0,+∞].

Similarly, for all u ∈ Sd−1, one defines the specific variation in direction u by V s
u (X) =

EVu(X ; (0, 1)d).
For a function F : Rd → R, one defines the Lipschitz constant in the j-th direction at

y ∈ Rd by

Lipj(F, y) = sup
t∈R

|F (y + tej)− F (y)|
|t| ,

and note Lipj(F ) = supy∈Rd Lipj(F, y). Let us note that a function F is Lipschitz in the
usual sense if and only if the d constants Lipj(F ), j ∈ {1, . . . , d}, are finite.

Proposition 3.5. Let X be a stationary RAMS and let γs
X be its specific covariogram.

Then γs
X is even and for all y, z ∈ Rd,

|γs
X(y)− γs

X(z)| ≤ γs
X(0)− γs

X(y − z).

In particular, γs
X is Lipschitz over Rd if and only if γs

X is Lipschitz in 0. Besides, one has
for all j ∈ {1, . . . , d},

γs
X(0)− γs

X(εej)

|ε| ≤ 1

2
V s
ej
(X), ε 6= 0,

and

Lipj(γ
s
X) = Lipj(γ

s
X, 0) = lim

ε→0

γs
X(0)− γs

X(εej)

|ε| =
1

2
V s
ej
(X).

Proof. The proof is an adaptation of similar results for covariogram functions [Gal11].
Let us first check that γs

X is even. For all y ∈ Rd, one has

γs
X(−y) = E

(
Ld(X ∩ (−y +X) ∩ [0, 1]d

)
= E

(
Ld((y +X) ∩X ∩ (y + [0, 1]d)

)
= γs

X(y).

Let us turn to the inequality. Remark that one has for all y, z ∈ Rd, W ∈ W, and
A ∈ M(Rd),

δy;W (A)− δz;W (A) = Ld(A ∩ (y + A) ∩W )− Ld(A ∩ (z + A) ∩W )

≤ Ld((A ∩ (y + A) ∩W ) \ (A ∩ (z + A) ∩W ))

≤ Ld(((y + A) ∩W ) \ ((z + A) ∩W ))

≤ Ld((y + A) ∩W )− Ld((y + A) ∩ (z + A) ∩W )

≤ Ld(A ∩ (−y +W ))− Ld(A ∩ (z − y + A) ∩ (−y +W ))

≤ δ0;−y+W (A)− δz−y;−y+W (A).

(3.5)
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Consequently,

γX(y;W )− γX(z;W ) ≤ γX(0;−y +W )− γX(z − y;−y +W ).

But since γX(y;W ) = γs
X(y)Ld(W ), one has γs

X(y) − γs
X(z) ≤ γs

X(0) − γs
X(z − y) and

interchanging y and z yields |γs
X(y) − γs

X(z)| ≤ γs
X(0) − γs

X(y − z). Thanks to this
inequality one has,

Lipj(γ
s
X) = sup

y∈Rd, ε∈R

|γs
X(y + εej)− γs

X(y)|
|ε| = sup

t∈R

γs
X(0)− γs

X(εej)

|t| = Lipj(γ
s
X , 0).

Now since γs
X is even, for all ε 6= 0,

γs
X(0)− γs

X(εej)

|ε|

=
1

2

γs
X(0)− γs

X(εej) + γs
X(0)− γs

X(−εej)

|ε|

=
1

2
sup
c>0

γs
X(0)− γs

X(εej) + γs
X(0)− γs

X(−εej)

|ε|
cd − |ε|c

cd

=
1

2
sup
c>0

(γs
X(0)− γs

X(εej))Ld((0, c)d ⊖ [−εej , 0]) + (γs
X(0)− γs

X(−εej))Ld((0, c)d ⊖ [0, εej])

|ε|Ld((0, c)d)

=
1

2
sup
c>0

σX(εej ; (0, c)
d)

1

Ld((0, c)d)

≤ 1

2
sup
c>0

EVej(X ; (0, c)d)
1

Ld((0, c)d)
=

1

2
V s
ej
(X),

where we used the inequality of (3.4) for the inequality. This shows that

Lipj(γ
s
X , 0) = sup

ε∈R

γs
X(0)− γs

X(εej)

|ε| ≤ 1

2
V s
ej
(X).

Besides, for all ε 6= 0 and c > 0,

1

2
σX(εej ; (0, c)

d)
1

Ld((0, c)d)
≤ γs

X(0)− γs
X(εej)

|ε| ≤ 1

2
V s
ej
(X),

and according to Corollary 3.4, the left-hand term tends to 1
2
V s
ej
(X) when ε tends to 0.

Hence,

lim
ε→0

γs
X(0)− γs

X(εej)

|ε| =
1

2
V s
ej
(X) = sup

ε∈R

γs
X(0)− γs

X(εej)

|ε| .

3.3 Anisotropic perimeter approximation for pixelized sets

The proofs of our main result rely on several approximations involving pixelized sets
and discretized covariogram. We proved in the previous section that the directional
variations as well as the anisotropic perimeter can be computed from limits of difference
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quotients in zero of the local covariogram. We show here that for pixelized sets, the
anisotropic perimeter PerB(A;W ) can be expressed as a finite difference in zero of the
local covariogram functionals. Before enunciating the formula, let us introduce some
notation regarding pixelized sets.

For n ∈ N∗, we consider the pixels Cn
k = 1

n
k + [0, n−1]

d
, k ∈ Zd, that are the cells

of the lattice n−1Zd. Let us denote by Mn the algebra of Rd induced by the sets Cn
k ,

k ∈ Zd, and note Wn = W ∩Mn. Remark that for any set A ∈ Mn, there is a unique
subset IA of Zd such that A is equivalent in measure to ∪k∈IAC

n
k .

Proposition 3.6. Let B = (e1, e2, . . . , ed) be the canonical basis of Rd and let n ∈ N∗.
For all A ∈ Mn, W ∈ Wn, and j ∈ {1, . . . , d},

Vej (A;W ) = σn−1ej ;W (A).

Hence, for all A ∈ Mn and W ∈ Wn, PerB(A;W ) =
∑d

j=1 σn−1ej ;W (A).

Proof. Let 0 < ε ≤ n−1. Let us consider the quantity

δεej ;W⊖[−εej,0](A) = Ld(A ∩ (εej + A) ∩ (W ⊖ [−εej , 0]))

= Ld

((
⋃

k∈IA

Cn
k

)

∩
(
⋃

l∈IA

(εej + Cn
l )

)

∩ (W ⊖ [−εej , 0])

)

.

The two unions are over sets with pairwise negligible intersection, whence

δεej ;W⊖[−εej,0](A) =
∑

k,l∈IA

Ld(Cn
k ∩ (Cn

l + εej) ∩ (W ⊖ [−εej , 0])).

Since 0 < ε ≤ n−1, for k, l ∈ IA,

Ld(Cn
k ∩ (Cn

l + εej) ∩ (W ⊖ [−εej , 0])) =







n−(d−1)(n−1 − ε) if l = k ∈ IW ,

εn−(d−1) if l = k − ej and k, l ∈ IW ,

0 otherwise.

These assertions are straightforward, one simply has to be cautious in the case l = k −
ej , k ∈ IW , l /∈ IW , contribution of which is 0. Summing up those contributions and doing
similar computations for the quantities δ0;W⊖[−εej,0](A), δ−εej ;W⊖[0,εej](A), δ0;W⊖[0,εej](A)
yields that for some real numbers α, β independent of ε, such that for all ε ∈ (0, n−1],

σεej ;W (A) = α/ε+ β.

Proposition 3.3 then implies α = 0, β = Vej (A;W ), which yields the desired conclusion
with ε = n−1.

4 Realisability result

In this section we explicit some considerations related to our realisability result and give
its proof.
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4.1 Realisability problem and regularity modulus

Recall that the local covariogram of a RAMS X is γX(y;W ) = Eδy;K(X).
Let us introduce a regularized realisability problem for local covariogram. Put Un =

(−n, n)d. Define the weighted anisotropic perimeter by

Perβ
B
(A) =

∑

n≥1

βnPerB(A;Un)

where the sequence (βn) is set to βn = 2−n(2n)−d so that
∑

n≥1 βnLd(Un) = 1.

For a given function γ : Rd ×W → R, define

σγ(u;W ) =
1

‖u‖ [γ(0;W⊖[−u, 0])−γ(u;W⊖[−u, 0])+γ(0;W⊖[0, u])−γ(−u;W⊖[0, u])].

One defines for all window W ∈ W the constant Lj(γ,W ) ∈ [0,+∞] by

Lj(γ,W ) = sup
ε∈R

σγ(εej;W ), j ∈ {1, . . . , d}. (4.1)

Lj(γ,W ) is related to the Lipschitzness of γ in its spatial variable. The motivation for
considering this particular constant comes from Corollary 3.4 which shows that that if
γX is the local covariogram of a RAMS X , then

EVej(X ;W ) = sup
ε∈R

σγX (εej ;W ).

Theorem 4.1. Let γ : Rd ×W → R be a function and r ≥ 0. Then γ is realizable by a
RAMS X such that

EPerβ
B
(X) ≤ r

iff γ is admissible and
∑

n≥1

βn

(
d∑

j=1

Lj(γ,Wn)

)

≤ r, (4.2)

where for all j ∈ {1, . . . , d} and n ≥ 1, the constant Lj(γ,Wn) is defined by Equa-
tion (4.1).

The stationary counterpart of the above theorem is stated and proved in Section 4.2.
Let us recall the general definition and result of [LRM11] that we use for the proof of

our main result.

Definition 4.2 (Regularity modulus). Let G∗ be a vector space of measurable real
functions on M. A G∗-regularity modulus on M is a lower semi-continuous function
χ : M 7→ [0,+∞] such that for all g ∈ G∗, the level set

Hg = {A ∈ M, χ(A) ≤ g(A)} ⊂ M

is relatively compact for the convergence in measure.

We give the following result, straightforward consequence of Proposition 2.2 and The-
orem 2.6 in [LRM11] for bounded continuous functions, see in particular the discussion
after the proof of Theorem 2.6.
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Theorem 4.3 (Lachièze-Rey - Molchanov [LRM11]). Let G∗ be a vector space of real
continuous bounded functions on M that comprises constant functions. Let χ be a G∗-
regularity modulus, and Φ be a linear function on G∗ such that Φ(1) = 1. Then, for any
given r ≥ 0, there exists a random measurable set X ∈ M such that

{

Eg(X) = Φ(g), g ∈ G∗,

Eχ(X) ≤ r
(4.3)

if and only if
sup
g∈G∗

inf
A∈M

χ(A)− g(A) + Φ(g) ≤ r. (4.4)

In our setting, call G the vector space generated by the constant functionals and the
local covariogram functionals A 7→ δy;W (A), y ∈ Rd, W ∈ W.

Proposition 4.4. Perβ
B
is a G-regularity modulus (and therefore a G∗-regularity modulus

for any subspace G∗ ⊂ G).

Proof. By definition of a regularity modulus, one has to show that the Perβ
B
-level sets

are relatively compact. Consider a sequence (An) such that Perβ
B
(An) ≤ c for all n ∈ N.

Then for all n,m ∈ N, PerB(An;Um) ≤ c
βm

< +∞ and thus (An) is a sequence of sets of

locally finite perimeter whose perimeter in any open bounded set U ⊂ Rd is uniformly
bounded. According to Theorem 3.39 p. 145 of [AFP00], there exists a subsequence of
(An) that locally converges in measure in Rd.

For g ∈ G, denote by dom(g) the smallest open set such that for every measurable
set A, g(A) = g(A ∩ dom(g)). If g is under the form

g =

q
∑

i=1

aiδyi;Wi
, (4.5)

we have dom(g) ⊂ ∪i(Wi ∪ (−yi +Wi)), but there is not equality because such a decom-
position is not unique.

We can now turn to the proof of Theorem 4.1. It involves several technical lemmas
that are stated within the proof when needed. Their demonstrations are delayed to the
end of the section in order to facilitate the reading of the proof.

Proof of Theorem 4.1. Necessity: If X is a RAMS, then the admissibility of γX is the
consequence of the positivity of the mathematical expectation (see the discussion below
Definition 1.1). According to Proposition 3.3, for all n ≥ 1, with probability 1,

σεej ;Un(X) ≤ Vej (X ;Un).

After taking the expectation, the supremum of the left hand member over ε > 0 is
Lj(γ,W ). Summing over j yields

∑d
j=1Lj(γ, Un) ≤ PerB(X ;Un), and multiplying by βn

and summing over n yields (4.2).

Sufficiency: Call Gn ⊂ G the set of functionals g = c +
∑q

i=1 aiδyi;Wi
such that for all

i, yi ∈ n−1Zd, and Wi ∈ Wn (i.e. the closures of the Wi are pixelized sets). Denote by
G∗ =

⋃

n≥1Gn. Remark that each Gn is a vector space and that G∗ ⊂ G is a vector
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space as well: Indeed, if g1 ∈ Gn and g2 ∈ Gm, then one has g1 + g2 ∈ Gmn. To apply
Theorem 4.3 we need to show that,

sup
n≥1

sup
g∈Gn

inf
A∈M(Rd)

Perβ
B
(A)− g(A) + Φ(g) ≤ r,

where Φ is defined by

Φ

(

c+

q
∑

i=1

aiδyi;Wi

)

= c+

q
∑

i=1

γ(yi,Wi).

First remark that Φ is a positive operator because γ is admissible (see Definition 1.1).
Let g ∈ Gn. Define Mg = infA∈M(Rd) Per

β
B
(A) − g(A) + Φ(g). Let p ∈ N large enough

such that dom(g) ⊂ (−p, p)d. For all c > 0 note Mc
n = Mn((−c, c)d). We have

Mg ≤ inf
A∈Mp

n

Perβ
B
(A)− g(A) + Φ(g)

because Mp
n ⊂ M. The proof is based on an approximation of the perimeter by a

discretized functional with compact domain, summarized by the following lemma, which
is proved at the end of the section.

Lemma 4.5. For n, p ≥ 1, put Up
n = (−p− 1/n, p + 1/n)d. There exists gn,p ∈ Gn with

dom(gn,p) ⊂ Up
n such that

gn,p(A) = Perβ
B
(A)

for all A ∈ Mp
n. Its explicit expression is

gn,p(A) =

p
∑

m=1

βm

d∑

j=1

σn−1ej ;Un
(A) +

(
+∞∑

m=p+1

βm

)
d∑

j=1

σn−1ej ;Up
(A).

Furthermore, for all A ∈ Mn,

|gn,p(A)− gn,p(A ∩ (−p, p)d)| ≤ En,p

where En,p := 8dn2−p(p+ 1)−d
((

p+ 1
n

)d − pd
)

.

Therefore gn,p = Perβ
B
on Mp

n, and

Mg ≤ inf
A∈Mp

n

gn,p(A)− g(A) + Φ(g)

≤ inf
A∈M

p+1/n
n

gn,p(A)− g(A) + Φ(g) + En,p

because g(A) = g(A∩dom(g)) = g(A∩(−p, p)d) = g(A∩(−p−1/n, p+1/n)d) and where
the error term En,p ≥ |gn,p(A)− gn,p(A ∩ (−p, p)d)| is computed in Lemma 4.5. We now
need the following lemma, also proved afterwards.

Lemma 4.6. Any functional g ∈ Gn reaches its infimum on a set of Mn(dom(g)), that
is

inf
M

g = min
Mn(dom(g))

g.
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We have dom(gn,p − g) ⊂ Up
n , whence in virtue of Lemma 4.6, gn,p − g reaches its

infimum over M on Mp+1/n
n , and

inf
A∈M

p+1/n
n

gn,p(A)− g(A) = inf
A∈M

gn,p(A)− g(A) = inf
A∈M

(gn,p − g)(A) ≤ Φ(gn,p − g)

where the last inequality is a consequence of the positivity of Φ. Therefore

Mg ≤ Φ(gn,p − g) + Φ(g) + En,p = Φ(gn,p) + En,p. (4.6)

Let us bound Φ(gn,p). Recall that by definition Φ(δy;W ) = γ(y;W ). Using the definition
of the constants Lj(γ,W ) and the expression of gn,p, one has

Φ(gn,p) ≤
p
∑

m=1

βm

(
d∑

j=1

Lj(γ,Wm)

)

+

(
+∞∑

m=p+1

βm

)(
d∑

j=1

Lj(γ, U
p
n)

)

At this point we need to use the following lemma regarding the constants Lj(γ,W ).

Lemma 4.7. For all admissible function γ, any W,W ′ ∈ W, and j ∈ {1, . . . , d}, one has

W ⊂ W ′ ⇒ Lj(γ;W ) ≤ Lj(γ,W
′).

By Lemma 4.7, since γ is admissible, and for all m > p, Up
n ⊂ Wm,

(
+∞∑

m=p+1

βm

)(
d∑

j=1

Lj(γ, U
p
n)

)

=

+∞∑

m=p+1

βm

(
d∑

j=1

Lj(γ, U
p
n)

)

≤
+∞∑

m=p+1

βm

(
d∑

j=1

Lj(γ,Wm)

)

.

Hence,

Φ(gn,p) ≤
+∞∑

m=1

βm

(
d∑

j=1

Lj(γ,Wm)

)

≤ r.

Coming back to (4.6) yields
Mg ≤ r + En,p.

But since for all n ≥ 1, En,p tends to 0 as p tends to +∞, one has Mg ≤ r. Since n ≥ 1
and g ∈ Gn were arbitrarily chosen, we conclude that

sup
g∈G∗

inf
A∈M(Rd)

Perβ
B
(A)− g(A) + Φ(g) ≤ r.

Hence we can apply Theorem 4.3 that ensures that there exists a RAMS X solution of
the problem (4.3). This RAMS X satisfies EPerβ

B
(X) ≤ r and

∀y ∈ Qd, W ∈ W ∩
⋃

n∈N∗

Mn(R
d), γX(y;W ) = γ(y;W ).
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It only remains to show that this equality between γX and γ extends to all couple (y;W ) ∈
Rd×W using the density of Qd×W ∩⋃n∈N∗ Mn(R

d) and the continuity of both γX and
γ.

First, regarding the W -variable, since γX and γ are both admissible and by Propo-
sition 3.1 for all U,W ∈ W, one always has |δy;U(A) − δy;W (A)| ≤ Ld(U∆W ), hence
both γX and γ are continuous with respect to the convergence in measure. Besides, the
set of pixelized sets W ∩⋃n∈N∗ Mn(R

d) is dense in W for the convergence in measure.
Indeed, given W ∈ W, one easily shows by dominated convergence that the sequence
Wn =

⋃

k∈Zd {Cn
k , Cn

k ⊂ W} converges in measure towards W since thanks to the hy-

pothesis Hd−1(∂W ) < +∞ for almost all x ∈ Rd either x ∈ W or x ∈ Rd \W .
Regarding the y-variable, clearly Qd is dense in Rd and y 7→ γX(y;W ) = Eδy;W (X) is

continuous since according to Proposition 3.1 for all ω ∈ Ω, y 7→ δy;W (X(ω)) is continuous
and bounded by Ld(W ). To conclude the proof, let us show that y 7→ γ(y;W ) is also
continuous over Rd, which is the purpose of the following lemma.

Lemma 4.8. Let γ be an admissible function. Let y ∈ Rd, W ∈ W, and r > 0. For all
z ∈ Rd and ρ > 0, let us denote by C(z, ρ) the hypercube of center z and half size length
ρ, that is C(z, ρ) = {z′ ∈ Rd, ‖z′ − z‖∞ ≤ ρ}.

Then, for all z, z′ ∈ C(y, r) one has

|γ(z;W )− γ(z′;W )| ≤
d∑

j=1

Lj(γ,W ⊕ C(−y, 3r))|z′j − zj |.

In particular, if γ satisfies (4.2) then for all W ∈ W, the map y 7→ γ(y;W ) is locally
Lipschitz.

Proof of lemma 4.5. First let us remark that for all sets A of finite perimeter such that
A ⊂ (−p, p)d for some integer p ≥ 1 and for all m > p, since A ∩ (Um \ (−p, p)d) = ∅,

PerB(A;Um) = PerB(A; (−p− 1
n
, p+ 1

n
)d) = PerB(A;U

p
n).

Consequently,

Perβ
B
(A) =

∑

m≥1

βmPerB(A;Um) =

p∑

m=1

βmPerB(A;Um) +

(
+∞∑

m=p+1

βm

)

PerB(A;U
p
n).

According to Proposition 3.6, for all pixelised set A ∈ Mp
n, all the perimeters PerB(A;Um),

1 ≤ m ≤ p and PerB(A;U
p
n) can be expressed as some linear combination of local covari-

ograms, which gives

Perβ
B
(A) =

p
∑

m=1

βm

d∑

j=1

σn−1ej ;Um
(A) +

(
+∞∑

m=p+1

βm

)
d∑

j=1

σn−1ej ;U
p
n
(A).

The linear combination on the right-hand side is an element of G that will be denoted
gn,p in what follows. Note one has dom(gn,p) ⊂ Up

n = (−p − 1
n
, p + 1

n
)d. It remains to
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show the inequality |gn,p(A) − gn,p(A ∩ (−p, p)d)| ≤ En,p. Using Proposition 3.1, for all
A ∈ Mn,

|gn,p(A)− gn,p(A ∩ (−p, p)d)| = |gn,p(A ∩ Up
n)− gn,p(A ∩ (−p, p)d)|

≤
(

+∞∑

m=p+1

βm

)

dn8Ld((A ∩ Up
n)∆(A ∩ (−p, p)d)).

For all m ≥ p + 1, one has βm = 2−m(2m)−d ≤ 2−m(2(p+ 1))−d. Hence,

+∞∑

m=p+1

βm ≤ 2−d(p+ 1)−d

+∞∑

m=p+1

2−m = 2−d−p(p+ 1)−d.

Besides, Ld((A∩Up
n)∆(A ∩ (−p, p)d)) ≤ Ld(Up

n \ (−p, p)d) = 2d
((

p + 1
n

)d − pd
)

. Finally

|gn,p(A ∩ Up
n)− gn,p(A ∩ (−p, p)d)| ≤ 8dn2−p(p+ 1)−d

((
p+ 1

n

)d − pd
)

.

Proof of Lemma 4.6. Put W = dom(g) ∈ Wn. Then g(A) = g(A ∩W ) for any A ∈ M.
Now that the problem is restricted to the bounded pixelized domain W , it remains to
show that the extrema of g on M(W ) are reached by sets of Mn(W ). Let us turn into
the details.

Without loss of generality, assume that g has the form

g =

q
∑

i=1

aiδyi;Wi
,

for some yi ∈ n−1Zd,Wi ∈ Wn, ai ∈ R. Denote by In(W ) the set of all indexes k ∈ Zd

such that the hypercube Cn
k is included in W , we then also have W = ∪k∈In(W )C

n
k . For

A ∈ M(W ), n ≥ 1, denote by An
k = A ∩ Cn

k , k ∈ In(W ), the intersection of A with the
hypercube Cn

k , and by
Ãn

k = −k + nAn
k

its rescaled translated version comprised in [0, 1]d. Now consider the probability space
(Ω = [0, 1)d,A = B([0, 1)d),P = Ld), on which we define the {0, 1}In(W )-valued random
vector

Y A : Ω → {0, 1}In(W )

ω 7→ (1Ãn
k
(ω))k∈In(W )

.

The measures of the pairwise intersections Ld
(

Ãn
k ∩ Ãn

l

)

can thus be seen as the com-

ponents of the covariance matrix C(A) = (Ck,l(A))k,l∈In(W ) of the random vector Y A,
i.e.

Ck,l(A) = E
(
Y A
k Y A

l

)
= E

(1 (ω ∈ Ãn
k

) 1 (ω ∈ Ãn
l

))

= Ld
(

Ãn
k ∩ Ãn

l

)

, k, l ∈ In(W ).

Let us prove that g(A) can be written as

g(A) =
∑

k,l∈In(W )

βk,lLd(Ãn
k ∩ Ãn

l )
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for some coefficients β = (βk,l)k,l∈In(W ) depending solely on g. Putting ki = nyi ∈ Zd, one
has,

g(A) =

q
∑

i=1

aiδn−1ki,Wi
(A)

=

q
∑

i=1

aiLd(A ∩ (n−1ki + A) ∩Wi)

=

q
∑

i=1

ai
∑

k∈In(W )

1(Cn
k ⊂ Wi)

∫

Cn
k

1(x ∈ A, x ∈ n−1ki + A)dx

=

q
∑

i=1

ai
∑

k,l∈In(W )

1(l = k − ki)1(Cn
k ⊂ Wi)

∫

Cn
k

1(x ∈ A, x ∈ n−1(k − l) + A)dx

=
∑

k,l∈In(W )

q
∑

i=1

ai1(l = k − ki)1(Cn
k ⊂ Wi)

∫

Cn
0

1(x ∈ −n−1k + A, x ∈ −n−1l + A)dx

=
∑

k,l∈In(W )

n−d

(
q
∑

i=1

ai1(l = k − ki)1(Cn
k ⊂ Wi)

)

︸ ︷︷ ︸

=βk,l

Ld(Ãn
k ∩ Ãn

j ).

Then, one can write

g(A) =
∑

k,l∈In(W )

βk,lCk,l(A) = 〈β, C(A)〉,

where 〈·, ·〉 stands for the canonical scalar product between matrices. Denote by Γn the
set of covariance matrices of all random vectors having values in {0, 1}In(W ). Since for
every set A one can associate some covariance matrix C(A) such that g(A) = 〈β, C(A)〉,
one can write

inf
A∈M(W )

g(A) ≥ inf
C∈Γn

〈β, C〉.

The optimization problem on the right-hand side of this inequality is a linear programming
problem on the bounded convex set Γn. Hence we are ensured that there exists an
optimal solution C∗ of this problem which is an extreme point of Γn. But, as shown
in Proposition B.2 (see also [LR13b]), the extreme points of Γn are covariance matrices
associated with deterministic random vectors. That is there exists a fixed vector z∗ ∈
{0, 1}In(W ) such that C∗

k,l = z∗kz
∗
l minimizes 〈β, C〉. Given this vector z∗ ∈ {0, 1}In(W ),

define the set A∗ as the union of the hypercubes

A∗ =
⋃

{k, z∗k=1}

Cn
k ⊂ W.

Then one sees that the covariance matrix C(A∗) associated with the deterministic set A∗

is equal to C∗. Furthermore it is clear that A∗ is measurable with respect to the σ-algebra
generated by the Cn

k , meaning exactly A∗ ∈ Mn(W ). Hence we have shown that,

inf
A∈M(K)

g(A) ≥ inf
C∈Γn

〈β, C〉 = min
A∈Mn(W )

g(A).
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Since Mn(W ) ⊂ M(W ) the reverse inequality is immediate, and thus

inf
A∈M(W )

g(A) = min
A∈Mn(W )

g(A).

Proof of Lemma 4.7. First, remark that if W and W ′ are two observation windows such
that W ⊂ W ′, then, for all y ∈ Rd and A ∈ M(Rd),

0 ≤ δ0;W (A)− δy;W (A) ≤ δ0;W ′(A)− δy;W ′(A).

Indeed, since W ⊂ W ′, one has (A \ (y+A))∩W ⊂ (A \ (y+A))∩W ′ and thus, taking
the Lebesgue measure and using (3.3), 0 ≤ δ0;W (A)− δy;W (A) ≤ δ0;W ′(A)− δy;W ′(A).

Let W and W ′ ∈ W such that W ⊂ W ′, j ∈ {1, . . . , d}, and let us show that
Lj(γ;W ) ≤ Lj(γ,W

′). Suppose that Lj(γ,W
′) is finite, otherwise there is nothing to

show. Since W ⊂ W ′ one also has W ⊖ [−εej , 0] ⊂ W ′ ⊖ [−εej , 0] and W ⊖ [0, εej] ⊂
W ′ ⊖ [0, εej]. Hence, according to the preliminary remark, for all A ∈ M(Rd), ε ∈ R,
σεej ;W (A) ≤ σεej ;W ′(A). Since γ is admissible, this implies that for all ε ∈ R, σγ(εej;W ) ≤
σγ(εej;W

′). Hence, by definition of Lj(γ,W
′), one has σγ(εej;W ) ≤ Lj(γ,W

′), and thus
Lj(γ;W ) ≤ Lj(γ,W

′).

Proof of Lemma 4.8. Recall that it has been shown in the proof of Proposition 3.5 (see (3.5))
that for all y, z ∈ Rd, W ∈ W, and A ∈ M(Rd),

δy;W (A)− δz,W (A) ≤ δ0,−y+W (A)− δz−y,−y+W (A).

Let γ be an admissible function and let y ∈ Rd, W ∈ W and r > 0 be fixed. Let
z, z′ ∈ C(y, r) be such that z′ = z + tej for some t ∈ R and j ∈ {1, . . . , d}. Since γ is
admissible, the above inequality ensures that

γ(z;W )− γ(z′;W ) ≤ γ(0;−z +W )− γ(tej ;−z +W ).

As a consequence of (3.3), since γ is admissible, the difference in zero U 7→ γ(0;U) −
γ(tej ;U) is an increasing function of U . Hence, since W ⊂ (W ⊕ [−tej , 0]) ⊖ [−tej , 0],
one has

γ(z;W )− γ(z′;W )

≤ γ(0;−z + (W ⊕ [−tej , 0])⊖ [−tej , 0])− γ(tej ;−z + (W ⊕ [−tej , 0])⊖ [−tej , 0])

≤ |t|γ(0;−z + (W ⊕ [−tej , 0])⊖ [−tej , 0])− γ(tej ;−z + (W ⊕ [−tej , 0])⊖ [−tej , 0])

|t|

≤ |t| sup
ε∈R

γ(0;−z + (W ⊕ [−tej , 0])⊖ [−εej , 0])− γ(εej ;−z + (W ⊕ [−tej , 0])⊖ [−εej , 0])

|ε|
≤ |t|Lj(γ,−z +W ⊕ [−tej , 0]).

Now according to Lemma 4.7, W 7→ Lj(γ;W ) is increasing. Since z ∈ C(y, r) and
|t| = ‖z−z′‖∞ ≤ ‖z−y‖∞+‖y−z′‖∞ ≤ 2r, one has −z+W⊕[−tej , 0] ⊂ W⊕C(−y, 3r).
Hence for all z, z′ ∈ C(y, r) be such that z′ = z + tej one has

γ(z;W )− γ(z′;W ) ≤ Lj(γ,W ⊕ C(−y, 3r))|t|.
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Exchanging z and z′ one gets, |γ(z;W )− γ(z′;W )| ≤ Lj(γ,W ⊕C(−y, 3r))|t|. To finish,
let us now consider a couple of points z, z′ ∈ C(y, r) that are not necessarily aligned along
an axis. Consider the finite sequence of vector u0 = z, u1,. . . ,ud = z′ defined such that
the j first coordinates of uj are the ones of z

′ while its d− j last coordinates are the ones
of z, so that u0 = z, ud = z′ and uj − uj−1 = (z′j − zj)ej . Clearly, each uj belongs to the
hypercube C(y, r) and thus applying the d inequalities obtained above,

|γ(z;W )− γ(z′;W )| =
∣
∣
∣
∣
∣

d∑

j=1

γ(uj;W )− γ(uj−1;W )

∣
∣
∣
∣
∣

≤
d∑

j=1

|γ(uj;W )− γ(uj−1;W )|

≤
d∑

j=1

Lj(γ,W ⊕ C(−y, 3r))|z′j − zj |.

If γ satisfies (4.2) then for all n ∈ N∗ and j ∈ {1, . . . , d} the constants Lj(γ, Un) are all
finite. According to Lemma 4.7, this implies that the d constants Lj(γ,W ⊕C(−y, 3r)),
j ∈ {1, . . . , d} are all finite for any fixed y ∈ Rd, W ∈ W and r > 0, and thus the map
y 7→ γ(y;W ) is locally Lipschitz.

4.2 Stationary case

The following theorem is the main result of this paper. It is a refined version of Theo-
rem 1.2 given in the introduction.

Theorem 4.9. Let S2 : Rd → R be a function and r ≥ 0. Then there is a stationary
RAMS X such that {

S2(y) = γs
X(y), y ∈ Rd,

Pers
B
(X) ≤ r

(4.7)

if and only if S2 is admissible and

d∑

j=1

Lipj(S2, 0) ≤
r

2
.

We shall use a variant of Theorem 2.10(ii) from [LRM11], where the monotonicity
assumption is replaced by a domination.

Theorem 4.10. Let G∗, χ,Φ be like in Theorem 4.3 and assume G∗ is stable under the
action of a group of transformations Θ of Rd: For all θ ∈ Θ, g ∈ G∗, θg : A 7→ g(θA) is a
function of G∗. Assume furthermore that there is a sequence (gn)n≥1 of functions of G∗

such that 0 ≤ gn ≤ χ and
gn(A) → χ(A), A ∈ M,

and that χ is sub-invariant: For every θ ∈ Θ, there is a constant Cθ > 0 such that

χ(θA) ≤ Cθχ(A), A ∈ M. (4.8)
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Then if Φ is invariant under the action of Θ, that is,

Φ(θg) = Φ(g), g ∈ G∗, θ ∈ Θ,

for any given r ≥ 0, Φ is realizable by a Θ-invariant RAMS X such that

Eχ(X) ≤ r

iff (4.4) holds.

Proof. The proof is the same as the one of Theorem 2.10 (ii) from [LRM11], itself based
on Prop. 4.1 from Kuna et al. [KLS11]. It consists in checking hypotheses of the Markov-
Kakutani fixed point theorem. Let M be the family of random elements X that realise
Φ on G∗, and satisfy

Eχ(θX) ≤ r

for every θ ∈ Rd. The family M is easily seen to be convex with respect to addition of
measures, it is compact by Theorem 2.8 from [LRM11], and invariant under the action
of Θ thanks to the Θ-invariance of Φ. It remains to prove that M is not empty. Since
(4.4) is in order, Theorem 4.3 yields the existence of a RAMS X realising Φ and such
that Eχ(X) ≤ r. Now for θ ∈ Θ, by Lebesgue theorem,

Eχ(θX) = E lim
n

gn(θX) = lim
n

Egn(θX) = lim
n

Egn(X) = E lim
n

gn(X) = Eχ(X) ≤ r

where we have used the fact that E supn gn(X) < ∞ and

E sup
n

gn(θX) ≤ Eχ(θX) ≤ CθEχ(X) < ∞.

It follows that M ∋ X is non-empty, whence by Markov-Kakutani Theorem the mappings
X 7→ θX, θ ∈ Θ, admit a common fixed point X (considered here as a probability
measure), which is therefore invariant under Θ.

Proof of Theorem 4.9. Necessity: Assume S2 is the specific covariogram of a stationary
RAMS X with Pers

B
(X) ≤ r. Then S2 is admissible and by Proposition 3.5 one has

d∑

j=1

Lipj(S2, 0) =

d∑

j=1

1

2
V s
ej
(X) =

1

2
Pers

B
(X) ≤ r

2
.

Sufficiency: Define γ(y;W ) = Ld(W )S2(y). Then for all W ∈ W and j ∈ {1, . . . , d},

Lj(γ,W )

= sup
ε∈R

1

|ε|
[
Ld(W ⊖ [−εej , 0])(S2(0)− S2(εej)) + Ld(W ⊖ [0, εej])(S2(0)− S2(−εej)

]

≤ 2Ld(W )Lipj(S2, 0).

Hence, since
∑d

j=1 Lipj(S2, 0) ≤ r
2
, one has

∑

n≥1

βn

(
d∑

j=1

Lj(γ,Wn)

)

≤
∑

n≥1

βn2Ld(Wn)
d∑

j=1

Lipj(S2) ≤ r.
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Hence, according to Theorem 4.1 γ is realizable as the local covariogram of a RAMS X ,
and consequently, according to Theorem 4.3, γ satisfies (4.4) with χ = Perβ

B
and G∗ = G

the space of all functionals of the form g =
∑q

i=1 aiδyi;Wi
. For t ∈ Rd, y ∈ Rd,W ∈

W, A ∈ M, we have

θtδy;W (A) = δy;W (θtA) = Ld((t+ A) ∩ (t+ y + A) ∩W ) = Ld(A ∩ (A+ y) ∩ (−t +W ))

= δy;−t+W (A),

whence the space G generated by constant functions and functions δy;W , y ∈ Rd,W ∈ W
is invariant under the action of the group Θ = {θt, t ∈ Rd} of translations. The linear
functional defined by

Φ(δy;W ) = Ld(W )γs(y)

is invariant under the action of translations θt, t ∈ Rd. For t ∈ Rd, let ⌈t⌉∞ := ⌈‖t‖∞⌉
be the smallest integer larger than ‖t‖∞. Then, recalling that Un denotes the hypercube
(−n, n)d one has −t + Un ⊂ (−n− ‖t‖∞, n+ ‖t‖∞)d ⊂ Un+⌈t⌉∞ . Hence, for A ∈ M,

Perβ
B
(t+A) =

+∞∑

n=1

βnPerB(t+A;Un) =
+∞∑

n=1

βnPerB(A;−t+Un) ≤
+∞∑

n=1

βnPerB(A;Un+⌈t⌉∞).

Since βn = 2−n(2n)−d = 2⌈t⌉∞
(

n+⌈t⌉∞
n

)d

βn+⌈t⌉∞ ≤ 2⌈t⌉∞⌈t⌉d∞βn+⌈t⌉∞ , one has

Perβ
B
(t+ A) ≤ 2⌈t⌉∞⌈t⌉d∞

+∞∑

n=1

βn+⌈t⌉∞PerB(A;Un+⌈t⌉∞) ≤ 2⌈t⌉∞⌈t⌉d∞Perβ
B
(A), A ∈ M,

whence (4.8) is in order for χ = Perβ
B
. To apply Theorem 4.10 it only remains to check

that Perβ
B
can be pointwise approximated from below by functions from G. According to

Proposition 3.3, for A ∈ M, and U a bounded open set of Rd,

PerB(A;U) = lim
n

gUn (A)

for some function gUn ∈ G explicit in Proposition 3.3 that satisfy

0 ≤ gUn ≤ PerB(·;U). (4.9)

Define

gn(A) :=

n∑

m=1

βmg
Um
n (A).

Let A ∈ M with Perβ
B
(A) < ∞. Since for every m ≥ 1, gUm

n (A) → Per(A;Um) as n → ∞,

Lebesgue theorem with 0 ≤ gn(A) ≤ Perβ
B
(A) < ∞ ensures that gn(A) → Perβ

B
(A) as

n → ∞.
Now if A ∈ M is such that Perβ

B
(A) = ∞, let M > 0, and n0 be such that

∑n0

m=1 βmPerB(A;Um) ≥ M+1. Let n1 ≥ n0 be such that for n ≥ n1, g
Um
n ≥ PerB(A;Um)−

1 for 1 ≤ m ≤ n0. Then for n ≥ n1,

gn(A) ≥
n0∑

m=1

βmPerB(A;Um)−
∑

m≥1

βm ≥ M + 1− 1 ≥ M.
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It follows that gn(A) → ∞ = Perβ
B
(A).

Hence according to Theorem 4.10 there exists a stationary RAMSX realizing γ, which
implies that γs

X = S2. But then according to Proposition 3.5,

Pers
B
(X) =

d∑

j=1

V s
ej
(X) = 2

d∑

j=1

Lipj(S2, 0) ≤ r.

4.3 Covariogram realisability problem for RACS of R

The goal of this section is to establish a theorem similar to Theorem 4.9 the specific
covariogram of one-dimensional stationary RACS by making use of Proposition 2.9.

First let us discuss the definition of local covariogram admissibility of functions in
arbitrary dimension d ≥ 1. According to Definition 1.1, a function γ : Rd × W → R is
M-local covariogram admissible if for all 5-tuple (q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈
Wq, c ∈ R),

[

∀A ∈ M, c+

q
∑

i=1

aiδyi;Wi
(A) ≥ 0

]

⇒ c+

q
∑

i=1

aiγ(yi;Wi) ≥ 0.

When considering RACS of Rd, that is random variables taking values in F = F(Rd)
the set of all closed subset of Rd, it is natural to introduce the following definition: One
says that a function γ : Rd ×W → R is F-local covariogram admissible if for all 5-tuple
(q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈ Wq, c ∈ R),

[

∀F ∈ F , c+

q
∑

i=1

aiδyi;Wi
(F ) ≥ 0

]

⇒ c+

q
∑

i=1

aiγ(yi;Wi) ≥ 0.

Besides, one says that S2 : R → R is F-specific covariogram admissible if (y,W ) 7→
S2(y)Ld(W ) is F -local covariogram admissible.

However this distinction is superfluous since these two notions of admissibility are
strictly equivalent.

Proposition 4.11. A function γ : Rd×W → R is F -local covariogram admissible if and
only if it is M-local covariogram admissible.

Proof of Proposition 4.11. The proof of this equivalence relies on the continuity of local
covariograms for the convergence in measure and the density of compact sets due to Lusin
Theorem. It consists in showing that for all 5-tuple (q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈
Wq, c ∈ R),

[

∀F ∈ F , c+

q
∑

i=1

aiδyi;Wi
(F ) ≥ 0

]

⇔
[

∀A ∈ M, c+

q
∑

i=1

aiδyi;Wi
(A) ≥ 0

]

Since F ⊂ M, the implication ⇐ is clear. To show the converse, let (q ≥ 1, (ai) ∈
Rq, (yi) ∈ (Rd)q, (Wi) ∈ Wq, c ∈ R) be such that ∀F ∈ F , c+

∑q
i=1 aiδyi(F ) ≥ 0, and let
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us show that this inequality is valid for any A ∈ M. One can suppose that A is bounded
since according to Equation (3.1), one can replace A by A∩⋃q

i=1Wi∪ (−yi+Wi) without
changing the value of c +

∑q
i=1 aiδyi;Wi

(A). Then by Lusin theorem (see e.g. [EG92]),
there exists a sequence of compact sets Kn ⊂ A that converges in measure towards A
(i.e. Ld(A∆Kn) → 0). Since each Kn is closed, for all n one has c+

∑q
i=1 aiδyi(Kn) ≥ 0.

But since the sequence (Kn)n∈N converges in measure towards A, thanks to the fact that
the local covariogram A 7→ δy;W is continuous for the local convergence in measure (see
Proposition 3.1) for all (yi;Wi), δyi;Wi

(Kn) tends to δyi;Wi
(A), and thus letting n tends to

+∞ gives the inequality c+
∑q

i=1 aiδyi;Wi
(A) ≥ 0.

Now that this technical point has been clarified we are in measure to formulate our
result for the realisability of specific covariogram of stationary RACS of R.

Theorem 4.12. Suppose that the probability space (Ω,A,P) is complete. Let S2 : R →
R be a given function and let r > 0. Then S2 is the covariogram of a stationary RACS
Z ⊂ R such that

E
(
H0(∂Z) ∩ (0, 1)

)
≤ r

if and only if S2 is F -specific covariogram admissible and Lipschitz with Lipschitz constant
L ≤ r

2
.

Proof. Necessity: If there exists a stationary RACS Z ⊂ R such thatE (H0(∂Z) ∩ (0, 1)) ≤
r, then S2 is necessarily F -specific covariogram admissible and, according to Propo-
sition 3.5, S2 is Lipschitz with Lipschitz constant L = 1

2
E (Per(Z); (0, 1)). But since

Per(Z; (0, 1)) ≤ H0(∂Z ∩ (0, 1)), one has L ≤ 1
2
E (H0(∂Z ∩ (0, 1))) ≤ r

2
.

Sufficiency: Suppose that S2 is F -specific covariogram admissible and Lipschitz with
Lipschitz constant L ≤ r

2
. Then by Proposition 4.11, γ is M-specific covariogram pos-

itive, and thus by Theorem 4.9 there exists a RAMS X ⊂ R such that S2 is the spe-
cific covariogram of X and E(Per(X); (0, 1)) ≤ r. By Proposition 2.9, there exists a
RACS Z ⊂ R equivalent in measure to X such that Per(X ; (0, 1)) = H0(∂Z ∩ (0, 1))
a.s. But then the specific covariogram of Z is also equal to S2 and E (H0(∂Z ∩ (0, 1))) =
E(Per(X ; (0, 1))) ≤ r.

Note that although the geometry of sets with finite perimeter on the line seems quite
simplistic, a direct proof of the realisability result above is far from trivial.

A Radon-Nikodym theorem for random measures

Theorem A.1. Let U be an open subset of Rd. Let µ : Ω 7→ M(U) be a random signed
Radon measure over U such that for all ω ∈ Ω, the measure µ(ω, ·) is absolutely continuous
with respect to the Lebesgue measure Ld. Then, there exists a jointly measurable map

f :
(
Ω× Rd,A⊗ B (U)

)
→ R

(ω, x) 7→ f(ω, x)

such that for all ω ∈ Ω, f(ω, ·) is a Radon-Nikodym derivative of µ(ω, ·) with respect to
the Lebesgue measure Ld, that is for all ω ∈ Ω, f(ω, ·) ∈ L1

loc
(U) and

∀B ∈ B (U) , µ(ω,B) =

∫

B

f(ω, x)dx.
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Proof. It is enough to consider the case U = Rd, since for U ⊂ Rd one can always extend
the random measure by zero over Rd and take the restriction of f to U afterwards. Let
us denote by B(x, r) the open ball of center x and radius r, and by κd the Lebesgue
measure of the unit ball of Rd, so that for all x ∈ Rd and r > 0, Ld(B(x, r)) = κdr

d. For
any ω ∈ Ω, according to Besicovitch derivation theorem (see e.g. [AFP00, Theorem 2.22
p. 54]), the derivative of the measure µ(ω, ·) with respect to Ld, that is

lim
r→0+

µ(ω,B(x, r))

κdrd
, x ∈ Rd,

exists for Ld-almost all x ∈ Rd, is in L1
(
Rd
)
, and is a Radon-Nikodym derivative of

the measure µ(ω, ·). Let (rn)n∈N be a positive sequence decreasing to 0. For all ω ∈ Ω,
x ∈ Rd, and n ∈ N, let us define

fn(ω, x) =
µ(ω,B(x, rn))

κdrdn
.

As a consequence of Besicovitch derivation theorem, for all ω ∈ Ω, the function

f(x, ω) = lim sup
n→+∞

fn(ω, x)1(lim sup
n→+∞

fn(ω, x) = lim inf
n→+∞

fn(ω, x)

)

is a Radon-Nikodym derivative of µ(ω, ·) with respect to the Lebesgue measure Ld. Let
us show that this function f is jointly measurable (i.e. A⊗B (U)-measurable). Given the
definition of f , and since the lim sup and lim inf of a countable sequence of measurable
functions is a measurable function, it is enough to show that the functions fn are jointly
measurable. Let n ∈ N. For all x ∈ Rd, by definition of a random Radon measure, the
map ω 7→ fn(ω, x) =

µ(ω,B(x,rn))
κdrdn

is A-measurable. Let us now show that for all ω ∈ Ω,

the map ω 7→ fn(ω, x) =
µ(ω,B(x,rn))

κdrdn
is continuous over Rd. Indeed let x ∈ Rd and (xk)k∈N

a sequence of points that tends to x. Then, for all y ∈ Rd \ ∂B(x, rn), 1(y ∈ B(xk, rn))
tends to 1(y ∈ B(x, rn)). Since the sphere ∂B(x, rn) is Lebesgue negligible, by absolute
continuity ∂B(x, rn) is also µ(ω, ·)-negligible. Hence, 1(y ∈ B(xk, rn)) tends to 1(y ∈
B(x, rn)) for µ(ω, ·)-almost all y ∈ Rd. Besides, since the sequence (xk) tends to x it is
bounded, and thus there exists R > 0 such that xk ∈ B(0, R) for all k ∈ N. Then, for all
k ∈ N, ∣

∣
∣
∣

1(y ∈ B(xk, rn))

κdrdn

∣
∣
∣
∣
≤ 1(y ∈ B(0, R + rn))

κdrdn
∈ L1(µ(ω, ·)).

Hence by dominated convergence,

lim
k→+∞

µ(ω,B(xk, rn))

κdrdn
=

µ(ω,B(x, rn))

κdrdn
,

that is fn(ω, ·) is continuous at x. In conclusion, ω 7→ fn(ω, x) is measurable and x 7→
fn(ω, x) is continuous, i.e. fn is a Carathéodory function. Since Rd is a separable metric
space, one can conclude that fn is jointly measurable [AB07, Section 4.10].

Remark A.2. The above proof follows the outline of [Bog07, Exercice 6.10.72]. A more
general result for the existence of a jointly measurable Radon-Nikodym derivative of
a random measure absolutely continuous with respect to another random measure is
established in [DM82, V.58].
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B Convexity of the set of covariance matrices of ran-

dom vectors in {0, 1}N
Let N be a positive integer. We denote by Γn the set of all covariance matrices of random
vectors X = (X1, . . . , XN) ∈ {0, 1}N , that is C ∈ Γn if there exists a random vector X
such that Ck,l = E(XkXl), k, l ∈ {1, . . . , N}.

Proposition B.1 (Convexity of Γn). Γn is a convex set.

Proof. Let C0 and C1 be two covariance matrices in Γn, and let α ∈ [0, 1]. Let X0 and
X1 be two independent random vectors having covariance matrix C0 and C1 respectively,
and let Y be a Bernouilli random variable of parameter α independent of (X0, X1). Then,
the mixing random vector

X =

{

X0 if Y = 0

X1 if Y = 1

has covariance matrix C = (1− α)C0 + αC1.

Proposition B.2 (Extreme points of Γn). The extreme points of Γn are covariance ma-
trices of deterministic vectors (i.e. random vectors such that X = x a.s. for some
x ∈ {0, 1}N).

Proof. Let us denote by Cx the covariance matrix of a deterministic vector X = x,
that is Cx

k,l = xkxl ∈ {0, 1}. Let X be any random vector of {0, 1}N and denote by C its
covariance matrix. Since X takes its values in the discrete set {0, 1}N , one can decompose
its distribution PX into

PX =
∑

x∈{0,1}N

PX(X = x)δx,

where δx is the unit mass measure in x. Then, for all k, l ∈ {1, . . . , N},

Ck,l = E(XkXl) =
∑

x∈{0,1}N

PX(X = x)xkxl =
∑

x∈{0,1}N

PX(X = x)Cx
k,l.

Hence each covariance of Γn is the convex linear combination of covariance matrices of
deterministic vectors.
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[Lan02] C. Lantuéjoul. Geostatistical simulation: models and algorithms. Springer,
2002.
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