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The ε-strategy in variational analysis:
illustration with the closed
convexification of a function

Jean-Baptiste Hiriart-Urruty, Marco A. López and Michel Volle

Abstract

In this work, we concentrate our interest and efforts on general
variational (or optimization) problems which do not have solutions
necessarily, but which do have approximate solutions (or solutions
within ε > 0). We shall see how to recover all the (exact) min-
imizers of the relaxed version of the original problem (by closed-
convexification of the objective function) in terms of the ε-minimizers
of the original problem. Applications to two approximation problems
in a Hilbert space setting will be shown.

Introduction

This paper is mainly devoted to deriving, exploiting and illustrating the
possible relationship between the minimizers of a general variational (or op-
timization) problem (actually the ε-minimizers) and those of a relaxed ver-
sion of it (by relaxation we mean here closed-convexification of the objective
function).

In section 1 we put in perspective what we call the ε−strategy in math-
ematics, i.e. how to benefit from ε−perturbations of a given problem. We
recall in that respect some classical results or approaches like Ekeland’s
variational principle (§1.1), viscosity solutions for Hamilton-Jacobi equa-
tions (§1.2), and the crucial role played by the notion of ε−subdifferential
in Convex analysis and numerical optimization (§1.3).
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90C25.
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imate projections.
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Section 2 is devoted to the links between a general function J and its
closed convex hull co J. Taking the closed convex hull is a widely spread and
known operation in Variational analysis; we however list here some new or
less known features of that fascinating operation (§2.1). Section 2.2 is a cen-
tral one in the present paper: it gives ways to derive argmin(co J) from the
ε−argminJ ’s. Two different and not completely comparable approaches are
presented: one in the finite-dimensional context (§2.2.1) due to Benoist and
Hiriart-Urruty [4] and another one, more recent, by López and Volle

[23], also valid in an infinite-dimensional setting (§2.2.2). Since one cannot
explain the obtained results without drawing pictures, even with functions
of a real variable, we show in section 2.2.3 various illustrative examples.

Section 3 is devoted to some applications (of results in §2.2) to some
Hilbertian approximation-minimization problems. In §3.1 we revisit two
approximation problems, birthplaces of long-standing conjectures (surveyed
in [18] and [19]), and show how a result like that of Berens [5] can be
retrieved from results in section 2.2. In §3.2, we put the two considered ap-
proximation problems in a general framework and end by, again, a result al-
lowing to recover solutions of the relaxed version of a presented problem (P)
by filtering the ε−solutions of this problem (P) (Proposition 10).

1. Benefiting from ε-perturbations in variational ana-

lysis

In mathematics, it happens that one cannot tackle a problem directly, for
several reasons: because the original problem has no solution, because the
definition of solution itself is ambiguous, because the posed problem may
have several solutions while the underlying physical or mechanical problem
clearly indicates only one, etc. Therefore, an often used strategy is to cir-
cumvent the intrinsic difficulty of the problem by perturbing it by ε > 0.
The perturbed problem often turns out to be easier to solve or just more
meaningful than the original one. Then, since ε is small, as always in
mathematics, it remains to see what happens when ε → 0 or how to fil-
ter the ε−mathematical objects associated with the ε−perturbed problem.
In doing so, one expects to get something of interest for the original problem,
which typically corresponds to ε = 0.

In this paper, we concentrate our interest on variational (or optimiza-
tion) problems which do not have solutions necessarily, but which do have
approximate solutions (or solutions within ε > 0). The question we address
is: what to do with such ε−solutions? We shall see in section 2 how to
recover all the minimizers of the relaxed version of an abstract variational
problem in terms of ε−minimizers of the original variational problem (espe-
cially when this original problem has no solution).
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Before going further, we illustrate with some examples what we call the
ε−strategy in mathematics. This very specific choice of examples reflects our
personal interests, but no doubt that the readers have their own examples.

1.1. Ekeland’s variational principle, ε-minimizers

This celebrated result is typically an answer to the question: what to do
when the given variational problem has no solution, or when we cannot assert
it has solutions? Ekeland’s variational principle starts with ε−minimizers of
the variational problem (for ε > 0) and gets the existence of (exact) minimiz-
ers of some perturbed version of the initial problem. This result is nowadays
widely used in Nonlinear analysis, we even teach it at the Master level, and
it has given rise to many descendants. The 30-years old reference [12] still
remains a good reference for the statement of Ekeland’s variational principle
and some of its first applications.

A penalization process or a regularization process applied to a variational
problem also are well-known ways of circumventing difficulties for tackling
the original problem. Both methods consist in replacing a given minimiza-
tion problem “Minimize f(x), x ∈ X” by a sequence of simpler ones, says
“Minimize fn(x), x ∈ X”. In appropriate situations (cf. [1], [3]), any limit
of a sequence of εn-minimizers of fn, with εn → ε, is an ε-minimizer of f .
This way of doing is widely used in numerical optimization.

1.2. Viscosity solutions for Hamilton-Jacobi equations

Initial work on the so-called Hamilton-Jacobi equations was concerned with
first-order partial differential equations like

(1) H(x, u(x),∇u(x)) = 0.

Since this equation may not have solutions (in the classical sense) or may
have infinitely many, a way to solve it was to “perturb it by ε > 0”, which in
the present particular case amounted to introduce an ε−term in the equa-
tion:

(1ε) −ε�u(x) +H(x, u(x),∇u(x)) = 0.

The strategy therefore was:
– Solve (1ε), under suitable assumptions, so that a “regular solution”

pops out.
– Pass to the limit on ε > 0 and get hopefully at the limit a “solution”

of (1).
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This way of doing, i.e. adding a “viscosity term” −ε�u(x) to the equa-
tion (1), was the historical basis for the terminology “viscosity solution”
which we now use for equations like (1) (see [9]).

1.3. The approximate subdifferential of a convex function

Let X be a Banach space and f : X → R ∪ {+∞} an arbitrary function. At
a point x0, where f is finite, the subdifferential of f at x0 is the collection
of slopes of continuous affine minorants of f coinciding with f at x0 :

(2) s ∈ ∂f(x0) ⇐⇒ f(x) ≥ f(x0) + 〈s, x− x0〉 for all x ∈ X.

We shall make use of this concept mainly for lower-semicontinuous convex f.
To ensure that ∂f(x0) is nonempty is not an easy matter. Moreover,

calculus rules like the one giving ∂(f + g)(x0) as the sum ∂f(x0) + ∂g(x0)
requires additional assumptions of f and g.

In order to be more comfortable with these drawbacks, an “enlargement
by ε > 0” of ∂f(x0) was proposed; it is called the ε−subdifferential of f
at x0, and it is defined as follows:

(2ε) s ∈ ∂εf(x0) ⇐⇒ f(x) ≥ f(x0) + 〈s, x− x0〉 − ε for all x ∈ X.

First good news: If f ∗∗(x0) = f(x0) (where f ∗∗ stands for the biconjugate
of f , see later on), as it is when f is lower-semicontinuous convex, ∂εf(x0)
is nonempty whenever ε > 0 (even if ∂f(x0) is empty) and, of course, we
recover ∂f(x0) from ∂εf(x0), ε > 0, by filtering all of them: ∂f(x0) =
∩ε>0∂εf(x0).

More interesting is that one can derive calculus rules on subdifferentials,
without any assumption on the involved functions, by using ε−subdifferen-
tials instead of (exact) subdifferentials. A typical result in that direction
is the following calculus rule on the subdifferential of the sum of convex
functions.

Theorem 1 (Hiriart-Urruty and Phelps, [22]) Let f and g be lower-
semicontinuous convex functions from a Banach space X into R ∪ {+∞}.
At a point x0 where both f and g are finite, we have:

∂(f + g)(x0) =
⋂
ε>0

∂εf(x0) + ∂εg(x0)
weak∗

.

If moreover X is reflexive,

(3) ∂(f + g)(x0) =
⋂
ε>0

∂εf(x0) + ∂εg(x0).
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This is typical of what one can expect by adopting the ε−strategy: since
∂(f + g)(x0) cannot be obtained from ∂f(x0) + ∂g(x0), perturb by ε > 0,
take the corresponding ε−subdifferential ∂εf(x0) + ∂εg(x0), and filter all of
them with the intersection operation. For more on the calculus rules using
ε−subdifferentials, see [21]. In [15] the assumption of lower semi-continuity
of f and g is replaced by a slightly weaker “closedness” qualification.

The behaviour as a set-valued mapping of x ∈ X also differs drastically
when one moves from ∂f(x) to ∂εf(x). For a continuous convex function
on the open convex subset Ω of X, the best semicontinuity result on the
subdifferential set-valued mapping from X into X∗ is that x �−→ ∂f(x)
is norm-to-weak∗ upper (or outer) semicontinuous on Ω. For ε > 0, the
bevaviour of x �−→ ∂εf(x) is much nicer.

Theorem 2 ([16]) Let f : X → R be a convex Lipschitz function and let
ε > 0. Then there exists K > 0 such that

(4) haus (∂εf(x), ∂εf(x′)) ≤ K ‖x− x′‖ for all x, x′ in X.

Here, haus(C,D) stands for the Hausdorff distance between C and D.

For a non Lipschitz function f, the above result is adapted by considering
∂εf(x)∩rB∗ (r > 0 large enough, B

∗ closed unit ball in X∗) instead of ∂εf(x)
itself. In short, while the difficulty for obtaining the continuity of the set-
valued mapping x �−→ ∂f(x) is “+∞” (no hope, as a general rule), it is
null (i.e., no problem at all!) for the set-valued mapping x �−→ ∂εf(x)
whenever ε > 0.

The “enlargement by viscosity” of ∂f(x) to get ∂εf(x) ended with a con-
cept close to the initial one ∂f(x), but behaving in a much more regular way.
This has had consequences in the theoretical study of convex optimization
problems, as also –indeed much more– when dealing with numerical mini-
mization procedures [20, Vol. II].

2. Relaxation by closed convexification

“Relaxing a problem” has various meanings in mathematics, depending on
the areas where it is defined, depending also on what one relaxes (a func-
tional, the underlying space, etc.). In a variational context, when dealing
with the minimization of J : X → R ∪ {+∞}, the most general way of look-
ing at relaxation is to consider the lower-semicontinuous hull of J . It allows
us not to be limited by the linear structure of X and, therefore, to consider
situations where the set of possible choices is only a metric space (or a mere
topological space) as it happens to be in shape optimization. In those cases
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in which we are dealing with normed vector spaces (context of Variational
calculus), usually one considers the closed convex hull of J . In the present
approach, we are not going to consider the more general framework, but
indeed the way in which we relax is passing from J to its closed convex hull.
Henceforth, the context is a follows:

(5)
Xis a Banach space; J : X → R ∪ {+∞} is not identically equal
to +∞, and it is minorized by some continuous affine minorant.

The topological dual space is endowed with a topology so that a duality
pairing (X,X∗) is settled for the Legendre-Fenchel transformation (see
below). In particular, the biconjugate J∗∗ of J is defined on X (and not
on X∗∗).

2.1. The closed convex hull operation

For a given J : X → R ∪ {+∞}, getting its closed convex hull co J : X →
R ∪ {+∞} is a complicated, but at the same time fascinating, operation.
There are at least two ways of constructing co J :

• the “internal construction”: consider all the convex combinations of
elements of the epigraph epi J of J, so that co(epi J) is built, and then
close it; the set co(epi J) is the epigraph of a function, namely of co J.

• the “external construction”: consider all the continuous affine func-
tions aJ minorizing J ; then co J = sup aJ .

The fact that we get exactly the same function, via the internal con-
struction or the external one, is one of the key results in Convex analysis. In
terms of the Legendre-Fenchel transformation (or conjugacy) J � J∗,
since J is assumed to satisfy (5), we have that J∗∗ := (J∗)∗ equals co J. We
therefore use the notations co J and J∗∗ indistinctly.

The closed-convex-hull operation is a global one, in the sense that it
requires to know –a priori– the behaviour of J on the whole X. In partic-
ular, the behaviour of J(x) “at infinity”, i.e. when ‖x‖ → ∞, is of utmost
importance; that is the main source of difficulties in delineating co J.

Let us review here the main known properties of co J , those inherited
from J and those not.

• The infimal values. We have:

(6) inf
x∈X

J(x) = inf
x∈X

(co J)(x) (an equality in R ∪ {−∞}).

This is simply due to the fact that infx∈X J(x) = −J∗(0) and J∗ =
(co J)∗.
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• The set of minimizers. If we denote by argmin J the set of x ∈ X
minimizing J on X (possibly, the empty set), we easily see that

(7) co(argmin J) ⊂ argmin(co J),

a very weak result indeed, especially if argminJ is empty! We shall
come back to this point in the next section; see also the examples from
one-dimensional variational calculus below.

Playing with the equality J∗ = (co J)∗ and the “seesaw rule”: x ∈ ∂J∗(s)
if and only if s ∈ ∂(co J)(x), we get:

(8) (x minimizes J on X) ⇔ (J(x) = (co J)(x) and x ∈ ∂J∗(0)) ,

still not very informative. There is however a situation where the coinci-
dence relation serves in filtering global minimizers of J from just critical (or
stationary) points. Suppose, for the sake of simplicity, that X is a Hilbert
space. We denote by ∇J(x) the gradient of J at x, whenever it is Gâteaux-
differentiable at x.

Theorem 3 Let J : X → R ∪ {+∞} be Gâteaux-differentiable at x, where
X is a Hilbert space. Then:

(9)

(
x is a global minimizer

of J on X

)
⇔

( ∇J(x) = 0 and
J(x) = (co J)(x)

)
.

This had been observed by Dedieu in the context of Calculus of vari-
ations [11]; a short pedagogical proof in a finite dimensional setting was
published in [17]. Indeed, the proof is easy from (8) and the following obser-
vation: if J is Gâteaux-differentiable at x, then either ∂J(x) is empty or
∂J(x) = {∇J(x)}. At a critical point x, we are precisely in the latter case,
∂J(x) = {0}, so that x ∈ ∂J∗(0).

It is interesting to note how a local condition (∇J(x) = 0), combined
with a global one (J(x) = (co J)(x)) serve to distinguish global minimizers
of J from just critical points. It is also worth noting that the theorem
above belongs to the realm of differentiable optimization. Indeed, if the
property “x is a local minimizer of J” replaces “∇J(x) = 0”, in absence of
differentiability of J at x, then the equivalence (9) breaks down. That means
that any generalization of “∇J(x) = 0” of the form “0 ∈ ∂gJ(x)” for some
generalized subdifferential ∂gJ of J will not do the job. . . , an upsetting fact!

We continue with the review of the properties of the closed convex hull
of a function.
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• The continuity property. Even if J is the restriction of a C∞ function
on a compact convex subset C of R

n (and +∞ out of C), the (convex)
function coJ may not be continuous at some boundary points of C.

• The differentiability property. If J : R → R is differentiable on R,
then so is co J (even if (co J)(x) < J(x) for all x ∈ R). There however
are C∞ functions J : R

2→ R for which co J is no more differentiable
on R

2. The general possible relationship between the subdifferential
of co J and that of J is studied in [4]. Let us just quote a result from
there.

Theorem 4 Suppose that J :Rn→R ∪{+∞} is lower-semicontinuous
and Gâteaux-differentiable on R

n (for instance, if J is Fréchet-
differentiable on R

n). Assume moreover that J is asymptotically epi-
pointed on R

n in the sense that J is minorized by n+1 affine functions
〈si, ·〉 − ri with affinely independent slopes si (an equivalent condition
is that the domain of J∗ has a nonempty interior). Then co J is a C1

function on R
n.

• Behaviour at infinity. Indeed co J ≤ J on X. However, co J ends by
“behaving like J at infinity”. The following result and proof are taken
from [6].

Theorem 5 We have

(10) lim inf
‖x‖→∞

J(x) − (co J)(x)

‖x‖ = 0.

Proof. Since J(x) ≥ (co J)(x) for all x ∈ X, the above lim inf is � ≥ 0
(possibly +∞). Suppose � > 0. Therefore, there exist c > 0 and A > 0
such that

(11) inf
‖y‖≥‖x‖

J(y) − (co J)(y)

‖y‖ ≥ c whenever ‖x‖ > A.

Thus, J(x) − (co J)(x) ≥ c ‖x‖ when ‖x‖ > A, while J(x) − (co J)(x)
≥ 0 otherwise. In short,

J(x) ≥ (co J)(x) + c(‖x‖ − A) for all x ∈ X.

This comparison result between two functions, the one on the right-
hand side being convex, yields

(co J)(x) ≥ (co J)(x) + c(‖x‖ − A) for all x ∈ X.

This does not hold true for ‖x‖ > A. Hence, the hypothesis at the
beginning of the proof, � > 0, is wrong. �
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In spite of (10), note that the gap between (co J)(x) and J(x) when
‖x‖ → ∞ may be larger and larger; think of J : x ∈ R �→ J(x) :=√|x| for that.

• Numerical computation. The numerical computation of (co J)(x), via
that of J∗ (on R

n, or on some grids of R
n) is not broached here. For

that, we refer to [7] and to the recent survey-paper [24].

We finish this section by showing a classical example in Calculus of
variations where there is no minimizer for J while there is just one for
the relaxed function co J (on the same underlying space X). In Calculus
of variations, under suitable assumptions (cf. [13], [10]), the relaxed form
of a criterion like u ∈ X �→ J(u) :=

∫
[a,b]

�(t, u(t), u′(t)) dt turns out to

be
∫
[a,b]

(co �)(t, u(t), u′(t)) dt, where the inner closed-convexification of � is

with respect to the velocity, i.e. the closed-convexification of �(t, u, ·). Let
X = H1(0, 1) be the standard Hilbert-Sobolev space equipped with the
inner product

(u | v) :=

∫
[0,1]

[u(t)v(t) + u′(t)v′(t)] dt,

and the associated Hilbertian norm ‖·‖ =
√

(· | ·). We consider

u ∈ X �→ J(u) :=

∫
[0,1]

{∣∣(u′(t))2 − 1
∣∣ + u(t)2} dt.

The function J is continuous and 1−coercive on X (i.e. J(u)/ ‖u‖ → +∞
when ‖u‖ → +∞). Its relaxed version co J is defined as follows:

u ∈ X �→ (co J)(u) :=

∫
[0,1]

{[(u′(t))2 − 1]+ + u(t)2} dt.

By considering “serrated functions1” u, one easily sees that infu∈X J(u) = 0,
while there is no u ∈ X such that J(u) = 0. As for the relaxed function
co J, it has only one minimizer, namely u ≡ 0.

This is a typical situation in Calculus of variations where J has no mini-
mizer, while co J does have one. There is no way of recovering argmin(co J)
from argminJ (the empty set!). But there are ε−minimizers of J on X, i.e.
uε ∈ X for which J(uε) ≤ infX J + ε (here, ε > 0); so there is some hope to
get something by applying the ε−strategy: consider the set of ε−minimizers
of J, and filter in some way to get the set of minimizers of co J. This is what
is done in the next section.

1The so-called “serrated functions” are continuous piecewise linear functions, with
slopes ±1, smaller and smaller as the number of switching points for slopes is higher.
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2.2. Deriving argmin(co J) from the ε-argmin J ′s

In this section, without loss of generality, we consider a situation a little
more precise than the one in (5):

(12)
X is a Banach space; J : X → R ∪ {+∞} is not identically

equal to + ∞, and bounded from below on X.

Thus, −J∗(0) = infx∈X J(x) > −∞, and there are minimizing sequences
(xn) for J , i.e. (xn) for which J(xn) → infX J when n → ∞. The following
result then holds true in the usual context of Calculus of variations (cf.
[13, 10]): every cluster point of a minimizing sequence for J is a minimizer
of co J ; every minimizer of co J is the limit of a minimizing sequence for J.

For deriving argmin(co J) from argmin J or from the ε − argminJ ’s,
ε > 0,

ε− argmin J = {x ∈ X | J(x) ≤ inf
X
J + ε},

there are two competing approaches, not completely comparable, one more
appropriate to the finite dimensional context that uses exact minimizers,
the other one valid in the infinite dimensional setting but using approximate
minimizers.

2.2.1. An approach in the finite-dimensional context

Here, X = R
n and we assume (at least) that J : R

n → R ∪ {+∞} is
not identically equal to +∞, lower-semicontinuous and bounded from below
on R

n. The behaviour at infinity of J is taken into account by the asymptotic
function J ′

∞ of J :

(13) d ∈ R
n �→ J ′

∞ (d) := lim inf
t→0+

v→d

tJ (v/t) .

In other words, J ′
∞ (d) is “the slope at infinity of J in the d direction”. If J

is moreover convex, we recover the more classical expression

J ′
∞ (d) = lim

t→+∞
J (x0 + td) − J (x0)

t
= sup

t>0

J (x0 + td) − J (x0)

t
,

where x0 is any point at which J is finite.
The property of being asymptotically epi-pointed was originally defined

for J in terms of the cone K = epi J ′
∞. More palpable properties can be

derived, dealing directly with the function J . Here they are:
J is said to be asymptotically epi-pointed on R

n if one of the following
equivalent conditions holds true:

1) J is minorized by n + 1 affine functions 〈si, ·〉 − ri with affinely inde-
pendent si;
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2) there exists s0 ∈ R
n, σ0 > 0 and r0 ∈ R

n such that

J (x) ≥ 〈s0, x〉 + σ0 ‖x‖ − r0, for all x ∈ R
n;

3) there exists s0 ∈ R
n such that

lim inf
‖x‖→∞

J (x) − 〈s0, x〉
‖x‖ > 0;

4) the domain of J∗, dom J∗, has a nonempty interior.

Then, knowing that argmin (co J) = {x ∈ R
n | 0 ∈ ∂ (co J) (x)} and the

rules relating ∂ (co J) and ∂J (cf. [4]), we get:

Theorem 6 Assume that J is asymptotically epi-pointed on R
n. Then:

argmin (co J) = co (argmin J) + co (argmin J ′
∞)(14)

= co (argmin J + argmin J ′
∞) .

Beware! (14) can just be: ∅ = ∅.
Besides the convex hull operation, necessary since argmin (co J) is convex

and argmin J and argmin J ′
∞ are not, we observe in (14) two contributions

to the construction of argmin (co J) : one directly from J itself, another one
from the behaviour at infinity of J (via J ′

∞).
A particular case of application of Theorem 6: if co J is 0−coercive on R

n

(a stronger requirement than the 0−coercitivity of J), then we have:

(15) argmin (co J) = co (argminJ) .

We do not know of any generalization of Theorem 6 to an infinite dimensional
setting.

2.2.2. Another approach in an infinite dimensional context

We come back here to the general situation under assumption (12). In
general, (co J)′∞ ≤ co J ′

∞. The behaviour of co J at infinity is described by{
d ∈ X

∣∣ (co J)′∞ (d) ≤ 0
}

(called recession cone of co J) or, in its dual form,
by the normal cone to domJ∗ at 0,

N (dom J∗, 0) = (R+ dom J∗)◦(16)

= {x ∈ X | 〈s, x〉 ≤ 0 for all s ∈ dom J∗} .
(Remember that we have assumed 0 ∈ dom J∗.)

With the help of ε−minimizers of J on X and N (dom J∗, 0), it is now
possible to recover argmin (co J) . Here is a first series of results in that
direction.
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Theorem 7 (López and Volle, [23]) (a) As a general rule, we have:

(17) argmin (co J) =
⋂
ε>0

s∈dom J∗

co (ε− argmin J + s◦) ,

where s◦ stands for the closed half-space of X normal to s, i.e.

s◦ = {x ∈ X | 〈s, x〉 ≤ 0} .

(b) If either the cone generated by dom J∗, i.e. R+ dom J∗, is w∗−closed,
or the topological relative interior of R+ dom J∗ is nonempty, then:

(18) argmin (co J) =
⋂
ε>0

co {ε− argmin J +N (dom J∗, 0)}.

In particular, if the cone generated by dom J∗ is the whole of X∗, we
have:

(19) argmin (co J) =
⋂
ε>0

co (ε− argmin J) .

Like in (14), we note here two contributions to the construction of
argmin (co J): one coming directly from the ε−minimizers of J , another one
taking into account the behaviour of coJ (via the recession coneN(domJ∗, 0)).
Contrary to (14), the behaviour of J itself does not show up directly, but
that of co J instead. In short, what enters into the picture in the formulae,
in a somewhat hidden form, is the “collection of slopes s of continuous affine
minorants of co J (or, equivalently, of J)”.

Recall that when X is reflexive, the cone generated by dom J∗ is the
whole X∗ whenever co J is 0−coercive on X.

A result, a little bit sharper than (18), can be obtained when X is re-
flexive; it involves co (ε− argmin J)+N (dom J∗, 0) rather than the a priori
larger co [(ε− argminJ) +N (dom J∗, 0)].

Theorem 8 Assume that X is a reflexive Banach space.

(a) If the interior of R+ domJ∗ (for the strong topology) is nonempty,
then:

(20) argmin (co J) =
⋂
ε>0

[co (ε− argmin J) +N (dom J∗, 0)].

(b) If there exists s ∈ X∗, α > 0 and r ∈ R such that

(21) J (x) ≥ α ‖x‖ + 〈s, x〉 − r for all x ∈ X,

then (20) holds true.
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Proof. (a) In order to abreviate the notations, we set MεJ := ε−argminJ.
For a set A in X (resp. in X∗), we denote by iA the indicator function of A
and by σA := i∗A the support function, defined on X∗ (resp. on X). The
proof is decomposed in three steps.

Step 1. dom J∗ (hence R+ dom J∗) is contained in the domain of σMεJ

(also called the barrier cone of MεJ in Convex analysis). Indeed, let p ∈
dom J∗; we have

J∗ (p) = sup
x∈dom J

[〈p, x〉 − J (x)] < +∞.

Now, for x ∈MεJ , J (x) ≤ infX J + ε = −J∗ (0) + ε, so that

〈p, x〉 ≤ J∗ (p) − J∗ (0) + ε.

Hence we obtain that σMεJ (p) < +∞.

Step 2. For ε > 0, the set Sε :=
⋂

s∈dom J∗
co (MεJ + s◦) is the subdifferen-

tial at 0 of the convex function σMεJ + iR+ dom J∗ . Indeed, by definition,

x ∈ Sε ⇔ x ∈ co (MεJ + s◦) for all s ∈ dom J∗,

and this is equivalent to

(22) 〈p, x〉 ≤ σMεJ (p) + σs◦ (p) ,

for all p ∈ X∗ and all s ∈ dom J∗ (or s ∈ R+ dom J∗).
Now, σs◦ (p) = 0 if p = αs for some α ≥ 0, and σs◦ (p) = +∞ in other

cases. Thus, (22) can be summarized in the following inequality:

(23) 〈p, x〉 ≤ σMεJ (p) + iR+ dom J∗ (p) for all p ∈ X∗.

Since
(
σMεJ + iR+ dom J∗

)
(0) = 0, we recognize in (23) the definition of

x ∈ ∂
(
σMεJ + iR+ dom J∗

)
(0) .

Step 3. It results from Step 1 and from the assumption made in the
theorem that the convex function iR+ dom J∗ is finite and (strongly) continuous
at a point where the other convex function σMεJ is finite. By a classical
calculus rule on the subdifferential sum of two convex functions ([13], [2],
and [25], for example), we have

Sε = ∂
(
σMεJ + iR+ dom J∗

)
(0) = ∂σMεJ (0) + ∂

(
iR+ dom J∗

)
(0) .

But x1 ∈ ∂σMεJ (0) exactly means that x1 ∈ co (MεJ), while

∂
(
iR+ dom J∗

)
(0) = N (dom J∗, 0) .
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As a final result,

Sε = co (MεJ) +N (dom J∗, 0) .

It then remains to apply (a) of Theorem 7, which expresses that

argmin (co J) =
⋂
ε>0

Sε.

(b) Following the assumption (21) on J, one easily checks that J∗ (p) is
finite whenever ‖p− s‖∗ ≤ α (ball of X∗ for the dual norm). Therefore,
part (b) of Theorem 7 applies. �

Comments

• If s is taken to be 0 in the assumption (21) of Theorem 8, the function
co J is indeed 0−coercive on X, so that N (dom J∗, 0) = {0} and

argmin (co J) =
⋂
ε>0

co (ε− argmin J) ,

a result we already noticed earlier.

• Beware that the formulae in Theorem 7 and Theorem 8 could just say,
like in Theorem 6, that ∅ = ∅!

• Theorem 6 and Theorem 8 (b) both apply to asymptotically epi-pointed
functions on R

n, but the resulting formulae on argmin (co J) are dif-
ferent; one could not get one from the other.

2.2.3. Various illustrative examples

Here we illustrate either Theorem 6 or Theorems 7–8 with various one-
dimensional examples and a two-dimensional one.

Example 1

J(x)

x

argmin J = {0}

J
∗(s)

+∞

s

N(dom J∗, 0) = R+

J
′

∞
(d)

d

argminJ ′
∞ = R+
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In this example, J is asymptotically epi-pointed. Both Theorem 6 and
Theorems 7-8 apply:

argmin (co J) = R+;

co (argmin J + argmin J ′
∞) = R+;⋂

ε>0

co [(ε− argmin J) +N(dom J∗, 0)]

=
⋂
ε>0

[co(ε− argmin J) +N(dom J∗, 0)] = R+.

Note that
⋂
ε>0

co (ε− argmin J) is just {0}.

Example 2

J(x)

x

J
∗(s)

s

J is not asymptotically epi-pointed. Since dom J∗={0}, N(dom J∗, 0)=R.
We have coJ ≡ 0 and :

argmin(co J) = R;

ε− argminJ +N(dom J∗, 0) = R for all ε > 0.

Here again, ⋂
ε>0

co (ε− argminJ) = {0}.

Example 3

J(x)

x

J
∗(s)

s
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For this case,

ε− argminJ +N(dom J∗, 0) = R for all ε > 0,

while: ⋂
ε>0

co (ε− argmin J) = ∅;
argmin J = ∅;
argmin(co J) = R.

Example 4

J(x)

x

J
∗(s)

s

We have co J ≡ 0 and:

co (ε− argmin J) = R for all ε > 0;
argmin J = ∅;
argmin(co J) = R.

In this particular instance, the contribution to the construction of argmin(co J)
of the behaviour of J “at infinity” is null.

Example 5

J(x)

x

J
∗(s)

s

+∞ +∞

J
′

∞
(d)

d

Here, J is asymptotically epi-pointed, but argminJ = ∅.
Also, N(dom J∗, 0) = R−, so that⋂

ε>0

co [(ε− argmin J) +N(dom J∗, 0)] =

=
⋂
ε>0

[co(ε− argminJ) +N(dom J∗, 0)] = ∅ = argmin(co J).
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Example 6 All the examples shown above are with continuous J ; but The-
orem 6 and Theorems 7–8 can apply to discontinuous J : to lower-semi-
continuous J for Theorem 6 (the lower-semicontinuity was a requirement
from the beginning in §2.2.1); to arbitrary discontinuous J for Theorems 7–8.
Here:

J(x)

x

J is not lower-semicontinuous;
argmin J = ∅;
0 ∈ int(dom J∗), so that N(dom J∗, 0) = {0};⋂
ε>0

co (ε− argmin J) = {0} = argmin(co J) indeed.

Example 7 (from [4]).

J ∗(u,v)

v

u

J is defined on R
2 by

J(x, y) =
√
x2 + exp (−y2).

It is not asymptotically epi-pointed on R
2. We easily see that J∗ is the

indicator function of the segment [−1, 1] × {0}, whence N(dom J∗, 0) is the
line {0} × R. The set of ε-minimizers of J is a little bit complicated to
delineate, but co J is fairly easy: co J(x, y) = |x| for (x, y) ∈ R

2.
Indeed, argmin J = ∅ and

{0} × R = argmin(co J) =
⋂
ε>0

co [ε− argmin J + {0} × R] .
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3. Applications to Hilbertian approximation-minimiza-
tion problems

3.1. Applications to two Hilbertian approximation problems

3.1.1.

Let (H, 〈·, ·〉) be a Hilbert space, equipped with the associated norm ‖ · ‖ =√〈·, ·〉, and let S be a nonempty closed subset ofH (nothing more is required
on S). Many problems in Approximation, Optimization, Optimal control,
etc. can be formulated in an abstract form like this: given a ∈ H , find
(if any!) x ∈ S closest to a (the proximity is understood in the sense of
the Hilbertian norm ‖ · ‖). For that, let us introduce some notations and
definitions:

• a ∈ H �→ dS(a) := inf{‖x− a‖ | x ∈ S}, the distance function to S;

• a ∈ H �→ PS(a) := {x ∈ S | dS(a) = ‖x − a‖}, the projection set-
valued mapping on S.

Since PS(a) might be empty, we also consider, for ε > 0,

(24) P ε
S(a) := {x ∈ S | ‖x− a‖ ≤ dS(a) + ε}.

This collection of sets will play a key-role below, as expected if we keep in
mind the general thread of the present paper.

One of our favorite functions in such a context is the Asplund func-
tion ϕS defined on H as follows:

(25) x ∈ H �→ ϕS(x) :=
1

2
[‖x‖2 − d2

S(x)].

This function, finite and continuous onH , turns out to be convex whatever S
be (convex or not, connected or not, discrete or not). If S is convex, a
classical result from Convex analysis in Hilbert spaces is that

(26) ∂ϕS(x) = {∇ϕS(x)} = {pS(x)}, for all x ∈ S,

where pS(x) stands here for the unique element in PS(x). The relation
between the assumption “PS(x) is single-valued for all x ∈ H” and the one
“S is convex” is partially surveyed in [18].

Extending (26) to the nonconvex case (i.e., when S is not necessarily
convex) is hopeless in general, especially if H is not finite-dimensional. One
simply has:

(27) coPS(x) ⊂ ∂ϕS(x) for all x ∈ H,

a weak result indeed if PS(x) is empty!
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There however is a result in Approximation theory, due to Berens

(see [5, 14]) which says the following:

(28) ∂ϕS(x) =
⋂
ε>0

coP ε
S(x) for all x ∈ H.

It is interesting to note, from the pedagogical viewpoint (paradox in infinite
dimensional Hilbert spaces), the following differences:

coPS(x) = co
⋂
ε>0

P ε
S(x) may be empty, while⋂

ε>0

coP ε
S(x) is (always) nonempty and weakly compact.

We shall interpret and recover (28) in the context of our results. For
that, given a fixed a ∈ H , define

a ∈ H �→ fS,a(x) :=

{
1
2
‖x− a‖2 if x ∈ S,

+∞ if not.

(fS,a = 1
2
‖ · −a‖2 + iS in short). This function fS,a is not convex (except

if S is convex), and we shall consider its relaxed form co fS,a = (fS,a)
∗∗. We

get some information about this relaxed function co fS,a since we are able to
calculate the Legendre-Fenchel conjugate of fS,a. Indeed, for p ∈ H ,

f ∗
S,a(p) = sup

x∈S

[
〈p, x〉 − 1

2
‖x− a‖2

]

=sup
x∈S

[
〈p+ a, x〉 − 1

2
‖x‖2

]
− 1

2
‖a‖2

... (some easy calculations)

=ϕS(p+ a) − 1

2
‖a‖2 (the ϕS function pops out!)

As a first consequence,

(29) ∂f ∗
S,a(0) = ∂ϕS(a).

Moreover,

• x ∈ argmin co fS,a ⇔ x ∈ ∂f ∗
S,a(0)

⇔ x ∈ ∂ϕS(a) (according to (29));

• x ∈ argmin co fS,a ⇔ x ∈ ⋂
ε>0

co (ε− argmin fS,a)

(according to Theorems 7-8).
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As a final result,

∂ϕS(a) =
⋂
ε>0

co

{
x ∈ S | 1

2
‖x− a‖2 ≤ 1

2
d2

S(a) + ε

}

=
⋂
α>0

co {x ∈ S | ‖x− a‖ ≤ dS(a) + α} ,

which is exactly Berens’ result (28).

3.1.2.

The situation considered here is parallel to the one in the previous subsec-
tion. Let S be a bounded closed subset of H . We define:

• a ∈ H �→ ΔS(a) := sup{‖x − a‖ | x ∈ S}, the farthest distance
function to S;

• a ∈ H �→ QS(a) := {x ∈ S | ΔS(a) = ‖x− a‖}, the farthest set-valued
mapping on S.

We also consider, for ε > 0,

(30) Qε
S(a) := {x ∈ S | ‖x− a‖ ≥ ΔS(a) − ε}.

Our favorite function in the present context is what we call the second
Asplund function ψS, defined on H as follows:

x ∈ H �→ ψS(x) :=
1

2

[
Δ2

S(x) − ‖x‖2
]
.

This function, finite and continuous on H , is convex whatever S be (the
function Δ2

S is strongly convex on H , with 1 as a modulus of strong con-
vexity). The relation between the assumption “QS(x) is single-valued for all
x ∈ H” and the one “S is a singleton” is surveyed in [19].

As a general rule, we have the inclusion

(31) −coQS(x) ⊂ ∂ψS(x) for all x ∈ H ;

the equality holds true when S is compact (and the closing operation is
unnecessary if H is finite-dimensional). The next result sharpens a similar
one proved in [19, Proposition 3.5].
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Proposition 9 For all a ∈ H,

(32) ∂ψS(a) = −
⋂
ε>0

coQε
S(a),

and

(33) ∂
(1

2
Δ2

S

)
(a) = a−

⋂
ε>0

coQε
S(a).

Proof. Given a ∈ H , define

x ∈ H �→ gS,a(x) :=

{
−1

2
‖x+ a‖2 if x ∈ −S,

+∞ if not.

(gS,a = −1
2
‖ · +a‖2 + i−S in short.)

The function gS,a is not convex (except in the very particular case where S
is a singleton); we therefore consider its relaxed version co gS,a = (gS,a)

∗∗.
More is known about this relaxed form via the Legendre-Fenchel con-
jugate of gS,a. Actually, for p ∈ H ,

g∗S,a(p) = sup
x∈−S

[
〈p, x〉 +

1

2
‖x+ a‖2

]

= sup
x∈−S

[
〈p+ a, x〉 +

1

2
‖x‖2

]
+

1

2
‖a‖2

... (some easy calculations)

= ψS(p+ a) +
1

2
‖a‖2.

This conjugacy result is one reason why the function ψS was introduced.
The convexity of ψS is easily derived since ψS = g∗S,0.

As a consequence of the result above, we have:

(34) ∂g∗S,a(0) = ∂ψS(a).

Now,

• x ∈ argmin co gS,a ⇔ x ∈ ∂g∗S,a(0)
⇔ x ∈ ∂ψS(a) (according to (34));

• x ∈ argmin co gS,a ⇔ x ∈ ⋂
ε>0

co (ε− argmin gS,a)

(according to Theorems 7-8).
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To get the formula (32), it remains to observe that:

ε− argmin gS,a = −
{
x ∈ S

∣∣ 1

2
‖x− a‖2 ≥ 1

2
Δ2

S(a) − ε
}

;

hence ⋂
ε>0

co

{
x ∈ S | 1

2
‖x− a‖2 ≥ 1

2
Δ2

S(a) − ε

}
=

=
⋂
α>0

co {x ∈ S | ‖x− a‖ ≥ ΔS(a) − α}.

Finally, a standard subdifferential calculus rule on the sum of two convex
functions gives:

∂
(1

2
Δ2

S

)
(a) = ∂ψS(a) + a,

which is exactly (33). �

3.2. Extension to a general framework

The two examples in the previous subsection 3.1 can be cast in the same
general framework. Still in a Hilbert space setting (H, 〈·, ·〉), consider⎧⎨

⎩
a function f : H → R ∪ {+∞},
a nonempty subset S of H,
an element a ∈ H.

With these data is associated the following variational problem:

(P) Minimize f(x) − 〈a, x〉 over S.

We assume that f is finite at some point of S and that the “tilted” version
f − 〈a, ·〉 of f is bounded from below on S. With the notations used in
section 2, X = H and J = f + iS − 〈a, ·〉. We denote by Mε(f, S, a) the set
of ε-minimizers in (P), just M(f, S, a) for the set of exact minimizers.

As one can imagine, many variational problems can be moulded in the
(P)-format. For example, we recover the case treated in Subsection 3.1.1 by
considering

f(x) :=
1

2
‖x‖2 +

1

2
‖a‖2

(so that f + iS − 〈a, ·〉 is what we called fS,a there), while the case treated
in Subsection 3.1.2 corresponds to

f(x) := −1

2
‖x‖2 − 1

2
‖a‖2
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and S changed into −S (so that f + i−S −〈a, ·〉 is what we called gS,a there).
Even some variational principles are formulated in the (P) format; for ex-
ample, the Stegall minimization principle [8, p. 43] says the following:
assuming that f is lower-semicontinuous and bounded from below on S,
and that S is bounded and closed, there exists a dense set of points a in H
having the property that M(f, S, a) is single-valued.

Since co (f + iS − 〈a, ·〉) is just co (f + iS) − 〈a, ·〉 (one of the rare cases
where the co operation behaves nicely with the addition), the relaxed version
of (P) is as follows:

(Prelax ) Minimize co (f + iS) (x) − 〈a, x〉 over H.

We correspondingly denote by M relax(f, S, a) the solution set in (Prelax).
In everything linking both problems (P) and (Prelax), a key-role will be
played by the function

(35) θS := (f + iS)∗,

a generalization of Asplund’s functions in subsections 3.1.1 and 3.1.2. To
begin with, it is easy to observe that

(36) coM(f, S, a) ⊂M relax(f, S, a) = ∂θS(a).

Equality holds true in (36) if some topological properties are imposed on f
and S.

Proposition 10 Assume that S is compact and that f is finite and lower-
semicontinuous on S. Then, for all a ∈ H, we have:

(37) ∅ �= ∂θS(a) = M relax(f, S, a) = coM(f, S, a).

Proof. Just observe that θS can be put in the sup form as

θS = sup
x∈S

[〈x, ·〉 − f(x)] ,

and apply the (most) general formula on the subdifferential of the supremum
of a collection of convex functions [25, p. 97]. �

With the inclusion (36) we also deduce the following:

Proposition 11 Assume θS is Gâteaux-differentiable on H. Then, for
any a ∈ H, M(f, S, a) is either empty or reduces to a singleton. If, moreover,
S is compact and f is finite and lower-semicontinuous on S, then M(f, S, a)
is a singleton for all a ∈ H.
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We now formulate a general result allowing to recover M relax(f, S, a)
by “filtering” the sets of ε-minimizers Mε(f, S, a), ε > 0. This is just an
application of Theorems 7-8.

Proposition 12 Assume that θS is finite-valued on H (or just R+ dom θS

= H). Then, for all a ∈ H,

(38) M relax(f, S, a) =
⋂
ε>0

coMε(f, S, a).
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