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Abstract

The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measure-

ments of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal

resolution. Given SWOT like synthetic data, hierarchical-complexity forward flow models are revisited,

then few inverse formulations allowing to infer the river low flow bathymetry, roughness and discharge

(A0, K, Q) are derived and assessed. The concept of an effective low flow bathymetry A0 (the real one

being never observed), hence an effective river dynamics description, is introduced. The few inverse

models elaborated for inferring (A0, K, Q) are analyzed in two contexts: 1) remotely sensed observations

of the water surface (surface elevation, width and slope) only are available ; 2) one additional water

depth measurement (or estimate) is available. The inverse models elaborated are independent of data

acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state

river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood

on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated

that the most complete shallow-water like model which allows to separate the roughness and bathymetry

terms is the so-called low Froude model. In Case 1), the resulting RMSE on the inferred discharges are

on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse

methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient

K includes the measurement errors and the misfit of physics between the real flow and the inverse models

hypothesis; the later neglecting the unobserved temporal variations of the flow and the inertia effects.

A compensation phenomena between the identified values of K and the unobserved bathymetry A0 is

highlighted, while the present inverse models lead to an effective river dynamics model accurate in the

range of the discharge variability observed. In Case 2), the effective bathymetry profile for 80 km of the

Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs

and also discharge can be inferred. Finally, defining river reaches from the observation grid averages the

river properties in each reach, hence tends to smooth the hydraulic variability.

Keywords: River hydraulics, inverse problem, effective bathymetry, bathymetry, discharge, SWOT, equifi-
nality.

1 Context of the issue

Although the discharge of stream and rivers is an important component of the water cycle (Oki and Kanae
(2006)), less than 60% of the runoff is monitored at the inflow point in the oceans and the distribution of
runoff within the continents is even less monitored (Bjerklie et al. (2003)). Moreover the number of in-situ
gages is declining in many areas since the 1980s and their repartition on earth is disparate (see e.g. Bjerklie
et al. (2005)). Our knowledge of the water cycle remains limited but current remote sensing techniques led to
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interesting results, such as the gravity field of water storage change via GRACE (Han et al. (2005); Munier
et al. (2012)), surface water elevations via altimetry (Frappart et al. (2006)), or radar measurements from the
Shuttle Radar Topography Mission (Jung et al. (2010)). The future Surface Water and Ocean Topography
(SWOT) mission with a swath mapping radar interferometer would provide new measurements of inland
water surface elevation (WSE) for rivers, wetlands and reservoirs. Maps of water elevations are expected at
a resolution of 100m with a centimetric vertical accuracy when averaged over 1km2 (Rodriguez (2012)). But
the highlight of SWOT will be its almost global coverage and temporal revisits on the order of 1 to 4 times
per 22 − days repeat cycle. These data will offer possibilities to better characterize the spatial and temporal
variabilities of inland water surfaces (e.g. Biancamaria et al. (2010)).

Estimating river discharge is not straightforward. As a good quality rating curve is needed to estimate
discharge accurately from in-situ water depth records, adequate methods are required to exploit the informa-
tive content of remotely sensed hydraulic information. Based on hydraulic geometry relationships, general
statistical relationships between air-space borne observations of river characteristics and discharge were devel-
oped from Gauckler–Manning–Strickler equation by Bjerklie et al. (2003, 2005) on a large sample of rivers.
Note that all of those methods also rely on data about the depth and/or cross-sectional velocity profiles.
Recently, Birkinshaw et al. (2014) use the equations from Bjerklie et al. (2003), water depth estimated from
altimetric data ERS-2 and ENVISAT and water surface width from Landsat imagery to estimate discharge
on the Mekong River. Statistical approaches based on remotely sensed observations of rivers are pertinent;
nevertheless satellite measurements such as SWOT ones will not provide information about the key param-
eters that river bathymetry and roughness are. For example, with the GLUE method, Aronica et al. (1998)
highlight the equifinality and uncertainty related to the calibration of roughness for a distributed model of
a flood with limited data. Generally, the determination of the parameters embedded in open channel flow
equations is not straightforward and it is still an opened and active research topic. Several studies tested
the feasibility of identifying bathymetry and/or discharge with various density of observations, unknown
parameters, model complexity and inverse methods.

Roux and Dartus (2005); Roux (2004) on synthetic test cases show the potential of water surface width
observation to characterize flood hydrograph, with an a priori bathymetry. Roux and Dartus (2006) estimated
a synthetic flood hydrograph (Nash ∼ 0.9) by minimizing the distance between 1D shallow-water (SW)
model outputs and flood extents observations rather dense in time, assuming the channel geometry and flow
resistance variables are known. Based on 2D SW models, variational methods allowing state variables and/or
model parameters identification is proposed in Bélanger and Vincent (2005); Honnorat et al. (2006); Honnorat
(2007). For example, this method is tested on the Pearl River (China) where upstream and downstream
boundary conditions on water levels can be identified with water levels measured at gauge stations, Honnorat
et al. (2006); the river bathymetry and roughness are supposed to be known. Lai and Monnier (2009) estimate
the inflow discharge and the roughness for synthetic 2D flood plain flows and the use of different densities of
spatially distributed water level observations (snapshot of the flood plain). The inverse mathematical model
is based on the 2D SW equations and variational data assimilation combining the partial snaphot images
and partial time series of water levels at one gauge station. This variational data assimilation framework is
applied to the Moselle River in the case of an flood event Hostache et al. (2010). Also, it is demonstrated in
Hostache et al. (2010) that the amount of hydraulic information contained within partial in-situ water depth
observations and the flood plain SAR image may be insufficient to identify the inflow discharge.

An essential question is the estimation of the bathymetry for the main channel of rivers which is hardly
measurable from space or airborne. Durand et al. (2010) estimate the bathymetry and discharge of the Ohio
river (mean RMSE ∼ 10.9% over one year) through an optimization in the least square sense based on
Gauckler–Manning–Strickler’s equation with synthetic SWOT measurements. The estimate is based on the
conservation of discharge between two reaches and is applicable only if slope variability is significant between
two reaches; the river roughness is supposed to be known. Biancamaria et al. (2011) improve the estimation
of the bathymetry and discharge of an Arctic river through the assimilation of synthetic SWOT observations,
assuming that river bathymetry and roughness are known. In Gessese et al. (2011); Gessese (2013) basic
bathymetries (eg a single smooth bump) are identified from extremely dense measurements of water levels by
inverting an explicit time-step scheme, while the roughness is supposed to be known. For the same kind of
bathymetries, an analytical expression of the bathymetry is proposed in Gessese et al. (2013) in the case of
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one in-situ observation (plus the extremely high-resolution water surface (~m) observations). This original
analytical approach is revisited and re-analyzed in the present study.

Yoon et al. (2012) use a 1D simplified SW model forced with input discharges from a rainfall runoff model.
They assimilate synthetic observations corresponding to 8 22-days cycles of SWOT with an ensemble Kalman
filter. The discharge estimation over the Ohio river basin is improved (mean RMSE ∼ 10.5%). They assume
the cross section is rectangular and the roughness coefficient are known a priori. Honnorat et al. (2009)
demonstrate the feasibility of identifying bathymetry, roughness, surface velocity - mean velocity ratio and
inflow discharge in a canal by assimilating particle trajectories at the water surface (Lagrangian data); one
of the interesting point is the effective bathymetry highlighted, here in the case of a 3D flow over a weir
“viewed” by a 2D shallow water model (Honnorat et al. (2010)).

From real inundation extent observations, Roux and Dartus (2008) with a probabilistic method and
uncertainty analysis (GSA-GLUE), identify parameters sets composed of river roughness, bathymetry and
downstream discharge. Plausible parameters sets are those producing the best likelihoods values when com-
paring simulated (with 1D permanent SW equations) and observed flow top width. This method is tested for
flood events on a 1.5 km reach of a small river; parameter ranges must be defined a priori. Negrel et al. (2011)
propose a method for large rivers based on Gauckler–Manning–Strickler equation and on the depth averaged
velocity profile. This profile is derived from water surface velocities estimations hence somehow imposing
the roughness coefficient. The surface velocities are obtained from SAR measurements (e.g. Romeiser et al.
(2007)), or more recently from MODIS data with in situ calibration (Tarpanelli et al. (2013)). The discharge
is inferred from surface observations on the Amazon in the least square sense (the best RMSE obtained is
18% for an in-bank flood but is inefficient for another gauging station as for large discharge values). Given
SWOT observables, i.e. river surface elevation, width and slope, Durand et al. (2014) propose an inference
based on reach averaged Gauckler–Manning–Strickler equation and mass conservation integrated in time
between river snapshots. The latter integration introduces a scaling between the data acquisition interval
and the roughness coefficient as it is shown in the present study. Then, a Bayesian MCMC method is used
to compute a posteriori distribution functions (requiring an hypothesis on the prior distribution function).
The algorithm is tested with three twin experiments for one in bank and one out-of-bank flood events on
the Severn river in the UK, for three reaches of about 7 km. The sensitivity of the results to the first guess
choice is not investigated.

In the present paper, the identifiability of flow controls as a triplet (K, b,Q(t)) formed by river rough-
ness, bathymetry and discharge from SWOT like measurements is investigated into details; resolutions are
performed with simple, hence well controlled inverse methods. The identification of river properties from
remotely sensed observations involves a trade-off between inverse model complexity and data informative
content, density and accuracy. Somehow, the question examined in the present paper can be formulated as
follows: in the SWOT context, which models (direct and inverse) complexity is adapted for retrieving the
(bathymetry, roughness) pair, or effective ones, and finally the discharge ? This question is of paramount
importance to elaborate reliable river dynamic models. First the forward models are re-derived following
a decreasing complexity flow equations in the SWOT context, starting from the classical 1D Saint-Venant
equations; next the corresponding inverse model formulations are addressed. The river sections/reaches are
defined from the observation grid that is given (e.g. 1 km reach length). It is shown that the most complete
physical model which allows to separate the bathymetry from the roughness coefficient is the low Froude
model (the so called zero inertia SW in Gessese et al. (2013)). Inverse models built in this study tackle the
question of flow representation given the scale of observation grid. Discharge identifications are performed
for various flow configurations and in SWOT context. Moreover, the reliability of the effective bathymetry
inferred, then the resulting (bathymetry-friction) pairs are analyzed and assessed on a large panel of synthetic
river cases but also on a real test case on a flood hydrograph.

The paper is structured as follows. The forward models of decreasing complexity describing river flows in
SWOT context are presented in Section 2. In Section 3, the corresponding inverse problems are investigated.
The revisiting frequency and flow dynamics relationship is analyzed; the question of equifinality is also
addressed. Section 4 introduces the twin experiments on a large panel of rivers and a real test case (Garonne
river) characterized by large spatio-temporal variabilities. The generation of SWOT like data and the methods
for solving the inverse problems are detailed. Results and discussions are exposed in Section 5 both for the
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large panel of synthetic rivers and the Garonne river. First the inversion of the triplet is performed; a rerun
of the discharge is computed given the two other identified parameters. After that the bathymetry value is
retrieved from its explicit expression. An analysis of the impact of the physical misfit between the observed
flow and the inverse model physical assumptions is presented along with a sensitivity analysis to measurement
errors. Sensitivity of the inverse models with respect to the first guess is assessed. Few enriched models and
their inversions are presented in the annex (Section 9).

2 Forward Modeling

In this section, the forward flow models and physical hypothesis made are presented. Models of decreasing
physical complexity are considered in view to maximize the benefit of river surface observations within inverse
approaches.

2.1 Open channel flows representation

Open channel flows such as rivers are commonly described with depth integrated Saint-Venant equations (see
e.g.Carlier (1982); Chow (1959)). The 1D Saint-Venant equations with no lateral inflows write as follows:

∂tA+ ∂xQ = qL (2.1)

∂tQ+ ∂x

(

Q2
A

)

+ gA (∂xZ + J) = 0 (2.2)

A is the wetted surface, i.e. the cross sectional surface occupied by the fluid [m2], Q is the discharge [m3.s−1],
g is the acceleration of gravity [m.s−2], Z is the free surface elevation [m], J is the energy slope [m.m−1], also
called linear head loss. V is the mean cross sectional velocity [m.s−1], x is the curvilinear abscissa [m] over the
domain D and t the time [s]. The linear head loss is commonly expressed with Gauckler–Manning–Strickler
formula: J = Q|Q|

D2 = Q|Q|

K2A2R
4/3

h

. D is the conveyance capacity of the channel, Rh is the hydraulic radius

defined as the ratio between wetted surface and wetted perimeter, K is the Strickler roughness coefficient
[m1/3.s−1]. For 1D models, channel geometry is represented through a succession of cross sections referenced
along the channel. This kind of models gives the evolution in time of the discharge through each cross section
(or the mean velocity). In this study we consider no lateral inflows.

2.2 Gradually varied steady state flows

The time scale of observations prevents to observe fast temporal dynamics; also it is demonstrated in Section
3.1 that one cannot a-priori link the observation dynamics with flow dynamics, otherwise an unphysical
meaning is introduced on the friction parameter K. Thus we assume permanent states of rivers at each
observation time. For permanent flows, the above system of partial differential equations (2.1) and (2.2)
reduces to:

∂xQ = 0 (2.3)

∂x

(

Q2
A

)

+ gA (∂xZ + J) = 0 (2.4)

This system rewrites:

∂xQ = 0 (2.5)

∂xh =
I − J

1 − Fr2
(2.6)

4



With h the water mean depth accounted from river bed [m], I = −∂xb is river bed slope [m.m−1], J is
the energy slope [m.m−1] calculated with Gauckler–Manning–Strickler formula, Fr is the Froude number
Fr2 = Q2w

gA3 with w the water surface width [m]. Consider a river geometry with rectangular cross sections
given by b(x) the river bed elevation, and w(x) the water surface width. Under the hypothesis of a wide
rectangular cross section such that Rh ≈ h, the permanent shallow water equation (2.6) writes:

∂xQ = 0 (2.7)

∂xh =
−∂xb− Q|Q|

K2w2h10/3

1 − Q2

gw2h3

(2.8)

2.3 Low Froude flow model

In all the forthcoming inverse modeling approaches, an important simplified model is the so-called “Low
Froude model”, which basically neglects the inertia term (typically Fr < 0.3 leads to (1 − Fr2) ∼ 1 at 10%
error). Under this low Froude assumption, and for permanent flows, the system (2.1 and 2.2) reduces to:

∂xQ = 0 (2.9)

∂xh = I − J (2.10)

Under the hypothesis of a wide rectangular cross section such that Rh ≈ h, this system writes:

∂xQ = 0 (2.11)

∂xh = −∂xb− Q |Q|
K2w2h10/3

(2.12)

The systems of equations (2.7) and (2.8) or (2.11) and (2.12) are first order differential equations in x, so
one boundary condition is necessary for each variable Q and h. When the flow is sub-critical (Fr2 < 1),
a downstream boundary condition is needed, i.e. at the outlet of the domain. A high-order Runge-Kutta
numerical scheme is a good candidate to solve accurately these systems of differential equations. Remark
that the low Froude model has been used and inverted in Gessese et al. (2013) (and called the zero inertia
shallow water equation).

3 Inverse modeling methods and effective bathymetry

The inverse models derived in this study aim at inferring the river bathymetry, the roughness coefficient and
the discharge, given SWOT like data. Based on the decreasing complexity models presented in the previous
section, the investigation of different inverse models is done. Two observation contexts are examined: case 1)
only remotely sensed data of water surface elevation, width and slope are available; case 2) one extra in-situ
depth measurement is available. In this section, few inverse formulations are elaborated and analyzed in
these two cases, then these formulations are assessed in next section.

First, an important remark preventing to straightforwardly link the flow dynamics to the data acquisition
dynamics is highlighted. Next an inverse model aiming at inferring the three parameters (A0,K,Q), namely
low flow bathymetry, roughness and discharge, is elaborated and discussed in Case 1). The concept of an
effective bathymetry is introduced. In Case 2), it is demonstrated that the most complete physical model
which allows to separate the bathymetry variable from the friction coefficient is the so-called low Froude
model (Fr2 << 1), details are presented in Annex 9.2. Then, the corresponding explicit expression of river
bathymetry, given the SWOT like river surface observation at one time and one in-situ measurement, is
derived in details, with the corresponding error estimates.
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Given the underlying bathymetry A0, real or effective one, never observed (corresponding to the lowest
flow observed), two inverse formulations leading to the pair (K,Q) inference are detailed.

In other respect, a short analysis demonstrates the potential equifinality problems encountered, while the
different order of magnitudes of the models sensitivities are highlighted.

3.1 Revisiting frequency and flow dynamics relationship

The data acquisition process considered in the forthcoming inversion algorithms is presented. First let us recall
that the time scale of the equations cannot be linked a-priori to the time interval of data acquisition. Indeed,
the conservation equations with a temporal variation of mass balance and the Gauckler–Manning–Strickler’s
equation applied to water surface slope for the momentum are:

{

∂xQ+ ∂tA = 0

Q = KAR
2/3

h

√
S

(3.1)

with S the local water surface slope. As stated in Section 2.2 space measurements only provide observations
of rivers flow at a given time. Let us set the dimensionless time t = T ∗t̄, t is the physical time in (s) and
T ∗in (s) is the characteristic time scale of the flow dynamics; and t is the dimensionless time. Substituting
the momentum equation into the mass equation and assuming K is constant in space, see (3.1), gives :

∂tA+ T ∗K∂x

(

AR
2/3

h

√
S
)

= 0 (3.2)

This equation highlights the dependency of the Strickler coefficient K to the characteristics time scale T ∗.
This simple remark prevents to consider the unsteady mass equation integrated over satellite overpass time
laps; in such a case it would introduce on roughness coefficient a scaling related to the data acquisition
interval which is meaningless.

3.2 Retrieving the triplet (A0, K, Q)

SWOT observables will be spatially distributed measurements of river surface elevation Z, width w and slope
S with temporal revisits. Under the assumption that the flow is permanent uniform per “sections”, inferring
unobservables flow controls and discharge reduces to the unobservable triplet (A0,K,Q) identification. In
this context, the inverse models to be solved are derived.

3.2.1 The basic inverse model: permanent uniform flow per section

For each reach/sections, we assume the flow is permanent and uniform; hence the equations are:
{

∂xQ = 0

Q = KAR
2/3

h

√
S

(3.3)

We assume the roughness coefficient K to be constant both in space and time. We set :

φ = AR
2/3

h

√
S (3.4)

As a matter of facts, the spatial discretization appears to be imposed by the observation grid, i.e. the spatial
resolution of the remotely sensed observations. In discrete form, and following river discretization into reaches
as showed in Figure 1, we seek to solve the following system :

{

Qr1,p = ... = QNR,p

Qr,p = K.φr,p = KA
5/3

r,pw
−2/3

r,p

√

Sr,p

∀r ∈ [1..Nr] ,∀p ∈ [1..Np] (3.5)

with r being the reach number and Nr the total number of reaches, p the satellite pass number and Np the
total number of satellite observation considered in time. Each reach r at observation time p, is characterized
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Figure 1: Inverse model discretization. (left) The spatial grid of observations is imposed by the instruments.
The hydraulic sections-reaches (r) grid fits the observation grid. (right) Section view. Time overpasses are
ordered by increasing flow height. The lower wetted-section A0 is not measured.

by its water surface slope Sr,p , width wr,p and its cross sectional wetted area Ar,p. There are several ways
to write and solve this system and two of them are studied below. They will be studied on a large sample of
synthetic river geometries and on the Garonne River downstream Toulouse in the next sections.

3.2.2 Trapezoidal profiles

Among all available observations of a river in time, A0 denotes the unobserved wetted area below the lowest
flow observation, see Figure 1 (right). All other observations being for higher flow conditions, the cross-
sectional area of a reach is given by:

Ar,p(h) = A0,r + δAr,p = A0,r +
ˆ hNp

h0

wr(h′)dh′ (3.6)

Since the different water surface elevations and width will be observed, trapezoidal areas can be calculated
between the lowest and the highest water surface elevations. Then, the δA variation is approximated using
trapezoidal integration over the time series of measurements as proposed by Durand et al. (2014):

ˆ ht+1

ht

wr(h′)dh′ ≈ wr(t+ 1) + wr(t)
2

[h(t+ 1) − h(t)] (3.7)

and,

Rh =
A

Perimeter
=

(A0(r) + δA(r, p))
(w0 + 2h0)(r) + Pobs(r, p)

∼ (A0(r) + δA(r, p)).(wobs)−1 (3.8)

For rivers with a large width-to-depth ratio, the width is a good approximation of the wetted perimeter (see
e.g. Strelkoff and Clemmens (2000)). Finally, the inverse model to be solved writes:
✎

✍

☞

✌

{

Q1,p = ... = QNR,p

Qr,p −K(A0,r + δAr,p)5/3w
−2/3

r,p

√

Sr,p = 0
∀r ∈ [1..NR] ,∀p ∈ [1..NP ] (3.9)

For more than one river observation in time, p > 1, recall that two contexts are studied in this paper: 1)
remotely sensed observations of the water surface (surface elevation, width and slope) only are available ; 2)
one additional water depth measurement (or estimate) is available. In case 1) the unknowns are Qr,p, K and
A0,r for r ∈ [1..Nr] , p ∈ [1..Np] and in case 2), i.e. given A0,r and Ar,p for all r, p, the unknowns are Qr,p and
K and there are in both cases Nr ×Np equations. If the discharge is supposed non constant in space (hence
Qr,p), then this is an under-determined system with Nr × (Np + 1) + 1 unknowns (respectively Nr ×Np + 1
unknowns in case 2)). If the discharge is supposed constant in space then this is an over-determined system
with Nr + 1 + Np unknowns (respectively Np + 1 unknowns in case 2)). In each case the solution will be
analyzed in a general least square sense in next sections. The assumption of constant Q in space might be
made or not depending on the flow dynamics observed.
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Remark 1: The system (3.9) is multilinear with respect to the unknowns Q
3/5

r,p, K3/5 and A0,r. For one
river snapshot, i.e. one satellite observation in time, p = 1, and given A0 for each reach, this system is
similar to Nr encoding public-private key type equations. Thus the present inverse problem cannot be
solved for one river snapshot only.

Remark 2: By substituting the second equation of system (3.9) into the first one, the constant value K
simplifies, and the system reduces to Nr equality constraints between the terms φr,p. Hence in such a
form the roughness coefficient K cannot be inferred.

Remark 3: Following Remark 2, if the inertia term is added to the momentum equation (see Equation
(2.8)), it is possible to use the mass conservation between two reaches and express the roughness in
function of river surface width and slope. Nevertheless, in that case, the roughness also depends on
∂xh which is in practice not possible to estimate as detailed in Annex 9.1 since it requires unrealistic
observation accuracy of water depth.

3.3 Retrieving the pair (K, Q) given the underlying geometry A0

In this section, the low flow wetted areas A0,r are supposed to be given for each reach r ∈ [1..Nr]. These
values may be estimated either from empirical relationships based on drainage area and rainfall statistics, or
from the inversion method presented in Section (3.5). In that case, for each overpass p and each reach r, the
wetted cross sectional area Ar,p is estimated given the river surface elevation and width measurements (cf.
Fig. 1). The more measurements for varying flow conditions being available, the best the approximation of
reach cross-sections is. The system to be inverted can be formulated in different ways. Below are presented
the two inverse formulations stated and analyzed later. For all the systems, more than one satellite pass is
considered i.e. p > 1.

3.3.1 Formulation I: (K,Q) constant in space

The unknown roughness K is supposed constant in time and space, the unknown discharge Qp is supposed
constant in space, then (3.9) writes as an over-determined set of Nr ×Np equations with Np + 1 unknowns.
Unfortunately, this discrete formulation of the inverse problem leads to a severe ill-posed problem very
difficult to solve. Indeed in practice, φr,p can be largely variable in space because of observation errors or
misfit between inverse model physics and observed physics (inertia terms, non permanent flow). Drawing
on this, the formulation that is used for flow parameter identification on a large sample of synthetic river
geometries consists in taking the average of φr,p in space for each permanent state p. Then the system (3.9)
writes:

M1X1 =









− 1
Nr

∑Nr

r=r1
φr,1 1 0 . . . 0

...
. . .

− 1
Nr

∑Nr

r=r1
φr,Np

0 0 . . . 1



















K
Q1

...
QNp











= 0 (3.10)

Hence it is a under-determined system with Np equations and Np + 1 unknowns (the components of X1).
Recall that: φr,p = A

5/3
r,p w

−2/3

r,p

√

Sr,p . This system will be assessed on large number of synthetic river flows
in next section.

Remark 4: There is a slight difference of accuracy between averaging φr,p in space or to let Q vary in space
for identification and averaging Q afterwards. So the choice is made to let Q being variable in space
for the identification of unsteady river flows - with spatial variations of discharge Q.

3.3.2 Formulation II: Q variable in space

Given a river snapshot, if rapidly varied flow occurs significant spatial variations of discharge can be induced
even at relatively small spatial scales. It is the case on the Garonne river test case studied later (80 km of
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Figure 2: Forward problem, response surface of Gauckler–Manning–Strickler equation (colored surface) and
best discharge estimation (transparent red plane) for (left) one and (right) three permanent states of a reach
of the Garonne river test case

the Garonne river downstream Toulouse, about 150 m wide). So that, below, the unknown discharge Q is
supposed variable in space, the unknown roughness K is still supposed constant in time and space. Then,
the system (3.9) writes:

M2X2 =



























−φ1,1 1 0 · · · 0
...

. . .
−φ1,Np

...
...

...
−φNr,1

...
. . .

−φNr,Np
0 · · · 0 1















































K
Qr1,1

...
Qr1,Np

...QNr,1

QNr,Np





















= 0 (3.11)

It is an under-determined system with Nr ×Np equations with Nr ×Np + 1 unknowns. Recall that: φr,p =
A

5/3
r,p w

−2/3

r,p

√

Sr,p. This system will be assessed on the Garonne River in Section 5.

3.4 Equifinality problem and sensitivity w.r.t. each unknown

The present section aims at showing the potential equifinality problem in terms of roughness-geometry pairs
(K,A), and also highlighting the different sensitivities of each parameter in the inverse problem. The response
surface of Gauckler–Manning–Strickler’s equation in terms of discharge is examined for one snapshot and
three snapshots of the Garonne River, see Fig. 2. The relative error on discharge (averaged in time for
the three daily discharges) is presented in figure 2, the intersection of the colored response surface with the
transparent red plane represents all the pairs (K,A) producing the right value of discharge. The intersection
line represents the infinity of (K,A) solutions for a given value of discharge Q. This plot illustrates the
equifinality problem between roughness and geometry for one overpass.

Next, the sensitivity analysis of the inverse problem is examined through the normal equations of system
(3.9), M3 being the matrix of the system with the unknowns (K,Q1, Q2). For the sake of simplicity we
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consider the case p = 2 river observations in time and Nr reaches, the normal equations relative to the
general expression of the inversion of the pair (K,Q) writes:

MT
3 M3X =





∑

r,p φ
2
r,p −∑r φr,1 −∑r φr,2

−
∑

r φr,1 Nr 0
−∑r φr,2 0 Nr









K
Q1

Q2



 (3.12)

Let us consider the Garonne river profile presented in Section 5. The Singular Value Decomposition defined
by: MT

3 M3 = USV with unitary matrices U and V and the diagonal matrix S containing the singular
values, is computed. Then, the singular value corresponding to the roughness parameter K is three orders
of magnitude greater than those corresponding to the discharge values Q1 and Q2. This simple example
illustrates the dominating sensitivities with respect to K observed in all numerical inversions performed in
the present article. It also corroborates that the forthcoming error obtained on the K value inferred, contains
the misfit between the physical assumptions made in the inverse models and the real flow observed (plus the
measurements errors).

3.5 Low Froude case and effective bathymetry identification

We have shown in Section 3.4 that the pair roughness-geometry (K,A) may be impossible to invert for one
overpass only (p = 1). Also it will be shown in next sections that it may be difficult to invert accurately
even with few overpasses. Hence, the definition of a potential model decoupling the friction term and the
bathymetry may be interesting in view to invert the pair in two sequential steps. If considering the steady-
state 1D shallow equation with rectangular cross-section, the shallow flow equations write as Equations (9.8)
and (9.9). Then, after few simplifications, see details presented in Annex 9.3, and by injecting the discharge
expression into the mass equation, a standard second order one-equation model in depth h (lubrication type
model) is obtained, see Equation (9.7). Next, the most complete corresponding equation which make appear
the bathymetry term independently of the friction term is the low Froude model presented in Equation (2.12).
Hence if the low Froude assumption holds (Fr2 small compared to 1), then this equation should allow to
invert the bathymetry independently of the friction term. As demonstrated below, this possibility can be
very interesting in practice since it leads at the end to the inversion of (A0,K,Q) more accurately.

The idea of bathymetry identification without the roughness coefficient and based on vanishing advection
terms has been introduced by Gessese et al. (2013). The authors called the equations “zero-inertia” shallow
water approximation (the present so-called low Froude model), and they obtained directly Equation (3.19)
below, which allows to calculate explicitly the bed bathymetry from free surface elevation data. Recall that
in Gessese et al. (2013), the inverse problem is solved in two space dimensions using the method of the
characteristics. The test cases considered are basic, with very smooth geometry and very dense observations
of water surface elevation. Moreover, the free surface is generated with a model which also neglects inertia
terms.

In Annex 9.3, we show that the second order Equation (9.7) allows to infer iteratively the bathymetry
and the friction but it would require an unrealistic accuracy on the slope data (the “initial condition” must
include the depth derivative). Equation (9.7) demonstrates that the most complete model in h which make
appear the bathymetry term independently of the friction term is the low Froude model, Equation (2.12).

In the present section, we invert explicitly the bathymetry from Equation (2.12), as it has been done in
Gessese (2013); in addition we derive an explicit error quantification in function of SWOT like observations
errors.

In the next sections, we use this inverse model in a SWOT data context, with real like geometry data, by
quantifying errors, and by analyzing numerically the method reliability depending on the hypothesis. The
later being: Fr2 values compared to 1 and the stationary misfit of the observed flow. These analysis are
performed on synthetic test cases designed to be fully representative of real one-dimensional flows (with no
lateral inflow), and real data (Garonne river).

3.5.1 Mathematical explicit inversion

The mono dimensional forward problem for wide rectangular cross sections writes:
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∂xQ = 0 (3.13)

∂xZ +
Q |Q|

K2w2h10/3
= 0 (3.14)

With h(x) the water depth and b(x) the river bed elevation, x being the spatial coordinate. And in function
of the free surface elevation Z which is observable it becomes:

Q |Q| = K2w2h
10/3S (3.15)

With slope S = −∂xZ the free surface slope.
Assumption. The free surface is assumed monotonous ∂xZ < 0 ans so S > 0, flow goes from left to right

so Q > 0 .

Q = Kwh
5/3S

1/2 (3.16)

Deriving lubrication-like equations, the momentum equation (3.14) is substituted into the mass equation
(3.13):

∂xQ = ∂x

(

Kwh
5/3S

1/2

)

= 0 (3.17)

Under the hypothesis of a constant roughness coefficient K in space, it comes:

5
3
S

1/2wh
2/3∂xh+ wh

5/3∂xS
1/2 + S

1/2h
5/3∂xw = 0 (3.18)

So:

∂xh

h
= −3

5

(

∂xS
1/2

S1/2
+
∂xw

w

)

(3.19)

by integration the following explicit expression of h in function of the water surface slope, the width and the
water depth given at one location point xsitu is obtained:

h(x) = h(xsitu)
(

w(xsitu)S1/2(xsitu)
)3/5 (

w(x)S1/2(x)
)

−3/5

(3.20)

Remark 5: An equation similar to equation (3.19) have already been derived in Gessese et al. (2013);
Gessese (2013).

Remark 6: It is demonstrated in Annex 9.2 that the most complete physical model allowing to separate
the bathymetry variable to the friction one is the low Froude model, see Equation (3.19). Indeed if
the physical complexity of the model is increased by adding the inertia term, then the inverse model
is a second order differential equation in h and one needs to approximate ∂xh accurately, which is
prohibitive. This inverse model for higher Froude flows is derived in Annex 9.2. Numerical experi-
ments have been performed (not presented in this paper); they show that a spatial resolution on the
order of several meters is required to ensure the convergence if solving Equation (9.7) for bathymetry
identification. This is unrealistic given expected SWOT resolution even if measurement were error
free. Several simplifications and linearizations were also tried out but all the inverse models obtained
required unrealistic measurements of ∂xh.

Remark 7: Same derivation but in the general case of an irregular cross section along the flow distance is
presented in Annex 9.3. The later shows the need of an hypothesis on river cross-sectional geometry,
hence justifies the current hypothesis of a rectangular cross sectional shape for bathymetry identification.
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3.5.2 Quantification of error

Since the low Froude inverse model (3.20) is an explicit formulation of h(x) in function of observables, the
resulting uncertainty can be calculated explicitly too. Let us set:

hidentified = htrue + ∆h
wobs = wtrue + △w
Sobs = Strue + △S

(3.21)

with ∆h,△w,△S being the errors on water depth, water surface width and the slope root square. Then,
we get:

∆h
h

=
3
5

∆w
w

+
3
10

∆S
S

(3.22)

Remark 8: This error quantification is correct in the case of the low Froude forward model - corresponding
inverse model. In others words, if observing river flows with higher Froude sections, the error quan-
tification is not exact anymore. Interestingly Equation (3.22) is not a statistical but a deterministic
estimation of the error that is made at least on bathymetry identification.

4 Twin experiments on a large panel of rivers

In the following the identification methods will be tested on a large number of synthetic test cases and
on a real physical case (Garonne river). The observations are synthetic (twin experiments) in the sense
that forward models are first performed to generate observations, next random noises are added. This twin
experiments process can be detailed as follows:

• True values of the parameters to be estimated are chosen. Given these input parameters, a forward
hydrodynamic model provides the flow, hence the water surface width and elevation. Random noises
respecting expected SWOT data accuracy are added to these synthetic observations.

• The inverse models are performed given these data.

Let us point out that the forward model used to generate the SWOT like observations includes all the physics
i.e. including the inertia term and the temporal term (unsteady model) in the case of the Garonne River.

4.1 Resolution of the forward models

A river is discretized into river reaches setted as the observation grid, see Fig. 1. In the present studies,
the grid resolution, hence the reaches length, is set to 1 km. The permanent forward problems solved are
the backwater curve (Equations (2.7) and (2.8)) and the low Froude case (Equations (2.11) and (2.12)).
A classical solver (Runge-Kutta 4) is used to solve these ordinary differential equations with non constant
coefficients. Therefore a numerical sub-grid is used, index j (Figure 3).

4.2 Description of the large panel of synthetic rivers

First we use a synthetic test case in order to be able to investigate the influence of different parameters on
the results of the identification. The bathymetry b and river width w are given at each boundary xi of a
river reach, and are assumed to vary linearly between two reach boundaries. The geometry of the synthetic
river is thought to be representative of the variability that can be encountered on many real rivers. For the
following test cases the Froude is roughly varying between 0.05 and 0.5 for 1 km reaches and permanent flows
- note that few classifications in terms of Froude numbers have been found in the literature, for fish habitat
description Jowett (1993) propose Fr = 0.18 as the limit between pools and rifles. Our Froude range between
0.05 and 0.5 corresponds to a wide range of rivers from those located in foothill (mean slope∼ 1/1000) to
lowland rivers that are generally more flat (mean slope∼ 1/10000). The number and the repartition of control
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Figure 3: Forward problem grid: numerical grid within a hydraulic grid consisting in a discretization of
a river into reaches (r) from SWOT observation grid. Reach boundaries defined by in-situ cross section
measurements.

t1 t2 t3

Qt 200 400 700
h(xsitu) 2.5 3.5 4.5
minxFr 0.05 0.07 0.09
maxxFr 0.36 0.38 0.41
meanxFr 0.17 0.19 0.21

Table 1: Flow features of the synthetic river test case, Froude numbers of the backwater curve.

sections is also widely sampled, at the scale of interest, which is 1 km for this study in a SWOT like context.
For synthetic rivers the bathymetry is generated with the following equation:

b(x) = (L− x) tan(I0) + a0sin

(

2π△x

p0
x

)

+ a1sin

(

2π△x

p1
x+

π

6

)

(4.1)

△x is the river reach size which is constant in this test case, L is the river length, I0 is a constant river slope,
a0 and a1 (resp. p0 and p1) are the first and second order amplitudes of bathymetry variations (resp. spatial
periods) along the flow distance x. The channel cross section is supposed rectangular and constant in time,
the variations in space of channel width are given by:

w(x) = w0 + a2sin

(

2π△x

p2
x

)

(4.2)

w0 is a constant channel width and a2 (resp. p2) is the first order amplitude of river width variations (resp.
spatial period) along the flow distance x. The following values are chosen to produce a generic bathymetry:
L = 12 km, I0 = 1.10−3, w0 = 100 m, a0 = 1.5 m, a1 = 1 m, a2 = 20 m, p0 = 6 km, p1 = 3 km and p2 = 4
km. Note that the two modes of the bathymetry are shifted in phase with the term π

6 in equation (4.1).
The spatial period of width variations is not a multiple of bathymetry variation periods. The bathymetry
resulting from those choices presents a maximal local slope of 2.4.10

−3

. The low Froude (Equation 2.12) and
backwater curve (Equation 2.8) forward models are performed, as explained in Section 4.1 and Figure 3, for
three permanent states with the boundary conditions and the resulting Froude numbers given in Table 1. A
constant roughness K = 20 m1/3.s−1 is used.

Identification are performed for 90 other channel geometries obtained by randomly sampling p0, p1 and
p2 (between 2 km and 8 km) defining control section positions and a0, a1 (between 0 and 1.5 m) and a2

(between 0 and 70m) defining their shape; 30 channel geometries (cross sections repartitions and shapes)
being generated for each mean slope I0 = 1/1000, I0 = 0.5/1000 and I0 = 0.1/1000 .
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Figure 4: forward models on generic river test case configuration: permanent flows at three times without
noise. Dashed lines correspond to Froude variability at t1.

4.3 The Garonne river (portion downstream Toulouse)

The Garonne River drains an area of about 55000 km2 in France from its headwaters in the Spanish Pyrenees
near the Pic d’Aneto to the Gironde estuary, where the mouths of the Garonne and the Dordogne merge.
The study zone we selected is a 82 km portion of the Garonne river downstream of Toulouse (5) with a
drainage area of about 10000 km2; the flow regime is rather contrasted from very low flow on the order of
50 m3.s−1 in summer to large peak flows: five year flood flow is 2000 m3.s−1. This river reach is studied in
Simeoni-Sauvage (1999)and in Larnier (2010). An unsteady 1D shallow water hydraulic model is calibrated
between Toulouse and Malause Larnier (2010), and the water levels will be used as a reference in the following.
River morphology is described with 163 cross sections (from Simeoni-Sauvage (1999)) distant of 50 to 600m.
The river is rather steep with a mean slope about 0.9 × 10−3 and its morphology characterized by a quick
succession of rifles and pools. Moreover this river which is about 150m wide would represent the lower limit
of SWOT detection capacity.

The low Froude (Equation 2.12) and backwater curve (Equation 2.8) forward models are run following the
experimental design described in section 4.1 and Figure 3. The computations are made on reaches of about 1
km defined from 1D model data with an effective bathymetry. The effective bathymetry conserves the cross
sectional wetted area and the discharge from 1D model on real cross sections but its shape is as described
in (figure 1). The boundary conditions from 1D model are the water level at the downstream boundary of
the whole domain and the discharge from 1D model (not accounting for lateral inflows) at the downstream
boundary of each reach. Indeed the discharge is varying in space for 82 km of a real river, especially when a
flood wave is propagating.

4.4 Generation of SWOT like data

In the context of twin experiments the backwater curve is used as forward model (Equation 2.8) in order to
generate “true” water surfaces. for each river reach r we have wtrue, Ztrue and ∂xZtrue. Note that the water
surface slope is calculated from water surface elevation with a first order centered finite difference scheme
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Figure 5: (left) The Garonne River study area between Toulouse-Malause, and the location of the validation
gauge of Verdun sur Garonne. (Right) Comparison of observed discharge at Verdun sur Garonne with reach
averaged Manning equation and 1D reference SW model for the period of interest.

Noise level 1 2 3 4 5 6 7
σS in cm.km−1 0.25 0.35 0.55 0.75 0.95 1.15 1.25

σZ in cm 5 7 10 15 20 30 40
σw in m 5 7 10 15 20 30 40

Table 2: Noise levels defined for SWOT-like observables

on the numerical grid: Strue = −∂xZtrue|r = − Zr+∆j−Zr−∆j

xr+∆j−xr−∆j
for i ∈ [1 · · ·Ns], Ns being the number of river

sections, ∆j being the regular cell-size of the numerical grid (at least for each river reach r). Synthetic SWOT-
like observations are then obtained by adding Gaussian noise to those quantities for a given observation time:











wobs = wtrue +N(0, σw)
Zobs = Ztrue +N(0, σZ)
Sobs = Strue +Ni(0, σS)

(4.3)

Typically, the measurements errors expected from SWOT on water surface elevation, slope and width should
be (Rodriguez (2012)): σZ = 0.05m, σS = 0.75 × 10−5 and σw = 0.15w (this is at least what is expected
for the narrowest rivers seen by SWOT) for pixel of 1 km, indeed the intrinsic resolution is less precise. The
sensitivity of the identifications to measurement errors will be tested in the following. Noise is added to
the “true state” of the system with a Gaussian noise (Equation 4.3). The accuracy of observations varies
in function of the standard deviation σ, also called noise level. Different noise levels chosen in relatively
wide ranges will be tested to generate observations (Table 2). For each noise level 100 sets of observations
are generated and used as inverse model inputs in order to obtain an averaged behavior (averaged after all
simulations and inversions). When different noise levels are simulated on one of the three water surface
characteristics, the two others are set to measurement errors expected from SWOT.

4.5 Resolution of the inverse models

The spatio-temporal configuration of the inverse problems are presented in Figure 1. They are tested on
the large panel of synthetic rivers and on the Garonne river. SWOT-like observations are generated as
exposed above: water surface elevation Z, width w, and slope S. The different inverse methods tested are
the following:

Method 1a: Identification of the triplet (A0,K,Q) in the least square sense with a trust-region-reflective
algorithm (e.g. Moré and Sorensen (1983)) used for solving the system (3.9) when it is over-determined,

15



for instance when the discharge Q is searched as constant in space. Research intervals and first guess
on the solution are required. Results are presented in Section 5.1.

Method 1b: Identification of the triplet (A0,K,Q) in the least square sense when it is under-determined,
i.e. when the discharge Q is searched as non constant in space. A Levenberg-Marquardt solver (e.g.
Moré (1977)) is used when it is under-determined system, i.e. when the discharge Q is searched as
variable in space. Then a first guess on the solution is required. Results are presented in Section 5.4.3.

Method 2: Identification of an effective bathymetry using equation (3.20) and one in-situ water depth mea-

surement at the location xsitu, such as : h(r) = hobs(xsitu)
(

wobs(xsitu)S
1/2

obs(xsitu)
)3/5 (

wobs(r)S
1/2

obs(r)
)

−3/5

for each reach r. Results are presented in Section 5.2 and 5.4.1.

Method 3: Identification of the pair (K,Q) assuming A0 is known (from the identification using equation
(3.20) and one in-situ water depth measurement). A Levenberg-Marquardt solver is used for solving
the system (3.10) or (3.11), in the linearized least square sense. A first guess on the solution is required.
Results are presented in Section 5.3 and 5.4.2.

Remark 9: Let us recall that the time scale of the equations cannot be linked a-priori to the time interval of
data acquisition as pointed out in Section 3.1. On the contrary the inverse model proposed in this study,
which is solved in different ways depending on the observations available and/or the flow dynamics,
do not depend on the data acquisition dynamics. In other words the system of equations (3.9) can be
written for unevenly spaced observations in time.

5 Results and discussions

This study focuses on the estimation of the three flow variables (A0,K,Q) using SWOT like measurements.
For that purpose, we perform the inversion methods presented previously; thus highlighting their capabilities.
Different tests, with different goals are presented both on a large panel of synthetic rivers and on the Garonne
River.

5.1 Synthetic Rivers - Inversion of the triplet (A0, K, Q) with method 1a

In this section the aim is to test the inversion of the triplet (A0,K,Q) directly from equation 3.9. In order to
do so, 3 SWOT like observations are used on the synthetic test case presented in Section 4.2 which bathymetry
is plotted in Figure 4 with the three flow lines considered to generate the observations.

5.1.1 Inversion of the triplet (A0,K,Q)

A sample of Nsamp = 100 sets of random Gaussian numbers is used as SWOT like measurements of water
surface, i.e. water surface elevation, width and slope as exposed in Section 4.4. For this synthetic river
test case the method 1a exposed in § 4.5 is used for the identification of the triplet (A0,K,Q). The re-
search intervals chosen for the resolution are [50 . . . 500] m2 and Ab

0 = 300 m2 for A0, [1 . . . 90] m1/3.s−1,
[180 . . . 1000]m3.s−1for discharge. First guess values are (Kb, Q

1
b , Q

2
b , Q

3
b) = (50, 500, 500, 500), while the true

values are (Kt, Q
1
t , Q

2
t , Q

3
t ) = (20, 200, 400, 700); hence first guess RMSE on low flow bathymetry is 40%, it is

50% on discharge and 150% on roughness. The results of identification are then averaged over this significant
noisy sample (Figure 6). For the identification of the triplet the A0 RMSE is less than 3%, the error on
roughness K is about 1% with K = 20.1 m1/3.s−1 the truth being Kt = 20 m1/3.s−1, and the discharge
RMSE is 4.9% under our hypothesis. This solution is optimal in the least square sense on the Nr reaches
and Np river snapshots with a Q variable in time but with low flow cross sectional area A0 and roughness K
that are intrinsic to the range of flow regimes. This identification was also performed on the other synthetic
geometries and similar performances are obtained.
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Figure 6: Results obtained while performing the triplet (A0,K,Q) identification : (left) the discharge Q,
(right) the base-flow cross sectional area A0, and the roughness K = 20.1 m1/3.s−1 (the truth being Kt = 20
m1/3.s−1). Observations with SWOT like errors. Flow features are summed up in Table 1 and Figure 4.

Research interval for Q en m3.s−1 with method 1a [180 . . . 1000] [140 . . . 1000] [100 . . . 1000]
ErrA0

2.7% 2.7% 2.7%
K and ErrK 20.1 and 1.1% 15.6 and 22.1% 11 and 45%

ErrQ 4.9% 17% 30.1%

Table 3: Sensitivity of the identification of the triplet (A0,K,Q) to the research interval for discharge given
SWOT-like errors. The three true values of discharges Qt sought are (200, 400, 700)m3.s−1 respectively.
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Figure 7: Re-computation of the discharge Q given A0 and K identified at 2.7% and 1.1% relative errors
(using the triplet inversion method with observations SWOT like errors amplitudes).

5.1.2 Rerun of Q based on the identified variables (A0,K)

The goal is to analyze the spatial and temporal errors obtained while re-computing the discharge using the
identified triplet (A0,K,Q), and still assuming that A0 and K are constant in time. Figure 7 shows the
spatial variation of Q re-computed from the identified A0,r and K values. The average RMSE obtained is
the same than before but it can be noticed that the error is not constant in space as the identification error

on A0,r. The error budget of the momentum equation (3.3) is
(

σQ

Q

)2

=
(

σK

K

)2
+
(

5
3

σA0

A0+δA

)2

+
(

5
3

σδA

A0+δA

)2

+
(

2
3

σw

w

)2
+
(

1
2

σS

S

)2
, with σQ , σK , σA0

, σδA, σw, σS respectively being the errors on discharge, roughness,
low flow cross sectional area, cross sectional area variation, river top width and water surface slope. For this

re-computation, the amount of error due to the identified parameters A0 and K is

√

(

σK

K

)2
+
(

5
3

σA0

A0+δA

)2

.

The later is equal to 4.6%, the remaining 0.3% being due to observation errors. This error on A0 and K can
be caused by: the misfit of supposed and observed physics which reduces to the inertia term in the present
case, the spatial pattern of observation errors.

Through numerical tests, the most sensitive parameter of our identification algorithm is the lower bound
of the research interval for Q (Table 3), the identification is nearly not sensitive to the first guess or the
research intervals for the other parameters. The inversion of the triplet with that method is limited by the
accuracy of the first guess on the low flow discharge: the error on A0 remains low, the error on temporal
discharge estimation is on the order of the error on lower discharge estimation, and the error on K greater
than the error on lower discharge estimation. This first guess on discharge can be sampled randomly or
given by a simple empirical formula such as the rational formula relating discharge to cumulated rainfall and
drainage area (Kuichling (1889)). Alternatively, the idea of transferring discharge from gauged sites to the
ungauged river section of interest can be achieved with the ratio of drainage areas as proposed by Birkinshaw
et al. (2014). The sensitivity to first guess is tested in Section 5.3.

5.2 Synthetic River - bathymetry identification with method 2

The explicit model derived in Equation 3.20 is used for the inversion of bathymetry on the synthetic river
test case presented in Section 4.2. First, perfect observations are used in order to test this inverse model and
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Figure 8: Bathymetry identification for the synthetic test case with low Froude model and “perfect observa-
tions”, (left) t = t1, (right) t = t3. Continuous green and red line represent the true water surfaces calculated
with the ODE solver for the backwater curve and the low Froude model. Flow features are summed up in
Table 1 and Figure 4..

examine its sensitivity to the location of the depth observation that is required. After that the sensitivity of
this inversion to measurement errors is investigated.

5.2.1 Inversions based on unnoised data. Analysis of the physical misfit impact

First the water depth expressed with the explicit inverse model (Equation 3.20) is solved using Method 2
exposed in Section 4.5, and with perfect observations of the river, i.e. wobs = wtrue , Sobs = Strue and
h(xobs) = h(xNS

) downstream the river reach. The identification of bathymetry is plotted for Qt
1 = 200

m3.s−1 and Qt
3 = 700 m3.s−1 (Figure 8). The red triangles represent the bathymetry identified with low

Froude inverse model (Equation 3.20) from perfect observations generated with low Froude forward model
(Equation 2.12). As expected since the identification is performed with the explicit inverse of the model used
to generate the free surface, the identification is nearly exact and the relative error is numerical, it is on the
order of 5.4 × 10−4.

The backwater curve accounting for inertia terms (Equation 2.8) is used to generate more realistic water
surface profiles. With those observations supposed perfect the results of the low Froude inverse model are
fairly good with a relative error on identified bathymetry lower than 3% (spatial average) and lower than 8%
(spatial maximum) (Figure 8 and 9, green diamonds). The bathymetry error is larger where the backwater
curve behaves differently than the low Froude - forward models, for example around the pools located at
x = 4000m or x = 10000m. At such locations the error on bathymetry identification is greater than the one
calculated with Equation 3.22. In other words, an error on the identified bathymetry is made where inertia
terms are non-negligible due to the fact that they are not accounted in the inverse model.

The influence of the location of the water depth observation h(xsitu) on the bathymetry error is tested

in Figure 9. This addresses the question of the location of the invariant h(xsitu)
∣

∣w(xsitu)S1/2(xsitu)
∣

∣

3/5

which
is used in the low Froude inverse model. The largest spatially averaged and maximum bathymetry errors
are obtained for t = t3 when the discharge is stronger. As the water depth is observed near a pool, around
x = 4000m or x = 10000m, the bathymetry errors are larger on the order of 11%. This is where the
discrepancy between the low Froude approximation and the backwater curve is larger. The spatially averaged
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Figure 9: Mean (‖.‖1) and maximum (‖.‖∞) spatial errors on bathymetry identification (low Froude inverse
model, observations=backwater curve) in function of the location of the in-situ water depth measurement,
“perfect observations”. Flow features are summed up in Table 1 and Figure 4.

error remains lower than 4.5% for this test case which is an encouraging result. The water depth observation
should be taken where the effect of inertia term is negligible at the studied scale.

5.2.2 Impact of the measurement errors on one observable

Errors on water surface width and slope measurements are simulated as exposed in Section 4.4. The low
Froude inverse model (Equation 2.12) is run with those measurements; note that in-situ width and slope
(xsitu = xNS

) are also affected by those errors. Nsamp = 100 sets of random gaussian numbers are used for
each noise level, and the observations are used with the expected SWOT errors as defined in §4.4. We have:
xsitu = 12 km. The impact of measurement errors on the identified bathymetry A0 is presented in Figure
10. As expected, the amount of error due to width errors is the same for the three discharge values since the
channel width is independent of time. At a width error of 15%, the error on the resulting bathymetry is 8%.
At a slope error of 15% the error on bathymetry about 4%.

5.3 Synthetic Rivers - Identification of the pair (K, Q) given A0 with method 3

From the knowledge of the low flow bathymetry, given either by the inverse model presented above or a
statistical method for instance, the aim is to retrieve the two other unknowns (K,Q). The sensitivity to first
guess on (K,Q) sought is tested on the synthetic river. Next, from a realistic first guess the identification
of (K,Q) is performed on the synthetic river but also on 90 other river geometries. The sensitivity of this
inversion scheme to measurement errors is investigated.

5.3.1 Sensitivity of (K,Q) identification to the first guesses

In this section, the bathymetry identified using the low Froude inverse model (Equation 3.20) is considered
(and using SWOT like observations). The roughness and discharge pair (K,Q) is identified from a first
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Figure 10: Sensitivity of the the identified bathymetry A0 to measurement errors. Flow features are summed
up in Table 1 and Figure 4.

guess
(

Kb, Qb
)

by solving the system (3.9) in the least square sense using Method 3, see Section 4.5. We
use 3 snapshots of the synthetic river, i.e. p = 3, with cross-sectional water surface width constant in time.
Recall that the bathymetry profile for low flow at t = t1 is already identified as exposed above, and SWOT
like measurements are used. The sensitivity of this algorithm to first guess is tested on a sample of 1000
random gaussian first guess such as

(

Kb,i = Kt +N i(0, 10), Qb,i = Qt +N i(0, 250)
)

for i ∈ [1 . . . Nsample]
, with true values Kt = 20m1/3.s−1, Qt = (200, 400, 700)m3.s−1. The results of this identifications are

presented on figure 11 with the RMSE error on Q ErrQ = 1/Np

(

∑Np

p=1

(

Qp −Qt
p

)2
)

/Qt × 100%, and the

error on roughness ErrK = (Kt −K) /Kt. Two panels on the same raw can be read together since they are
the projection of the same identified variable on each first guess variable. There are no obvious bias, the
scatter plots are centered. Moreover the estimation of discharge is quite robust since the RMSE error rarely
exceeds 50% for first guess errors up to 150% on Kb. The identification of roughness K is more sensitive to
errors on first guesses Qb and Kb.

The selection of a first guess on roughness coefficient can be done from a simple classification of rivers in
function of their geomorphologic attributes (e.g. Chow (1964); Maidment (1992)). Generally river roughness
lies between 10 and 40 m1/3.s−1, we use a first guess of 40 m1/3.s−1 in the following. The first guess on
discharge can be given by a simple empirical formula such as the rational formula relating discharge to
cumulated rainfall and drainage area (Kuichling (1889)) or other statistical methods (e.g. Birkinshaw et al.
(2014)). In the following prior guessing is deliberately made with large errors, typically 100% on roughness
and more than 50% on discharge.

5.3.2 Sensitivity of (K,Q) identification to the measurement errors

For the synthetic test case, first guesses on discharge and roughness are (Kb, Q
1
b , Q

2
b , Q

3
b) = (40, 500, 500, 500),

while the true values are (Kt, Q
1
t , Q

2
t , Q

3
t ) = (20, 200, 400, 700); hence first guess RMSE on discharge chronics

is 50% and 100% on roughness. As shown on Figure 12 the identification of discharge is quite robust with a
RMSE of 3.5% and rather insensitive to measurement errors. This is also true for 90 other river geometries,
with mean slopes ranging from 10−4 m/m to 10−3 m/m and contrasted bottom and cross sectional geometries,
producing various flow configurations. The identification of roughness is more sensitive to measurement errors
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Figure 11: Sensitivity of discharge and roughness identification to first guess. Results are represented in
the different planes (ErrK , ErrKb

), (ErrQ, ErrQb
), (ErrK , ErrQb

), (ErrQ, ErrKb
), for a sample of 1000

sets of random gaussian first guesses. Water surface observations are used with expected SWOT like errors.
xsitu = 12 km. The error on K can be positive or negative. Flow features are summed up in Table 1 and
Figure 4.

22



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

← expected SWOT error

Relative error on water surface width measurement

R
e
la

ti
v
e
 e

rr
o
r

 

 

Identified discharge Q

Identified roughness K

K for 90 other rivers

Q for 90 other rivers

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

← expected SWOT error

Error on water surface slope measurement (cm/km)

R
e
la

ti
v
e
 e

rr
o
r

 

 

← expected SWOT error

Identified discharge

Identified roughness

K for 90 other rivers

Q for 90 other rivers

Figure 12: Sensitivity of discharge and roughness identification to measurement errors, Nsamp = 100 sets of
random gaussian numbers are used for each noise level. Other observations are used with expected SWOT
errors as defined in Section 4.4. xsitu = 12 km. Identification are performed for 30 other channel geometries
(cross sections repartitions and shapes) with the same I0 = 1/1000 for discharge (black diamonds) and
roughness (black circles), 60 other geometries with I0 = 0.5/1000 and I0 = 0.1/1000 .

with a relative error on roughness about 10% and ±5% spreading depending on the river geometry. Different
first guesses on roughness K from 10 to 40 m1/3.s−1 were also tested and the discharge identification remains
insensitive, the relative error on roughness is approximately the same than before.
The robustness of discharge estimation stems from three reasons:

• The observation grid, here at 1km, imposes a representation of the flow and consequently of the Froude
number which is a local quantity. In this Froude range (cf. Table 1), the low Froude model reveals to
be sufficient to obtain an accurate estimation of discharge with a 3.5% RMSE.

• The amount of information brought by temporal revisits and which reveals to be a good constraint to
solve the pair (K,Q).

• The fact that the cross section is rectangular both for forward and inverse models, the error on wetted
cross sectional area only comes from measurement errors and from the misfit between supposed and
observed physical complexity. This will be investigated after.

5.4 Garonne river test case

The accuracy of the approach is validated on a SWOT scenario for the Garonne River downstream of Toulouse.
A bathymetry identification is performed with the explicit inverse model (equation 3.20) solved using Method
2 exposed in Section 4.5, an observation point is taken downstream of the river section at x = 75.7 km. First,
based on the identified bathymetry, the pair (K,Q) is identified by solving the system (3.9) using Method
3 presented in Section 4.5. Next, an identification of the triplet (A0,K,Q) is also performed from SWOT
like measurements only, the system (3.9) is solved using Method 1b presented in Section 4.5. SWOT like
measurements are obtained by adding noise to variables simulated with a backwater curve equation for
each reach as explained in Section 4.4. The identifications are performed for 3 daily simulated SWOT river
observations to be able to compare the results with those from the previous sections but also on a 10 days
hydrograph to study a larger range of hydraulic regimes and river behaviors.

23



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

90

100

110

120

130

E
le

v
a
ti
o
n
 (

m
)

Identification of equivalent water depth profile, Garonne river, reach averaging (~1km), time = t
0

4 4.5 5 5.5 6 6.5 7 7.5

x 10
4

60

70

80

90

100

Flow distance, m

E
le

v
a
ti
o
n
 (

m
)

 

 

Reference 1D SW (true cross sections)

"True bathymetry"

Backwater curve on reach averaged equivalent bathymetry

Reach averaged equivalent bathymetry

Identified reach bathymetry from backwater curve, low Froude

Reach bounds

Figure 13: effective bathymetry identification for low flow on the Garonne River downstream of Toulouse on
the 09/01/2004. The mean absolute error is 1% and the spatial maximum is 3%.

5.4.1 Effective bathymetry identification with method 2)

Figure 13 shows the low flow line simulated with forward backwater curve and rectangular cross section
on each reach, i.e. a succession of permanent states used as SWOT like observations. It is in fairly good
agreement with the reference flow line from 1D shallow water (unsteady) model running on real cross sections.
Figure 13 shows the identification of bathymetry using Equation (3.20) for 80 km of the Garonne River from
SWOT like observations and one observation point. The comparison between identified and true bathymetry
is fairly good for the whole river domain. The relative error of identification on effective bathymetry is 1% on
average in space with a maximum error of 3% and is due to: a) the measurement errors (SWOT like errors
added to backwater curve for each reach); b) the misfit between observed and supposed physics (inertial
terms, unsteady flow). The results of bathymetry identification with low Froude inverse model are fairly
good for low flows such as the one considered here on the Garonne River around 160m3.s−1 with ∂xQ close
to 0. If the spatial variation of discharge ∂xQ is significant along the studied domain (it is not the hypothesis
of the inverse model), a bias on bathymetry identification appears and increases for river sections far from
the observation point.

5.4.2 Inversion of the pair (K,Q) given A0with method 3)

From the bathymetry identified above and water surface width measurements, A0 can be calculated and is
plotted along the flow distance in Figure 14 (right). Recall that the roughness and discharge (K,Q) are
identified from a first guess (Kb, Qb) by solving the system (3.9) in the least square sense using Method
3, see Section 4.5. The RMSE on first guess for discharge Q is 65% while the final RMSE on discharge is
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5%. The relative error on roughness K is +100% overestimation for the first guess and falls to +50% after
identification. Figure 14 (right) shows the estimation error on A0, the relative error being 1% on average in
space with a maximum error of 3%. The relative error on wetted surface A for the third observation time is
1% on average in space with a maximum error of 5%.

From the spatial error on discharge and the pattern of estimated cross sectional areas at the third ob-
servation time t3, the larger errors on discharge are for reaches around 35 km for which the cross section
variation between low flow and high flow is the largest, about a factor 3. The observation errors on w, S, Z
are also involved. But as stated before, a large part of overestimation of roughness K might be apportioned
to the misfit between the observed physics and the simplified hypothesis of the inverse model.

Figure 15 shows the discharge identified within the pair (K,Q) for 11 days on the Garonne River. The
average RMSE is 53% for the first guess on discharge and +100% overestimation for the first guess on
roughness. The identification is fairly efficient and the errors falls at 14.3% mean RMSE on discharge and
+36% on the roughness K. This identification is performed for SWOT like observations for 1km reaches and
for 5km reaches, hence 5 observations are averaged for each reach. In both cases the lower discharges tend to
be underestimated compared to a more accurate peak flow estimation. As shown on Figure 15, the spreading
of identified discharges is smaller for longer reaches. One reason might be the hydraulic behavior of reaches,
and so their unicity, which tend to be smoothed for increasing averaging distances.

5.4.3 Inversion of the triplet (A0,K,Q) with method 1b)

From SWOT like observations only, the triplet formed by low flow bathymetry, roughness and discharge
(K,Q,A0) is identified from a first guess

(

Ab
0,K

b, Qb
)

by solving the system (3.9) in the least square sense
using Method 1b, Section 4.5. Figure 16 shows the discharge identified within the triplet for 11 days on the
Garonne River. The average RMSE is 53% for the first guess on discharge, +100% overestimation for the
first guess on roughness and −20% underestimation for A0. The identification of discharge is fairly good
with an error of 14.1% RMSE. However the identification of the other flow parameters is less efficient with
an underestimation of −43% for the roughness K and a +65% underestimation for A0. Interestingly, the
underestimation of K is somehow compensated by an overestimation of A0 or conversely. In other words, it
corresponds to different effective roughness/geometry pairs also called effective roughness/geometries. Indeed,
if re-computing the discharge from the identified K and A0 (like it has been done in § 5.1.2), the RMSE
averaged in space remains nearly the same about 14%.

6 Conclusion

The important question of unobservable rivers and flow parameters identifiability have been addressed given
SWOT like data - spatially and temporally distributed measurements of river surface elevation, width and
slope. The inference of river low flow bathymetry, roughness and discharge (A0,K,Q) have been investigated
through the analysis of inverse models of decreasing complexity. All the inverse models elaborated and
performed are deterministic and solved using simple, hence well controlled, numerical algorithms. It has been
proposed the effective topography concept representing the unobserved river cross sectional geometry below
the lowest flow observed. Next the corresponding effective topography-friction pair modeling accurately
the river flow within the discharge range is inferred. Moreover it has been shown that inversing models
including the inertia terms requires an unrealistic data resolution, while the most complete physical model
allowing to separate the roughness coefficient from the bathymetry is the low Froude model. Two approaches
are proposed for inferring the river properties (A0,K,Q) depending on the observations available: Case 1)
remotely sensed observations of river surface only are available; 2) the same remotely sensed observations are
available plus one (1) in-situ depth measurement. The different inverse models elaborated have been assessed
precisely on 91 synthetic test cases sampling a wide range of river configurations but also on the Garonne
River (France) characterized by large spatio-temporal variabilities.

In Case 1), the identification of the triplet (A0,K,Q) in the least square sense for three and eleven river
snapshots in time gave fairly good discharges estimations with RMSE around 15% both on the Garonne River
and on a large set of synthetic rivers. Interestingly, compensations between the identified values of K and
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Figure 14: Identification of (K,Q) given A0 for the 9th to the 10th of November 2004: (Left) Iden-
tified discharge along the flow distance for the Garonne River downstream of Toulouse ; first guess is
(Kb, Q

1
b , Q

2
b , Q

3
b) = (40, 500, 500, 500) with SWOT like observations, RMSE = 3% . The uniform rough-

ness identified is K = 29.9, true uniform roughness being Kt = 20. (Right, top) Low flow rectangular cross
sectional area A0 with bathymetry identification from low Froude model and SWOT like observations, (right,
bottom) cross sectional area estimated at t = t1 from A0 and SWOT like measurements.
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Figure 15: Identification of (K,Q) given A0 for the 9th to the 20th of November 2004 for each reach: identified
discharge along the flow distance for the Garonne River; first guess is (Kb, Q
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with SWOT like observations, (left) for 1km reaches and (right) for 5km reaches (hence 5 observation values
are averaged for each reach). In both cases spatially averaged RMSE = 14.3% on discharge and the relative
error on the roughness K is +36%. Each set of curve represents the spreading of reach behaviors along the
flow distance.

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

800

900

1000

Time, days

D
is

c
h
a
g
e
 Q

 (
m

3
/s

)

Identified discharge for  1 km reaches, (K,Q, A
0
) identification

 

 

True Q for each reach

Identified Q for each reach

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

800

900

1000

Time, days

D
is

c
h
a
g
e
 Q

 (
m

3
/s

)

Identified discharge for  5 km reaches, (K,Q, A
0
) identification

 

 

True Q for each reach

Identified Q for each reach

Figure 16: Identification of (A0,K,Q) given for the 9th to the 20th of November 2004 for each reach: identified
discharge along the flow distance for the Garonne River downstream Toulouse ; (A0b,Kb, Q

1
b , Q

2
b , Q

3
b) =

(250, 40, 400, 400, 400) with SWOT like observations, (left) for 1km reaches and (right) for 5km reaches
(hence 5 observation values are averaged for each reach). In both cases spatially averaged RMSE = 14.1%
on discharge and the relative error on the roughness K is −43% and the error on A0 is +65% Each set of
curve represents the spreading of reach behaviors along the flow distance.
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A0 are obtained, and the existence of effective roughness - geometry pairs for a given discharge hydrograph
is highlighted.

The fundamental issue of identifying the river bathymetry, in fact an effective one, has been addressed. In
Case 2), given an extra in-situ water depth measurement, a method for identifying a bathymetry profile based
on effective rectangular sections, is proposed. In the case of the Garonne River, the error on the identification
of effective river depth profile is 1% on average in space with a maximum error of 3%. Next, given these
effective low flow cross sectional areas along the flow distance, an identification of the pair (K,Q), instead of
the triplet as in Case 1), can be addressed. Based on the inverse models elaborated, the following inversion
accuracy are obtained on the Garonne River: a RMSE of 5% for a 3 days rising hydrograph and a 14.3%
RMSE for a 11 days flood with its recession. In this case, the effective low flow area A0 is accurate, but it
is the identified roughness coefficient K with a relative error of 50% which contains the misfit between the
observed reality and the inverse model assumptions.

An important feature of the present inverse methods is the fairly good accuracy of the discharge Q ob-
tained, while the identified roughness coefficient K includes: the measurement errors and the misfit of physics
between the real flow dynamics and the inverse model hypothesis, which mainly comes from the unsteadiness
of the observed flow and inertia effects. In other respect, defining river reaches from a SWOT-like obser-
vation grid averages the river properties in each reach, hence tends to smooth the hydraulic variability. In
particular, the representation of the flow control sections, including those responsible for local hydraulic sin-
gularities, depends on the resolution of the observation grid. Finally, the present study suggests forthcoming
work aiming at estimating the discharge for a large range of hydrosystems, in order to investigate effective
topography-friction pairs, especially for more complex flows such as braided rivers for example.
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9 Annex

The Annex contains few enriched inverse models or instructive expressions investigated:

• explicit roughness coefficient expression with the inertia term,

• complete one-equation model for permanent flows re-written in view of bathymetry-friction inversion,

• the low Froude model in view of explicit bathymetry identification but with general hydraulic radius.

9.1 Explicit roughness coefficient expression with the inertia term

The goal in this section is to derive the explicit expression of the roughness coefficient K resulting from
Equation (2.6) and in function of the SWOT like observables. From recasting Equation (2.6), it writes:
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From this system, the following equality for two river reaches holds:
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for r ∈ [1 · · ·Nr − 1].

Then, the explicit expression of the roughness coefficient, given by two observed reaches, writes:

K2
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(9.2)
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∂xh|r,p and (wr,p,Sr,p) observed quantities.

Given A0,r, consequentlyAr,p and the hydraulic radius Rh, the numerical tests we performed revealed
that this explicit expression of K is very sensitive to measurement errors. Furthermore, since the estimation
of ∂xh|r for each reach is required, this expression is unfortunatly useless in the present observation accuracy
context.
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9.2 Complete one-equation model for bathymetry-friction inversion

In this section, the complete one-equation model in depth h variable for permanent flows is recalled. In the
present inversion context, it demonstrates that the most complete physical model allowing to separate the
bathymetry inversion from the friction coefficient one, is the low Froude model, i.e. if the Froude number
small enough (typically Fr < 0.3 implies (1−Fr2)−1≈1 at 10%). The steady-state 1D Saint-Venant equations
with no lateral inflow and with α/K2 as the weight coefficient for inertia term, writes:

∂xQ = 0 (9.3)

α

K2
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Q2

A

)

+ gA
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Q |Q|

K2A2R
4/3

h

)

= 0 (9.4)

The Saint-Venant equation are retrieved by setting: α = K2. The coefficient α is introduced for a sake of
clarity in view to distinguish the inertia terms from others. This equations system is re-written in the one
equation model form such as lubrication-like models. The following assumptions are made:

• the river/channel is wide enough to consider: Rh ≈ h

• cross sections are rectangular: A = wh

• The Strickler roughness coefficient K is supposed constant in space

• The sign of Q is known, and supposed positive for the sake of simplicity. In other words the channel
flows with increasing distance.

• The free surface slope is monotonous and non-flat: ∂xZ > 0

Then, Q2 can be written:

Q2 = K2 gw(x)3h(x)10/3∂xZ(x)
αh(x)4/3∂xw(x) + αh(x)1/3w(x)∂xh(x) − gw(x)

(9.5)

if h(x)∂xw(x) + w(x)∂xh(x) − gw(x) 6= 0.
Mass conservation equation gives: ∂xQ2=0. By denoting: Q2 = Num/Den, the last equation writes:

Den× ∂xNum−Num× ∂xDen = 0.
After simplifications, the one-equation model in h (lubrication type) writes:
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(9.6)
Recall that the quantities Z, w and ∂xZ are given data.

The one-equation model is a second order non-linear differential equation which can be written as:
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Few remarks can be made.
Given the true value of α = K2, given very dense and accurate observations of water surface width w,

elevation Z, and river depth profile (h, h′) at one location point, an accurate numerical scheme (ie Runge-
Kutta high-order method) provides the river depth profile. But since, first order derivatives w′, Z ′ and h′ are
needed, also second order derivatives w′′, Z ′′ in the whole domain, it is absolutly unrealistic in the present
geophysical context to solve this second order differential equation.
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In other respects, Equation (3.20) shows that the low Froude model without inertia terms (i.e. the case
α = 0) is the most complete physical model which allows to separate the bathymetry terms from the friction
ones. Based on this remark, given the low Froude model, it is possible to infer the bathymetry independently
of the friction coefficient K; furthermore, it is possible to derive an explicit expression of the river depth
profile h. The later derivation is done in Section 3.5.

9.3 Low Froude case and bathymetry identification with general hydraulic ra-
dius

The aim of this section is to demonstrate that an a-priori hypothesis on the low flow cross sectional shape
is required in order to find an explicit expression of the river depth profile, see Section 3.5. To our best
knwowledge, the explicit expression of the bathymetry independent of the roughness coefficient has been
presented first in Gessese et al. (2013). In the later the expression is derived in the 2D stationnary case with
no advection term (zero-inertia) both for the forward and inverse models. The original study led in Gessese
et al. (2013) was limited to test cases with very simple and smooth geometries and fine grid resolutions. In
other respect, it has been demonstrated in the previous section that the zero-inertia model (called Gessese
et al. (2013)) is the most complete physical model which allows to separate the bathymetry terms from the
friction ones. Below, the explicit expression of h is derived in a real-like geometries context.

Low Froude indicates the assumption Fr2 ≪ 1, hence (1 − Fr2) ≈ 1. The 1D steady-state Saint-Venant
model writes:

∂xQ = 0 (9.8)
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4/3

h
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With h(x) the water depth and b(x) the river bed elevation, x being the spatial coordinate. Recall that the
quantities Z, w and ∂xZ are given data. The roughness coefficient K is assumed to be constant in space.
The free surface is assumed monotonous and non-flat free surface slope, flow from left to right, i.e. ∂xZ < 0.
Then, it can be deduced that :
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Substituting equation (9.10) into equation (9.8) gives:
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Hence:
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which gives:

∂xRh

Rh
= −3
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∂xF

F
+
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(9.13)

with F = ∂xZ√
|∂xZ|

. This last expression do not allow to retrieve the bathymetry from the observations since

it relates the hydraulic radius Rh to the water surface slope and the cross sectionnal wetted surface. An
a-priori hypothesis on the river cross sectionnal geometries along the flow (eg rectangulars) is required to
integrate Equation (9.13). Then, the corresponding explicit expression of the bathymetry can be deduced.
Since the resulting bathymetry expression is based on the a-priori cross sectionnal shapes, it is not the real
bathymetry profile but an effective bathymetry.
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