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THE CONTACT PROCESS WITH AGING

AURELIA DESHAYES

Abstract. In this article, we introduce a contact process with aging: in this general-
ization of the classical contact process, each particle has an integer age that influences
its ability to give birth. We prove here a shape theorem for this process conditioned
to survive. In order to establish some key exponential decays, we adapt the Bezuiden-
hout and Grimmett construction [BG91] to build a coupling between our process and
a supercritical oriented percolation. Our results also apply to the two-stage contact
process introduced by Krone [Kro99].

1. Introduction

The classical contact process was introduced by Harris [Har74] as an interacting parti-
cles system modelling the spread of a population on the sites of Zd. It is more specifically

defined as a continuous-time Markov process {ξt ∈ {0, 1}Zd
, t ≥ 0} which splits up Zd

into ’living’ sites ({x ∈ Zd : ξt(x) = 1}) and ’dead’ sites ({x ∈ Zd : ξt(x) = 0}) and which
evolves along the following two rules:

(1) if a site is alive then it dies at rate 1;
(2) if a site is dead then it turns alive at rate λ times the number of its living

neighbors.

Note that the above point 2 can also be read as follows: a living site gives birth to its
neighbors at rate λ, which clearly justifies the name of contact process.

Krone [Kro99] later introduced a variant of this model, the so-called two-stage contact
process, for which there exists an intermediate ’juvenile’ type that is forced to mature
before it can produce any offspring. The state of the process at time t is given by an

element ξt ∈ {0, 1, 2}Zd

. A site in state 0 is still interpreted as dead but living sites are
now classified in two categories: a site in state 1 is considered as ’young’, while a site in
state 2 is seen as ’adult’. The model then evolves along quite different rules: only adults
can give birth (at rate λ), each new offspring is considered as young, and transition from
young to adult occurs at rate γ. The aim of this paper is to extend both above-mentioned
models by considering a contact process with aging, that is a model where each living
particle is endowed with an age in N∗ = {1, 2, . . .} (we denote by N = {0, 1, 2, . . .}). The

state of this process at time t is therefore described by an element ξt ∈ NZd
, and its

dynamics are defined in the same spirit as above: a dead site turns alive (with age one)
proportionally to the ages of its so-called ’fertile’ neighbors, while a living site ages at
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rate γ and dies at rate 1. Full details regarding this evolution procedure, as well as a
convenient graphical construction of the process, will be provided in Section 2.

In [Kro99], Krone shows that the two-stage contact process is additive and monotone
with respect to its parameters. He also exhibits some bounds on the survival region
and concludes the paper with a few open questions related to the problem. Recently,
Foxall has solved some of these problems in [Fox14]: he has shown, for example, that
finite survival and infinite survival are equivalent and he also proved that the complete
convergence holds. With these considerations in mind, and going back to our model, our
first task in Section 3 will be to identify suitable conditions on the parameters for the
process to survive.

A crucial issue regarding the contact process (or its extensions to a random/randomly-
evolving environment) is to understand the behaviour of the process in the different
survival regions. For instance, in [SW08], Steif and Warfheimer show that the critical
contact process in a randomly-evolving environment dies out, while in [GM12a], Garet
and Marchand establish an asymptotic shape theorem for the contact process in random
environment. We will elaborate on the process in the survival case through the exhibition
of a shape theorem: there exists a norm µ on Rd such that the set Ht of points alive
before time t satisfies for every ǫ > 0, almost surely, for every large t,

(1− ǫ)Bµ ⊂ H̃t

t
⊂ (1 + ǫ)Bµ,

where H̃t = Ht + [0, 1]d, Bµ is the unit ball for µ.
Let us briefly sketch out the main steps towards this shape theorem. Actually, in a

similar way as in the case of the classical contact process, the proof divides into two
distinct parts:

• We first prove that, as soon as the process survives, its growth is at least linear.
To do so, we will resort to a similar construction as the one given by Bezuidenhout
and Grimmett in [BG91], and show that a supercritical process conditioned to
survive stochastically dominates a two-dimensional supercritical oriented perco-
lation (Section 4). The required growth controls indeed follow from this construc-
tion (Section 5). As an additional by-product of the percolation construction we
obtain the fact that Krone’s process dies out on the critical region.

• The second step will consist in exhibiting a shape result knowing that the growth
is of linear order. This is analogue to the result of Durrett and Griffeath for the
classical contact process [DG82], and to the result of Garet and Marchand [GM12a]
in the random environment case.

Let us return to on the second step. Just as in the classical case, the contact process
with aging is a non-permanent model for which extinction is possible, and we therefore
look for a shape theorem for the process conditioned to survive. The first step is to prove
the convergence of the hitting times in one fixed direction x ∈ Zd, that is the convergence,

as n tends to infinity, of the ratio t(nx)
n where t(y) stands for the first time when the pro-

cess hits y. In 1965, Hammersley and Welsh [HW65] introduced subadditive techniques
to show such a convergence in the case of first passage percolation. Since then, proofs of
this type of convergence use the Kingman subadditive ergodic theorem [Kin73] and its
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extensions, which appeal to subadditivity, stationarity and integrability assumptions on
the system.

In non-permanent models such as the one described by our process, the extinction is
possible and the hitting times can be infinite so that the standard integrability conditions
are not satisfied. On the other hand, if we condition the model to survive, then station-
arity and subadditivity properties can be lost. To overcome such lacks, we will lean on
an intermediate quantity, introduced in [GM12a] and denoted by σ(x), which morally
represents a time when the site x is alive and has infinitely many descendants (see Defi-
nition 2.5). It turns out that this function σ satisfies adequate stationarity properties as
well as the almost-subaddivity conditions involved in Kesten and Hammersley’s theorem
[Kes73, Ham74], a well-known extension of Kingman’s seminal result. The last part of
the proof will then be devoted to the control of the difference between σ and t, and it
will allow us to turn the shape theorem for σ into the expected shape theorem for t.

2. Model and results

2.1. Evolution and initial set.

2.1.1. Birth parameters. In the contact process with aging, the infection parameter λ is
replaced with a sequence Λ = (λi)i∈N of birth parameters. We assume that:

(1) ∀i, λi ∈ R+ and λ0 = 0,
(2) (λi)i is non decreasing,
(3) limi→∞ λi = λ∞ < ∞.

The quantity λi is the birth parameter for a particle of age i. The condition 3 means
that the rate of birth is bounded for every age; the condition 2 means that the rate of
birth is non decreasing with age. These two conditions are reasonable for the model and
are useful for coupling in the sequel. The condition 1 account in particular for the fact
that a dead site can not give birth to its neighbors.

2.1.2. Markov process. The contact process with aging (CPA) is a continuous-time ho-
mogeneous Markov process (ξt)t≥0 taking values in the set of maps from Zd to N (we can
also see (ξt) as a partition of points of Zd according to their age). If ξt(z) = 0 we say
that z is dead, while if ξt(z) = i ≥ 1 we say that z is alive with age i.

2.1.3. Evolution. The evolution of the process is as follows:

• a living site dies at rate 1 independently of its age,
• a dead site z turns alive at rate

∑

z′,‖z′−z‖1=1 λξt(z′) (with λ0 = 0),

• each new offspring has age one,
• the transition from age n to age n+ 1 occurs at rate γ > 0, independently of its

age.

Each of these evolutions is independent from the others. In the following, we denote by

D the set of cadlag functions from R+ to NZd
: it is the set of trajectories for Markov

processes with state space given by the maps from Zd to N.
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2.1.4. Initial set. Let f : Zd → N be a function with finite support. We start the process
from the initial configuration ξ0 = f . The set {x ∈ Zd : f(x) 6= 0} is the set of living
points and each such x has age f(x). Notations in special cases:

• If it is not specified (as in ξt), then the initial set is the point 0 with age 1.
• If the initial set is A, where all particles have age 1, then we denote the corre-

sponding process by ξAt .
• If the initial set is a single point x ∈ Zd with age k ∈ N∗, then we denote the

corresponding process by ξkδxt . If k = 1, then we denote the corresponding process
by ξxt .

Our model is a generalization of Krone’s model [Kro99]. Indeed, if we set λ1 = 0 and
for every i ≥ 1, λi = λ we get Krone’s infection pattern of parameters (λ, γ) (with δ = 0).

Just as in the contact process situation, we use Harris’ procedure to construct the
CPA on an appropriate probability space.

2.2. Construction of the probability space. We consider B(R+) the Borel σ-algebra
on R+ and Ed the edges of Zd. Let M be the set of locally finite counting measures on
R+ (m =

∑∞
i=0 δti , (ti)i ∈ R+ with m(K) < ∞ for every compact set K). We endow M

with the σ-algebra M generated by the maps (m → m(B), B ∈ B(R+)). Let

Ω =
(

M × [0, 1]N
)Ed

×
(

M2
)Zd

and F =
(

M⊗B ([0, 1])⊗N
)⊗Ed

⊗ (M⊗M)⊗Zd

.

On this space we consider the family of probability measures defined as follows

PΛ,γ =
(

Pλ∞ ⊗ U[0,1]
⊗N
)⊗Ed

⊗ (P1 ⊗ Pγ)
⊗Zd

where Λ = (λi)i∈N is our sequence of birth parameters, Pα is the law of a Poisson process
on R+ with intensity α (for α ∈ {1, γ, λ∞}), and U[0,1] is the uniform law on [0, 1].

An outcome ω = (ω∞
e , ue, ω

1
x, ω

γ
x)e,x ∈ Ω is a realization of all these Poisson processes.

For each vertex x ∈ Zd, we obtain Poisson processes of parameters 1 and γ and for each
edge e ∈ Ed, we obtain coupled Poisson processes of parameters (λi)i described as follows:
if T∞

e = (tk)k∈N are the arrival times of the process ω∞
e following Pλ∞ and ue = (uk)k∈N

random variables following U[0,1]
⊗N, then the arrival times of the Poisson process ωi

e of
parameter λi are

T i
e =

{

t : ∃k ∈ N∗ with t = tk and uk ≤ λi

λ∞

}

.

From now on, we work with the probability space (Ω,F ,PΛ,γ). The measure PΛ,γ has
positive spatiotemporal correlations and satisfies the FKG inequality: for all L ≥ 0, T ≥ 0
and for all increasing functions f and g on the configurations on [−L,L]d× [0, T ] we have

EΛ,γ [fg] ≥ EΛ,γ [f ]EΛ,γ [g](1)

where EΛ,γ is the expectation under PΛ,γ . When we look at configurations at fixed time,
we talk about positive spatial correlations.
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2.3. Graphical construction of the contact process. For more details, see Har-
ris [Har78]. Just as in the contact process situation, the contact process with aging can
be constructed graphically using families of independent Poisson processes. To get the
graphical representation, we begin with the space-time diagram Zd × R+. It is aug-
mented to give a percolation diagram as follows. First, we consider the arrival times of
independent families of Poisson processes:

• For each x ∈ Zd, denote by (Ux
n )n the arrival times of the Poisson process ω1

x

with intensity 1, encoding the potential deaths at x. For each space-time point
(x,Ux

n ), we put a cross × to indicate that a death will occur if x is alive.
• For each x ∈ Zd, denote by (W x

n )n the arrival times of the Poisson process ωγ
x

with intensity γ, encoding the potential agings at x. For each (x,W x
n ), we put a

circle ◦ to indicate a maturation of x: if x has age k before a circle, then x will
have age k + 1 after the circle.

• For each e = {x, y} ∈ Ed and k ∈ N∗, we recall that (T k
{x,y})n are the arrival

times of the Poisson process ωk
e with rate λk, encoding the potential birth through

{x, y}. Between (x, T k
{x,y}) and (y, T k

{x,y}) we draw an arrow to indicate that, if

x is alive with age at least k, then there will be a birth at y (with age 1) if it is
not already alive.

For x, y ∈ Zd, s < t and i, k ∈ N∗, we say that there is an open path from (x, i, s) to
(y, k, t) in the diagram if there is a sequence of times s = s0 < s1 < · · · < sn+1 = t and
a corresponding sequence of spatial locations x = x0, x1, . . . , xn = y such that:

• For j = 1, . . . , n, there is an arrow from xj−1 to xj at time sj so we set

kj = min{k ∈ N∗, sj ∈ T k
{xj−1,xj}}.

• For j = 0, . . . , n, the vertical segment {xj}× (sj, sj+1) does not contain any cross
×.

• For j = 0, . . . n − 1, the vertical segment {xj} × (sj , sj+1) contains at least kj
circles ◦.

• The vertical segment {x0}×(s0, s1) contains at least k1−i circles and the vertical
segment {xn} × (sn, sn+1) contains exactly k circles.

With this considerations in mind, let us turn to the definition of our central process ξ.
For x, y ∈ Zd, i, k ∈ N∗ and t > 0, we set ξiδxt (y) = k if there exists an open path from
(x, i, 0) to (y, k, t) but not one from (x, i, 0) to (y, k + 1, t). We extend the definition to
any function f : Zd → N:

ξft = max
x∈ supp f

ξ
f(x)δx
t .

We now define a useful set: let Ax
t be the set of living points at time t that is

Ax
t = supp ξxt = {y ∈ Zd : ξxt (y) 6= 0}.

We define Af
t and AA

t along the same lines.
By construction, we have a property of attractivity: for all functions f, g from Zd

to N, f ≤ g =⇒ ξft ≤ ξgt and Af
t ≤ Ag

t . Moreover, additivity of the process is also
immediate from this construction and from the fact that each transition is additive. So,

for all functions f, g from Zd to N, ξf∨gt = ξft ∨ ξgt .
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We can extend Harris’ proof to show that (ξft )t≥0 satisfies the dynamics previously
described. Exactly like the classical contact process, this is a Feller process and thus it
benefits from the strong Markov property.

2.4. Time and spatial translations. For any t ≥ 0, we define the time translation
operator θt on a locally finite counting measure m =

∑∞
i=1 δti on R+ by setting

θtm =

∞
∑

i=1

11ti≥tδti−t.

It induces an operator on Ω, still denoted θt. The Poisson point processes being transla-
tion invariant, the probability measure PΛ,γ is stationary under the action of θt.

Trajectorial version of the semi-group property of the contact process: for every
f : Zd → N, for every s, t ≥ 0, for every ω ∈ Ω, we have

ξft+s(ω) = ξ
ξft (ω)
s (θtω) = ξ•s(θtω) ◦ ξft (ω)

that can also be written in the classical Markovian way: for every B ∈ B(D)

PΛ,γ

(

(

ξft+s

)

s≥0
∈ B|Ft

)

= PΛ,γ

(

(ξ•s )s≥0 ∈ B
)

◦ ξft .

We have the strong Markov property too.
We define the spatial translation operator Tx for x ∈ Zd by

∀ω ∈ Ω, Txω =
(

(ωx+e)e∈Ed , (ωx+z)z∈Zd

)

.

PΛ,γ is obviously stationary under the action of Tx.
Note that (Ω,F ,PΛ,γ , θt) and (Ω,F ,PΛ,γ , Tx) are both dynamical systems. As strong

mixing systems, they are also ergodic.

2.5. Essential hitting times and associated translations. For f : Zd → N, we
define the life time of the process starting from f by

τ f = inf{t ≥ 0 : ξft ≡ 0} = inf{t ≥ 0 : Af
t = ∅}.

For f : Zd → N and x ∈ Zd, we also define the hitting time of the site x:

tf (x) = inf{t ≥ 0 : ξft (x) 6= 0} = inf{t ≥ 0 : x ∈ Af
t }.

For the sake of clarity, we denote by τx = τ δx , τ = τ0 and t(x) = tδ0(x).
For fixed x ∈ Zd, if we want to prove that the hitting times are such that tf (nx)/n

converges, the Kingman theory requires subadditivity properties. But with non perma-
nent models like the contact process, the hitting times can be infinite (because extinction
is possible) and if we condition on the survival, we can lose independence, stationarity
and even subadditivity properties.

This is why we rather work with the so-called essential hitting time introduced by Garet
and Marchand in [GM12a]. For the contact process with aging, we can define it exactly
in the same way. We set u0(x) = v0(x) = 0 and we define recursively two increasing
sequences of stopping times (un(x))n and (vn(x))n with u0(x) = v0(x) ≤ u1(x) ≤ . . . as
follows.



THE CONTACT PROCESS WITH AGING 7

• Assume that vk(x) is defined. We set

uk+1(x) = inf{t ≥ vk(x) : ξ
0
t (x) 6= 0}

= inf{t ≥ vk(x) : x ∈ A0
t }.

If vk(x) < +∞, then uk+1(x) is the first time after vk(x) where the site x is once
again alive; otherwise, uk+1(x) = +∞.

• Assume that uk(x) is defined, with k ≥ 1. We set vk(x) = uk(x) + τx ◦ θuk(x). If
uk(x) < +∞, then the time τx ◦ θuk(x) is the (possibly infinite) life time of the
contact process starting from x at time uk(x); otherwise, vk(x) = +∞.

We then define K(x) to be the first step when vk or uk+1 becomes infinite:

K(x) = min{k ≥ 0 : vk(x) = +∞ or uk+1(x) = +∞}.
In Section 6, we will prove the following result:

Lemma 1. K(x) has a sub-geometric tail. In particular, K(x) is almost surely finite.

Definition. We call essential hitting time of x the quantity σ(x) = uK(x).

The quantity σ(x) is a certain time when x is alive and has infinite progeny, but it
is not necessary the first such time. By Lemma 1, σ(x) is well-defined. We define the

operator θ̃x on Ω by setting:

(2) θ̃x =

{

Tx ◦ θσ(x) if σ(x) < +∞,

Tx otherwise.

Remark. It is easily checked that uk(x) and uk(−x) (respectively vk(x) and vk(−x),
K(x) and K(−x)) are identically distributed. Accordingly, σ(x) and σ(−x) are identically
distributed.

2.6. Survival. Let ρ(Λ, γ) = PΛ,γ (∀t > 0, ξt 6≡ 0) be the probability that the process
survives from the point 0 at age 1. For γ > 0, we denote by

Sγ =
{

Λ ∈ RN, non decreasing / PΛ,γ (∀t > 0, ξt 6≡ 0) > 0
}

the survival region.
We will see, in the short Section 3, that for γ large enough, Sγ is not empty. Besides,

the survival region does not depend on the finite initial configuration. From Section 5 to
the end, we will suppose that Λ ∈ Sγ . When we will say that the process (ξt) survives,
we will imply it with positive probability. In this context, we will work with a CPA
conditioned to survive and we introduce the corresponding probability measure:

∀E ∈ F , PΛ,γ(E) = PΛ,γ (E| ∀t > 0, ξt 6≡ 0) .

When the context is clear we will omit the indices Λ, γ in the above notations P and P.

2.7. Organization of the paper. First, in Section 3, we prove the above announced
properties on the survival region. Section 4 is devoted to the key point of our work: the
construction of a background percolation process when the CPA survives (Theorems 10
and 19). In Section 5, we use the construction to prove the following crucial exponential
estimates:
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Theorem 2. For f : Zd → N, if (ξft ) survives, then there exist A,B > 0 such that for
all t > 0 and x ∈ Zd, one has

P
(

t < τ f < ∞
)

≤ A exp(−Bt).

Theorem 3. For f : Zd → N, if (ξft ) survives, then there exist A,B > 0 such that for
all t > 0 and x ∈ Zd, one has

P(tf (x) ≥ C‖x‖+ t, τ f = ∞) ≤ A exp(−Bt),

which we call the “at least linear growth”.

These controls enable us to establish in Section 6 the main properties of the transfor-
mations θ̃x:

Theorem 4. For x ∈ Zd \ {0},
• The probability measure P is invariant under the translation θ̃x.
• Under P, σ(y) ◦ θ̃x is independent from σ(x) and its law is the same as the law

of σ(y).

We also require the exponential estimates to establish in Section 7 the following almost
subadditivity property of the essential hitting time σ:

Theorem 5. If (ξt) survives, then there exist A,B > 0 such that for all x, y ∈ Zd and
t > 0, one has

P
(

σ(x+ y)−
(

σ(x) + σ(y) ◦ θ̃x
)

≥ t
)

≤ A exp
(

−B
√
t
)

.

We also provide, in Section 7, a control for the difference between the hitting time t
and the essential hitting time σ:

Theorem 6. If (ξt) survives, then, P almost surely, it holds that

lim
‖x‖→+∞

|σ(x) − t(x)|
‖x‖ = 0.

Finally, in Section 8, we prove the expected asymptotic shape theorem (thanks to
Theorems 3, 4, 5, 6 and thanks to a result by Kesten and Hammersley):

Theorem 7. If (ξt) survives, then there exists a norm µ on Rd such that for every ǫ > 0,
almost surely under P, for every large t

(1− ǫ)Bµ ⊂ H̃t

t
⊂ (1 + ǫ)Bµ

H̃t = {x ∈ Zd : t(x) ≤ t}+ [0, 1]d and Bµ is the unit ball for µ.

3. About the survival

For the classical contact process, Harris defined the critical value:

λc = inf
{

λ ≥ 0, Pλ

(

∀t > 0, ξ
{0}
t 6= ∅

)

> 0
}



THE CONTACT PROCESS WITH AGING 9

and proved that λc ∈ (0,+∞). In his model, Krone defined a similar value:

λc(γ) = inf
{

λ ≥ 0, Pλ,γ

(

∀t > 0, ξ
{0(2)}
t 6= ∅

)

> 0
}

where 0(2) means the site 0 in the adult state (state 2). He showed that if γ and λ are

sufficiently large, then Pλ,γ(∀t > 0, ξ
{0(2)}
t 6= ∅) is positive. Therefore, λc(γ) is not trivial

for γ sufficiently large. He drew the look of the curve λc(γ) and obtained a partition of
(R+)2 in two regions: survival and extinction.

We generalize this for our model. Recall that ρ(Λ, γ) = PΛ,γ (∀t > 0, ξt 6≡ 0) and

Sγ =
{

Λ ∈ RN, non decreasing / PΛ,γ (∀t > 0, ξt 6≡ 0) > 0
}

the survival region.
We also recall that if it is not specified, the initial set of our process is the site 0 with

age 1. The aspects of this region and its frontier depend on the chosen topology. Let us
make some obvious remarks about it. Let Λ = (λi)i and Λ′ = (λ′

i)i; if Λ ∈ Sγ and for all
i, λi ≤ λ′

i then Λ′ ∈ Sγ . If we take for all i, λi > λc, then the process survives; but this
assumption is too strong for our model. We want to say something more relevant so we
show:

Proposition 8. For every m ∈ N, for fixed λ1, . . . , λm, we can find λm+1 and γ large
enough such that ρ(Λ, γ) > 0 with Λ = (λ1, . . . , λm+1, λm+1, . . .).

Proof. We start the process with the point 0 with age one. Without lost of generality,
we assume that λ1 = · · · = λm = 0.

We use a comparison between our model of contact process with aging and a 1-
dependent oriented site percolation (on Z × N). The construction is similar to Harris’
proof of the survival for the contact process when λ is large enough ([Har74]). Let T > 0
and n ∈ N. We say that x is good at time nT if

(1) there is no death at x during [nT, nT + 3T
2 ],

(2) there are enough maturations (more than m) at x during [nT + T
2 , nT + T ],

(3) there are arrows from x to each of its neighbors on [nT + T, nT + 3T
2 ].

At time nT + T we do not know the age of x. If we wait m maturations, we are sure
that it is possible to use the birth arrows of rate λm+1 to give birth to the neighbors.

For α ∈ {1, γ, λm+1}, we denote by Pα a Poisson process of parameter α. One has

P(x is good at nT ) = P(1, 2 and 3 are satisfied)

= P

(

P 1
(

[nT, nT +
3T

2
]
)

= 0

)

× P

(

P γ
(

[nT +
T

2
, nT + T ]

)

≥ m

)

× P

(

P λm+1
(

[nT + T, nT +
3T

2
]
)

6= 0

)2d

≥ exp(−3T

2
)P

(

P γ
(

[0,
T

2m

)

6= 0

)m
(

1− exp
(

− λm+1
T

2

))2d

≥ exp(−3T

2
)

(

1− exp
(

− γ
T

2m

)

)m
(

1− exp
(

− λm+1
T

2

))2d
.
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We pick T small enough such that exp(−3T
2 ) > 1− ǫ. We pick γ large enough such that

(

1− exp
(

−γ T
2m

))m ≥ 1−ǫ, and λm+1 large enough such that 1−exp
(

−λm+1
T
2

)

≥ 1−ǫ.
Then

P(x is good at nT ) ≥ 1− 3ǫ.

Let L = {(m,n) ∈ Z × N,m+ n is even} be the lattice of oriented percolation. We say
that (m,n) ∈ L is open if the site (m, 0, . . . , 0) ∈ Zd is good at time nT . If ǫ is sufficiently
small, the probability p that the site is open is sufficiently large and we have percolation
in the lattice L (by a contour argument, see [Dur84] for details). The construction implies
that (ξt) survives with positive probability. �

Now, we prove that survival does not depend on the initial function (with finite sup-
port).

Proposition 9. Let f, f ′ : Zd → N be functions with non empty finite supports. One has
the equivalence

PΛ,γ

(

∀t > 0, ξft 6≡ 0
)

> 0 ⇔ PΛ,γ

(

∀t > 0, ξf
′

t 6≡ 0
)

> 0.

Proof. First, if we start with only one living point, then let us see that the survival does
not depend on its age. Let x ∈ Zd and n ∈ N∗. By construction,

P
(

∀t > 0, ξnδxt 6≡ 0
)

≤ P
(

∀t > 0, ξ
(n+1)δx
t 6≡ 0

)

.

Conversely, let T be the time of the first maturation on x. One has

PΛ,γ

(

∀t > 0, ξnδxt 6≡ 0
)

≥ P
({

∀t ∈ [0, T ], ξnδxt (x) 6= 0
}

∩
{

θT

(

∀t > 0, ξ
(n+1)δx
t

)

6≡ 0
)}

≥ PΛ,γ (exp(δ) ≤ exp(1))PΛ,γ

(

θT

(

∀t > 0, ξ
(n+1)δx
t 6≡ 0

))

≥ δ

1 + δ
PΛ,γ

(

∀t > 0, ξ
(n+1)δx
t 6≡ 0

)

.

Secondly, the survival does not depend on the finite number of initial living points.
Indeed, for all x1, . . . , xn ∈ Zd and m1, . . . ,mn ∈ N∗, one has

P
(

∀t > 0, ξ
∑n

i=1 miδxi
t 6≡ 0

)

≤
n
∑

i=1

P
(

∀t > 0, ξ
miδxi
t 6≡ 0

)

by additivity,

≤ nP

(

∀t > 0, ξ
maxi{mi}δxargmax{mi}

t 6≡ 0

)

,

and P
(

∀t > 0, ξ
∑n

i=1 miδxi
t 6≡ 0

)

≥ P
(

∀t > 0, ξ
m1δx1
t 6≡ 0

)

by attractivity. �

Note that if we have survival, then ρ(Λ, γ) > 0 and for every f : Zd → N not identically
null we have, by monotonicity:

PΛ,γ

(

∀t > 0, ξft 6≡ 0
)

≥ ρ(Λ, γ) > 0.(3)

Whenever the context is clear (Λ, γ fixed) we will just write ρ = ρ(Λ, γ).
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4. Construction of a percolation background process

To obtain the exponential bounds of Theorems 2 and 3, we construct a background
percolation process for the supercritical contact process with aging, just as Bezuidenhout
and Grimmett did in [BG91] for the classical contact process (we also refer to [Lig99]
and [SW08]). We work with the contact process with aging (ξt), and also with its support
(At). The process (At) looks like the classical contact process (it takes values in {0, 1}N
and encodes the fact that a given particle is alive or not) but it is not Markovian. We
formulate a lot of propositions about the process (At) when we only need to know the
number of living particles regardless their age. However, the Markovian aspect of (ξt) is
essential in the different proofs. In this section, we fix Λ and δ and we write P for PΛ,γ .
We show

Theorem 10. The process (ξt) survives is equivalent to the following finite space-time

condition:

∀ǫ > 0,∃(n, a, b) such that if (x, s) ∈ [−a, a]d × [0, b] then

P





∃(y, t) ∈ [a, 3a] × [−a, a]d−1 × [5b, 6b] and open paths staying
in [−5a, 5a]d × [0, 6b] and going from (x, s) + [−n, n]d × {0}

to every point in (y, t) + [−n, n]d × {0}



 > 1− ǫ.(B1)

4.1. Survival implies finite space-time condition. Here we suppose that the pro-
cess survives and we construct a large space-time box with a lot of well-located living
particles on the frontier.

First step: If (ξt) survives with positive probability, we can increase the number of
living particles (as well as their age) in the initial configuration so as to ensure that
survival occurs with a probability close to one.

Lemma 11. Assume that (ξt) survives. Let (fn)n be an increasing sequence of functions
from Zd to N which converges to f : Zd → N not identically null and periodic. Then

lim
n→∞

P
(

∀t > 0, ξfnt 6≡ 0
)

= 1.

Proof. As (fn) increases to f , one has

lim
n→∞

P
(

∀t, ξfnt 6≡ 0
)

= P
(

∀t, ξft 6≡ 0
)

≥ P (∀t, ξt 6≡ 0) > 0.

Given that the system (Ω,F ,P, Tx) is ergodic and f is periodic, we can conclude that

P
(

∀t, ξft 6≡ 0
)

> 0 ⇒ P
(

∀t, ξft 6≡ 0
)

= 1. �

When we are interested in controling the amount of living particles, we will not take

their ages into account. Therefore, we will work with Af
t = supp ξft .

For L ≥ 1, we consider the truncated process (Lξt) defined via the graphical represen-
tation: to determine Lξt we only use paths with vertical segments above sites in (−L,L)d

and horizontal segments (birth arrows) whose origins are in (−L,L)d. Lξt takes values
in [−L,L]d but is measurable with respect to the Poisson processes in (−L,L)d × [0, t].
We have supp Lξt = LAt.
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Then we define LA =
⋃

t≥0 (LAt × {t}) ⊂ Zd × [ 0,∞ ) as the set of all living space-
time points in the truncated process without any consideration of age.

Second step: The probability of survival can be seen as the limit of the probability
to have “enough living particles in a finite space time box”.

Lemma 12. For every f : Zd → N with finite support and every N ≥ 1, it holds that

lim
t→∞

lim
L→∞

P
(

|LAf
t | ≥ N

)

= P
(

∀t > 0, ξft 6≡ 0
)

.

Proof. Since Af
t =

⋃

L≥1 LA
f
t , it follows that

lim
L→∞

P
(

|LAf
t | ≥ N

)

= P
(

|Af
t | ≥ N

)

.

Let us show that the right-hand side converges to the probability of survival when t goes
to infinity. Let s ∈ R+,

P
(

Af
t = ∅ for some t|Fs

)

≥ P
(

∀x ∈ Af
s , x dies before giving birth or aging|Fs

)

.

Denote by Y x
1 the waiting time until the next death on x, Y x

γ the waiting time until

the next maturation and Y x,i

ξfs (x)
the waiting time until the next birth from x to its ith

neighbor (where ξfs (x) is the age of x at time s). These random variables are independent

and follow exponential laws with respective parameters 1, γ, ξfs (x). One has

P
(

Af
t = ∅ for some t|Fs

)

≥
∏

x∈Af
s

P
(

Y x
1 ≤ min(Y x

γ , Y
x,1

ξfs (x)
, . . . , Y x,2d

ξfs (x)
)
)

≥
∏

x∈Af
s

1

1 + γ + 2dλ
ξfs (x)

≥
(

1

1 + γ + 2dλ∞

)|Af
s |
.

By the martingale convergence theorem, the probability P(Af
t = ∅ for some t|Fs) con-

verges almost surely to 11{Af
t =∅ for some t}. It follows that

∀s, Af
s 6= ∅ ⇒ lim

s→∞
|Af

s | = ∞.

In other words, if the process survives, then the number of living particles goes to infinity.

P
(

|Af
t | ≥ N

)

= P
(

{|Af
t | ≥ N} ∩ {∀s, Af

s 6= ∅}
)

+ P
(

{|Af
t | ≥ N} ∩ {∃s, Af

s = ∅}
)

.

So, lim
t→∞

P
(

|Af
t | ≥ N

)

= P
(

∀s, Af
s 6= ∅,∀s

)

.

�
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Third step: At fixed time, we compare the number of living particles in a spatial
orthant of the top of a large box according to the number of living particles on the top
of this box.

From now on, we will need some symmetries assumptions on the initial configurations.

Definition. An initial configuration f : Zd → N is said to be acceptable if its support is
finite and if

∀(x1, . . . , xd),∀i ∈ {1, . . . , d}, f(x1, . . . , xi, . . . , xd) = f(x1, . . . ,−xi, . . . , xd).

Lemma 13. For every N,L ≥ 0, t > 0 and f acceptable such that supp f ⊂ (−L,L)d,
one has

P
(

|LAf
t ∩ [0, L)d| ≤ N

)

≤ P
(

|LAf
t | ≤ 2dN

)2−d

.

Proof. Let X1, . . . ,X2d be the number of living particles in the 2d different orthants of

(−L,L)d at time t. For instance, X1 = |LAf
t ∩ [0, L)d|. We have

|LAf
t | ≤ X1 + · · · +X2d ,

so

P
(

|LAf
t | ≤ 2dN

)

≥ P
(

X1 + · · · +X2d ≤ 2dN
)

,

≥ P
(

∀i ∈ {1, . . . , 2d},Xi ≤ N
)

.

The variables X1, . . . ,X2d are identically distributed and are increasing functions of the
configurations on (−L,L)d × {t}; therefore, by the spatial positive correlations of the
measure P, the FKG inequality applies and we obtain that

P
(

|LAf
t | ≤ 2dN

)

≥
(

P (X1 ≤ N)
)2d

. �

Fourth step: The probability of extinction can be seen as the limit of the probability
to “not have enough living particles on the top and the sides of a finite space-time box”.

Let S(L, T ) = {(x, s) ∈ Zd× [0, T ] : ‖x‖∞ = L} be the union of the lateral sides of the
box [−L,L]d × [0, T ]. Let Nf (L, T ) be the maximal number of points in S(L, T ) ∩ LA

f

satisfying the following property: if (x, t) and (x, s) are any distinct points with the same
spatial coordinate, then |t− s| ≥ 1.

Lemma 14. Let (Lj) and (Tj) be two increasing sequences going to infinity. For any

M,N > 0 and f : Zd → N with finite support,

lim sup
j→∞

P
(

Nf (Lj , Tj) ≤ M
)

P
(

|Lj
Af

Tj
| ≤ N

)

≤ P
(

∃s, ξfs ≡ 0
)

.

We proceed as in Lemma 12 but this time we do it in a space-time box. Here, we also
have to control the exit of the process through the sides of the box.

Proof. Let FL,T be the σ-algebra generated by the Poisson processes from the graphical

representation in the box (−L,L)d × [0, T ]. We first prove that, almost surely on the

event {Nf (L, T ) + |LAf
T | ≤ k}, we have

P
(

Af
s = ∅ for some s > T |FL,T

)

≥
(

e−4λ∞d

1 + γ + 2dλ∞

)k

.
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We suppose that Nf (L, T ) + |LAf
T | ≤ k. By definition of LA

f , this event is FL,T -

measurable. For x ∈ LA
f
T , we have seen that the probability that x dies before giving

birth or aging is at least

1

1 + γ + 2dλ∞
.

For the sides of the box, consider a time line {x} × [0, T ] where ‖x‖∞ = L. Let jx be
the maximal number of points on this time line in LA

f with the property that each pair
is separated by a distance of at least 1; and let (x, t1), . . . , (x, tjx) be such a set. Let

I =

jx
⋃

i=1

{x} × (ti − 1, ti + 1).

The probability of the event EI = {there is no birth arrow coming out from I} is at least
e−4dλ∞jx because the length of I is at most 2jx.

Furthermore, let Ic1, . . . , I
c
jx

be the (possibly empty) intervals in the complement of I
in this line. For 1 ≤ l ≤ jx, if Icl has length u, then we consider

El = {there is no birth arrow from Icl }
∪ {there is at least one birth but there is a death before in Icl }.

We have:

P(El) ≥ P
(

P λ∞([0, u]) = 0
)2d

+ P
(

Y x
1 ≤ min(Y x

2dλ∞
, u)
)

with the same notations as previously

= e−2dλ∞u +

∫ u

0
2dλ∞e−2dλ∞s(1− e−s)ds

= 1−
∫ u

0
2dλ∞e−(1+2dλ∞)sds ≥ 1

1 + 2dλ∞
.

The events (E1, . . . , Ej , EI) are independent because they refer to disjoint parts of the
graphical representation. Consequently, the probability that none of the points on the
time line contributes to the survival of the process is at least

P(no birth from the time line {x} × [0, L]) ≥ P(EI)
∏

1≤l≤jx

P(El)

≥ e−4dλ∞jx

(

1

1 + 2dλ∞

)jx

.
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Finally, we have

P
(

Af
s = ∅ for some s|FL,T

)

≥ P
(

∀x ∈ LA
f
T , x dies before giving birth or aging

)

× P
(

For every lateral time line, no birth from it
)

≥
(

1

1 + γ + 2dλ∞

)|LAf
T
|

∏

x:‖x‖∞=L

(

e−4dλ∞

1 + 2dλ∞

)jx

≥
(

e−4dλ∞

1 + γ + 2dλ∞

)k

,

on {Nf (L, T ) + |LAf
T | ≤ k}. As before, we deduce that

lim sup
j→∞

P
(

Nf (Lj , Tj) + |Lj
Af

Tj
| ≤ k

)

= P
(

∃s, ξfs ≡ 0
)

.

The random variables Nf (Lj, Tj) and |Lj
Af

Tj
| are increasing functions of the configura-

tions on [−Lj, Lj ]
d× [0, Tj ]. Therefore, by the spatiotemporal positive correlations of the

measure P, the FKG inequality applies and for every M,N we have

P
(

Nf (Lj , Tj) + |Lj
Af

Tj
| ≤ M +N

)

≥ P
(

Nf (Lj, Tj) ≤ M and |Lj
Af

Tj
| ≤ N

)

≥ P
(

Nf (Lj, Tj) ≤ M
)

P
(

|Lj
Af

Tj
| ≤ N

)

.

We thus obtain the announced result. �

Fifth step: We control the number of living points in an orthant of the lateral sides
of a large space-time box according to the total number of living points in its lateral
sides.

Let S+(L, T ) = {(x, t) ∈ Zd × [0, T ] : x1 = +L, xi ≥ 0 for 2 ≤ i ≤ d}; S+(L, T ) is one

of the 2d2d−1 orthants of the lateral sides of the box. And let Nf
+(L, T ) be the maximal

number of points in S+(L, T ) ∩ LA
f with the following property: if (x, t) and (x, s) are

any distinct points with the same spatial coordinate, then |t− s| ≥ 1.

Lemma 15. For L,M, T and f acceptable with supp f ∈ (−L,L)d,

P
(

Nf
+(L, T ) ≤ M

)d2d

≤ P
(

Nf (L, T ) ≤ Md2d
)

.

Proof. Let X1, . . . ,Xd2d be the number of living points in the different orthants of all

lateral faces of the space-time box. For example X1 = Nf
+(L, T ). These variables are

identically distributed and are increasing functions of the configurations on [−L,L]d ×
[0, t]. Therefore, by the spatiotemporal correlations of the measure P, the FKG inequality
applies and we obtain the results in the same way as in Lemma 13. �

Sixth step: Now we are ready to construct good events on a finite space-time box,
under assumption of survival.
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Theorem 16. Assume that (ξt) survives. Let (fn)n be an increasing sequence of accept-
able functions which converges to f : Zd → N not identically null and periodic. For every
ǫ > 0, there exist choices of n,L, T such that

P
(

∃x ∈ [0, L)d such that L+2nξ
fn
T+1 ≥ Tx ◦ fn

)

> (1− ǫ) and(C1)

(C2) P

( ∃x ∈ {L+ n} × [0, L)d−1 and t ∈ [0, T )

such that L+2nξ
fn
t+1 ≥ Tx ◦ fn

)

> (1− ǫ).

Without lost of generality, we assume that supp fn = [−n, n]d. In order to get an
idea, one may think of fn as 11[−n,n]d.

Proof. Combining the previous propositions, we want to construct a large space-time
box with enough living points on an orthant of its boundary. If there are enough living
points, then at least one of them will spawn a good configuration, within one unit of
time, which allows us to restart the process.

(1) Choice of n: We want to start with a good enough configuration (fn) to survive
with high probability. Let ǫ > 0; using Lemma 11 we can choose n large enough
so that

P(∀t > 0, ξfnt 6≡ 0) > 1− ǫ2.

(2) Choice of N : We want the process to contain enough particles (N) on an orthant
of the top of a space-time box so that at least one of them spawn fn in one unit
of time. Let x ∈ Zd with age k; the probability that x succeeds in spawning fn
in one unit of time is at least P(Tx ◦ (n+1ξ

kδ0
1 ≥ fn)). This quantity is bounded

from below by α > 0, independently of x and k. We thus choose N ′ large enough
so that N ′ independent trials will contain at least one success with probability
at least 1− ǫ, i.e:

N ′ such that 1− (1− α)N
′ ≥ ǫ.

Next we choose N large enough to ensure that any N points in Zd contain a
subset with at least N ′ points separated from each other by a distance of at least
2n+ 1. In this way, the trials will be independent.

(3) Choice of Lj , Tj : We want “at least N living particles on the orthant {T}× [0, L)d

of the top face of the box” so we want to choose L, T such that

P
(

|LAfn
T ∩ [0, L)d| > N

)

≥ 1− ǫ.

To use Lemma 13, we have to control the number of living particles in the whole
top face. By Lemma 12 there exist sequences (Lj), (Tj) increasing to infinity
such that, for each j

P
(

|Lj
Afn

Tj
| > 2dN

)

= 1− ǫ.

(2bis) Choice of M : To satisfy (C2) we want enough living points on an orthant of
the sides of a space-time box so that at least one of them spawns fn in one unit
of time. We thus choose M ′ large enough so that M ′ independent trials of the

event
{

Tx ◦
(

n+1ξ
kδ0
1 ≥ T−ne1 ◦ fn

)}

, whose probability is bounded from below
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by β > 0 independent of x and k, will contain at least one success with probability
at least 1− ǫ:

M ′ such that 1− (1− β)M
′ ≥ ǫ,

where n+1ξ designates here the process restricted to the box [0, 2n] × [−n, n]d.

Next we choose M large enough so that any M points in Zd will contain a subset
with at least M ′ points separated from each other by a distance of at least 2n+1.
In this way, the trials will be independent.

(3bis) Choice of L, T : We want “at least M living points on the orthant” so we want to

choose L, T such that P
(

Nf
+(L, T ) > M

)

≥ 1 − ǫ. To use Lemma 15, we have

to control the number of living points in all the lateral faces. Using Lemma 14
we derive that for some j, one has

P
(

Nfn(Lj , Tj) > Md2d
)

> 1− ǫ.

Letting L = Lj, T = Tj for that choice of j, we apply Lemmas 13 and 15 and get
that

P
(

|LAfn
T ∩ [ 0, L )d | > N

)

≥ 1− ǫ2
−d

and

P
(

Nfn
+ (L, T ) > M

)

≥ 1− ǫ2
−d/d.

(4) Using the independence of Poisson processes on disjoint space-time regions, we
obtain:

P
(

∃x ∈ [0, L)dL+2nξ
fn
T+1 ⊃ Tx ◦ fn

)

≥ P
(

|LAfn
T ∩ [0, L[d| > N and one of these points spawns fn

)

≥ (1− ǫ2
−d

)(1 − ǫ),

and

P
(

∃x ∈ {L+ n} × [0, L)d−1 and t ∈ [0, T ) such that L+2nξ
fn
t+1 ⊃ Tx ◦ fn

)

≥ P
(

Nfn
+ (L, T ) > M and one of these points spawns fn

)

≥ (1− ǫ2
−d/d)(1 − ǫ).

Choosing initially ǫ2
d

instead of ǫ, we obtain the announced result. �

4.2. Finite space-time condition implies survival. We have worked to construct
“good events” on large finite space-time boxes. But why are they called good? Because
these events satisfy the reverse proposition: if the events occur with high probability,
the process survives. So the survival can be characterized by looking at the Poisson
processes in a finite space-time box, without the need to know the entire process. In this
part, we suppose that the finite space time conditions (C1) and (C2) hold and we prove
the survival of the process by embedding a percolation process in the supercritical CPA.
Before starting this construction, we obtain other equivalent conditions.

First we combine the conditions (C1) and (C2) to obtain a block event guaranteeing
the existence of a well-oriented open path.
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Lemma 17. Let (fn)n be an increasing sequence of acceptable functions from Zd to N
which converges to f : Zd → N not identically null and periodic. Assume that for every
ǫ > 0 there exist n,L, T ∈ N∗ such that conditions (C1) and (C2) are satisfied. Then

(C) P

( ∃x ∈ [L+ n,L+ 2n]× [0, 2L)d−1 and t ∈ [T, 2T )

such that 2L+3nξ
fn
t ≥ Tx ◦ fn

)

> (1− ǫ).

Proof. The idea is to use condition (C2) to spawn (with high probability) fn shifted in
space but not necessarily in time, and use condition (C1) with the Markov property on
the restarted process to spawn fn shifted in time but not necessarily in space.

For n,L, T ∈ N∗, we define En,L,T
1 and En,L,T

2 as the events appearing in conditions
(C1) and (C2):

En,L,T
1 =

{

∃x ∈ [0, L)d such that L+2nξ
fn
T ≥ Tx ◦ fn

}

En,L,T
2 =

{

∃x ∈ {L+ n} × [0, L)d−1 and t ∈ [0, T ) such that L+2nξ
fn
t ≥ Tx ◦ fn

}

.

If En,L,T
2 occurs, then let X2 be the first point (according to some fixed order in space)

and T2 be the first time such that L+2nξ
fn
T2

≥ TX2
◦ fn. Let ǫ > 0 and n,L, T given by

Theorem 16 such that P(En,L,T
1 ) > 1 − ǫ

2 and P(En,L,T
2 ) > 1 − ǫ

2 . For n,L, T ∈ N∗, we

define En,L,T the event appearing in condition (C) as

En,L,T =

{ ∃x ∈ [L+ n, 2L+ n]× [0, 2L)d−1 and t ∈ [T, 2T )

such that 2L+3nξ
fn
t ≥ Tx ◦ fn

}

.

We have

P(En,L,T ) ≥ P

(

(

ξfns

)

s≥0
∈ En,L,T

2 and
(

ξfnT2+s

)

s≥0
∈ En,L,T

1

)

≥ P

(

(

ξfns

)

s≥0
∈ En,L,T

2

)

P

(

(

ξgns

)

s≥0
∈ En,L,T

1

)

(*)

≥
(

1− ǫ

2

)2
.

In (*), gn is the random state of the CPA at the stopping time T2 where all the particles
in the box X2 + [−n, n]d are alive (conditionally to E2). The inequality (*) follows from
the strong Markov property applied at the stopping time T2, from the monotonicity and
from the spatial invariance of the model. �

The purpose is now to use the previous lemma in order to construct an active path with
“good direction”, and with the same “uncertainty” at the start and finish. To establish
Theorem 10, we now take for every n ≥ 0, fn = 11[−n,n]d .

Lemma 18. Suppose that (C) is satisfied. Then for every ǫ > 0, there exist n, a, b ∈ N∗

with n < a such that if (x, s) ∈ [−a, a]d × [0, b] then

P





∃(y, t) ∈ [a, 3a] × [−a, a]d−1 × [5b, 6b] and open paths staying
in [−5a, 5a]d × [0, 6b] and going from (x, s) + [−n, n]d × {0}

to every point in (y, t) + [−n, n]d × {0}



 > 1− ǫ.(B1)
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Proof. We refer the reader to the proof of Proposition 2.22 in [Lig99] or directly to the
initial proof in [BG91]. The main idea is to use repeatedly (and in a somewhat tricky
way) the previous lemma in order to guide our path. The essential arguments are the
strong Markov property satisfied by (ξt) and the fact that we have forced the open path
to stay in large boxes so as to ensure that the Poisson processes involved in the procedure
use disjoint time intervals. �

x

t

0−a +a

−b

3a 5a

−6b

−5b

(x, s)

(y, t)

Figure 1. The block event of Lemma 18 (condition (B1)

Using Lemmas 16, 17 and 18, we obtain Theorem 10. This will be the elementary
brick for building a macroscopic oriented percolation process.

If the event in Figure 1 occurs, we will say that the edge from the first gray cube to
the second gray cube is open. But this event depends on the initial point x in the first
cube, and the next step of the construction depends on the location of the new departure,
that is the center of the second cube. For this reason, we have to perform a dynamical
renormalization: we thus define an oriented percolation by induction.

Let L = {(j, k) ∈ Z× N such that j + k even} be the sites of the macroscopic grid of
our renormalization process and E = {(j, k) → (j′, k + 1) with |j − j′| = 1} its edges.

Theorem 19. Let ǫ > 0. Suppose that the condition (B1) is satisfied and let n, a, b given
by Theorem 10. Then, there exists a random field (W k

e )e∈E,k≥1 taking values in {0, 1}
and a filtration (Gk)k≥1 such that:

• ∀k ≥ 1,∀e ∈ E W k
e ∈ Gk;

• ∀k ≥ 0,∀e ∈ E P[W k+1
e = 1|Gk ∨ σ(W k+1

f , d(e, e′) ≥ 2)] ≥ 1− ǫ;

• if there exists an open path from (0, 0) to (j, k) in W , then ξfn30bk 6≡ 0;

where σ(W k+1
f , d(e, e′) ≥ 2) is the σ-field generated by the random variables W k+1

e′ , with

d(e, e′) ≥ 2; and fn = 11[−n,n]d.
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Proof. We consider a contact process with aging (ξt) with initial configuration fn =
11[−n,n]d .

An open edge in the macroscopic grid will match with the existence of a good open
path in the microscopic grid in such a way that the survival of a percolation in L leads
to the survival of the corresponding CPA. An open path between two fixed points occurs
with small probability; consequently, the vertices of the macroscopic grid will not be
points but zones of the microscopic grid.

For (j, k) ∈ L, the event block of Lemma 18 leads us to introduce

Sj,k = [a(2j − 1), a(2j + 1)]× [−a, a]d−1 × [b5k, b(5k + 1)],

the shaded area corresponding to the starting and ending zones of paths, and

Aj,k = [a(2j − 5), a(2j + 5)]× [−a, a]d−1 × [b5k, b5(k + 1)],

the area where we look for paths from Sj,k to Sj+1,k+1.
In order to control the dependence between the explored zones we will rather consider

a diagonal block composed by 6 elementary blocks. Thus, our new block event will be
the following: if we set for all (j, k) ∈ L

S6
j,k = S6j,6k, A6

j,k =

5
⋃

i=0

A6j+i,6k+i and Ã6
j,k =

5
⋃

i=0

A6j−i,6k+i,

then, for (x, s) ∈ S6
j,k one has

P

( ∃(y, t) ∈ S6
j+1,k+1 and paths staying in A6

j,k and going from

(x, s) + [−n, n]d × {0} to every point in (y, t) + [−n, n]d × {0}

)

> 1− ǫ.(B2)

and (event in the other direction)

P

(

∃(y, t) ∈ S6
j−1,k+1 and paths staying in Ã6

j,k and going from

(x, s) + [−n, n]d × {0} to every point in (y, t) + [−n, n]d × {0}

)

> 1− ǫ.

Now we want to define random variables (W k
e )k≥1,e∈E encoding states (open or close)

of oriented edges between macroscopic sites. To do so, we must keep track of points Yj,k ∈
Zd × R+ in the microscopic grid such that if there exists an open path in (W k

e )k≥1,e∈E
from the origin to the site (j, k), then we have an open path from the origin of microscopic
grid to Yj,k and we start from Yj,k to keep looking for an infinite path.

As the macroscopic percolation lives in Z×N, we will denote an edge e by its extremity
j and its direction + or −.

We want to define Zk(j) = (W k
j,+,W

k
j+2,−, Yj,k) for (j, k) ∈ L, with W k

j,u taking values

in {0, 1} and Yj,k taking values in Zd×R+∪{†} where † represents a cemetery point. We

will need (Bk
j,u)k≥1,j∈Z,u=± independent Bernoulli random variables of parameter 1 − ǫ

(and independent of the rest of the construction).
We define the process by induction on k ∈ N (the construction is illustrated by Fig-

ure 2):

• k = 0 : let Y0,0 = (0, 0) and Yi,0 = † for i 6= 0. This expresses the fact that every

point in [−n, n]d is alive at time 0 (and only them).
• k ⇒ k + 1 : suppose that the process (Zm(j))j,m is defined for j ∈ Z and
0 ≤ m ≤ k, and let us define (Zk+1(j))j∈Z. Let j ∈ Z.
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Zd

R+

•

Yj,k

•

Yj+1,k+1

A6
j,k

S6
j,k S6

j+2,k

S6
j+1,k+1S6

j−1,k+1

S6
j−2,k

Z

N

• • •

••

(j − 2, k) (j, k) (j + 2, k)

(j + 1, k + 1)(j − 1, k + 1)

W
k
+
1

j,
+

W
k
+
1

j+
2,−

Figure 2. Percolation background process

– If Yj,k = Yj+2,k = †, then W k+1
j,+ = Bk+1

j,+ , W k+1
j+2,− = Bk+1

j+2,− and Yj+1,k+1 = †.
– Suppose Yj,k 6= †; if there exists X ∈ S6

j+1,k+1 such that there are paths

from Yj,k + [−n, n]d to every point in X + [−n, n]d × {0} staying in A6
j,k,

then W k+1
j,+ = 1. X is not necessarily unique so we choose Xj+1,k+1 as the

first one in time and according to some fixed order in space. Otherwise,
W k+1

j,+ = 0 and Xj+1,k+1 = 0d+1.

– Suppose Yj+2,k 6= †; if there exists X ∈ S6
j+1,k+1 such that there are paths

from Yj+2,k+[−n, n]d to every point in X+[−n, n]d×{0} staying in Ã6
j+2,k,

then W k+1
j+2,− = 1. X is not necessarily unique so we choose X̃j+1,k+1 as

the first one in time and according to some fixed order in space. Otherwise,
W k+1

j+2,− = 0 and X̃j+1,k+1 = 0d+1.
– Finally

Yj+1,k+1 =

{

† if Xj+1,k+1 = X̃j+1,k+1 = 0d+1

max{Xj+1,k+1, X̃j+1,k+1} else,

where the maximum is taken according to the time coordinate. The first
case reflects the fact that there is no open path from the origin to the zone
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S6
j+1,k+1; the second case reflects the fact that there is at least one such

path and we choose the farthest reached point to restart in the next step of
construction.

As intended, if there exists an infinite open path in the percolation diagram defined

by the (W k
e )k≥1,e∈E then (ξfnt ) survives in Z × [−5a, 5a]d × R+; it is easy to see that

the (Bk
e )k,e do not impact. Now we prove that this event has positive probability. Let

Gk = σ
(

Zl(i), i ∈ Z, 0 ≤ l ≤ k
)

; Gk contains the discovered area to construct the k first
steps of the percolation, so F30kb ⊂ Gk ⊂ F(30k+1)b. For (j, k) ∈ L, one has

P
(

W k+1
j,+ = 1|Gk

)

= 11{Yj,k=†}P(B
k+1
j,+ = 1)

+ 11{Yj,k 6=†}P
( ∃X ∈ S6

j+1,k+1 and paths staying in A6
j,k and going

from Yj,k + [−n, n]d × {0} to every point in X + [−n, n]d × {0}

)

.

So, using the block events (B2) it holds that

P(W k+1
j,+ = 1|Gk) > (1− ǫ).

We have that, conditioned on Gk, the collection of variables {W k
e , k ≥ 1, e ∈ E} is locally

dependent because the constructed paths stay in the (A6
k,i)i∈Z or the (Ã6

k,i)i∈Z. This
achieves the proof of Theorem 19. �

Now that the percolation process is constructed, we conclude this section by the con-
verse in Theorem 10:

Corollary 20. Suppose that the condition (B1) is satisfied. Then (ξt) survives.

Proof. In the previous construction, we have coupled (ξt) with (W k
e ). The process (W k

e ) is
in the class Cd(M, q) (with d = 1,M = 2, q = 1− ǫ) introduced by Garet and Marchand
in [GM12b]. We conclude by using Lemma 2.4 in the latter reference to couple our
process with an independent oriented percolation process of parameter g(1− ǫ), where g
is a function from [0, 1] to [0, 1] with limx→1 g(x) = 1. If we choose 1 − ǫ large enough,
the independent percolation underlying survives, so our process (ξt) survives as well. �

5. Consequences

5.1. A dies out . A first easy consequence of the construction of Section 4 is the following
result.

Theorem 21. The two-stage contact process of Krone ([Kro99]) dies out, that is for

fixed γ, Pλc(γ)(∀t > 0, ξ
0(1)
t 6≡ 0) = 0.

Proof. By Theorem 10, the survival is characterized by a finite space-time condition
which depends continuously on λ and γ. The survival region is an open subset of R2 and
for a critical value λc(γ) the process can not survive. �
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5.2. At most linear growth. We start this section by an independent but fundamental
result. We show that the growth of the CPA is at most linear thanks to a comparison
with Richardson model.

We call Richardson model, with parameter λ the time-homogeneous P(Zd)-valued
Markov process (ηt)t≥0, whose evolution is defined as follows: an empty site z becomes
infected at rate λ

∑

‖z−z′‖1=1 ηt(z
′), the different evolutions being independent. Thanks

to the graphical construction, we can build a coupling of the contact process with aging
of parameter Λ with the Richardson model with parameter λ∞ such that at any time
t, the space occupied by the contact process is contained in the space occupied by the
Richardson model. For this, the Richardson process does not see the deaths and the
maturations and can use all the arrows. This leads to the following result.

Lemma 22. Let Hf
t = ∪s≤tA

f
s . There exist A,B,M such that for every f : Zd → N

and every t > 0

P(Hf
t * BMt) ≤ P(η supp f

t * BMt) ≤ A exp(−Bt).

The Richardson model is described in [Ric73] and the proof of the second inequality
of the lemma is detailed in [GM12a].

5.3. At least linear growth. From now, we fix Λ, γ such that (ξt) survives with positive
probability, so the condition (B1) is satisfied. We fix an initial configuration f : Zd → N
with finite support. Let ǫ large enough, let n, a, b be the parameters given by Theorem 10
and denote by W the percolation process (surviving) constructed in Theorem 19 of
Section 4. We set, for n ∈ N and x, y ∈ Z

ηWn = {y ∈ Z, (0, 0) → (y, n) in W};
τW = inf{n ∈ N, ηWn = ∅}, the extinction time of W ;

HW
n =

⋃

0≤k≤n

ηk, the set of all points touched before time n;

γ′(θ, x, y) = inf {n ∈ N : ∀k ≥ n Card{i ∈ {0, . . . , k}, (x, 0) → (y, i)} ≥ θk} .

We recall here the properties of the percolation (W k
e ) we built in Theorem 19. The

proofs can be found in [GM12b]. We will use our coupling to prove the sought exponential
decays (Theorems 2 and 3).

Corollary 23. Let α > 0. There exists β > 0 such that

E[11{τW<+∞} exp(βτ
W )] ≤ α.

Corollary 24. There exist A,B,C > 0 such that for every L, n > 0

P(τW = +∞, [−L,L] 6⊂ Hw
CL+n) ≤ Ae−Bn.

Corollary 25. There exist positive constants A,B, θ, β such that

∀x, y ∈ Z ∀n ≥ 0 P(+∞ > γ′(θ, x, y) > β|x− y|+ n) ≤ Ae−Bn.

Note that the CPA can survive without the background percolation process does. To
be able to adapt the exponential controls from the percolation to the CPA, we have to
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build a restart argument (see for instance Theorem 2.5 of [GM12b] and Theorem 2.30
of [Lig99] for similar constructions).

We recall that for all t ∈ R+, Af
t = supp ξft .

Lemma 26 (Restart argument). There exist random variables σ, Y such that

• σ takes values in R+ and Y takes values in Zd ∪ {†}.
• On the event {τ f < ∞}, one has σ > τ f and Y = †.
• On the event {τ f = ∞}, it holds that Y lives in the slab Z× [a, a]d−1. Moreover,

Y + [−n, n]d ⊂ Af
σ and a macroscopic percolation (W n

e ) ◦ θσ ◦ TY which almost
surely survives starts from Y + [−n, n]d at time σ.

Construction of Y, σ: The first step is to control the time when we have enough living
points to start a coupling with a percolation process. Then, once the coupling is started,
the percolation can die out. If the process dies out too, then we have a link between
the extinction times; otherwise, we restart the procedure. The quantity of interest is the
sum of these two times (starting+extinction) over each iteration of the procedure.

To construct the starting time, we use the simple following property: there exists
α > 0 such that

P
(

∃x ∈ Z× [−a, a]d−1, Af
1 ⊃ x+ [−n, n]d

)

≥ P
(

∃x ∈ Z× [−a, a]d−1, Aδ0
1 ⊃ x+ [−n, n]d

)

≥ α.

Procedure (illustrated by Figure 3):
We first look for a time when a whole cube [−n, n]d is occupied. Let

N1 = inf
{

m : Af
m+1 = ∅ or ∃x ∈ Z× [−a, a]d−1 such that Af

m+1 ⊃ x+ [−n, n]d
}

.

For every m ∈ N, we have

P(N1 = m)

= P
(

{Af
m+1 = ∅ or ∃x ∈ Z× [−a, a]d−1 such that Af

m+1 ⊃ x+ [−n, n]d} ∩ {N1 ≥ m}
)

= P
(

Af
m+1 = ∅ or ∃x ∈ Z× [−a, a]d−1 such that Af

m+1 ⊃ x+ [−n, n]d|N1 ≥ m
)

× P (N1 ≥ m)

≥ P
(

∃x ∈ Z× [−a, a]d−1 such that Aδ0
1 ⊃ x+ [−n, n]d

)

P (N1 ≥ m)

≥ α P (N1 ≥ m)

where α is the probability that the process contains a whole occupied cube in one unit
of time.

Thus N1 is a sub-geometric random variable such that at time N1, one has either

{Af
N1+1 = ∅} or {∃x ∈ Z× [−a, a]d−1 such that Af

N1+1 ⊃ x+ [−n, n]d}.

• If Af
N1+1 = ∅, then we take M1 = 0 and Y = †.

• If there exists x ∈ Z× [−a, a]d−1 such that Af
N1+1 ⊃ x+[−n, n]f , then we denote

by X1 the first such x (according to some fixed order). We couple the process



THE CONTACT PROCESS WITH AGING 25

P

P

pc dies before it infects a cube

pc
infects
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w
hole

cube perco dies, pc survives
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pc and perco die

Ni + 1 Mi Ni+1 + 1

Figure 3. Restart procedure

starting at time N1 +1 with initial set ξfN1+1 with a percolation process starting

from this cube, as previously thanks to (B1). If the percolation survives then
the CPA survives too and we stop the procedure taking M1 = 0 and Y = X1. If
the percolation does not survive, then let M1 be its extinction time. We look at
the CPA at time U1 = N1 + 1 + b30M1 that is the time in the microscopic grid
corresponding to the extinction of the macroscopic process. At time U1:

– if Af
U1

= ∅, then we stop the procedure and set Y = †,
– otherwise, we begin the whole procedure again with a CPA with initial set

ξfU1
at time U1.

We obtain sequences of independent random variables (Ni) with the same distribution
as N1, independent random variables (Mi) with the same distribution as M1 conditioned
to be finite, and a geometric random variable L independent of the N ′

is and Mi’s which
is the number of times the (N,M) procedure is carried out. Let

σ =

L
∑

i=1

Ui with Ui = Ni + 1 + b30Mi.

By construction, at time σ, one has either Af
σ = ∅ or τ f = ∞. It implies that

• on the event {τ f < ∞}, σ > τ f and Y = †;
• on the event {τ f = ∞}, Y lives in the slab Z × [−a, a]d−1, Y + [−n, n]d ⊂ ξfσ

and a macroscopic percolation (W n
e )◦θσ which almost surely survives starts from

Y + [−n, n]d at time σ. �

Corollary 27. Let σ and Y be the random variables constructed in the restart argument.
Then there exist positive constants A,B,A2, B2 such that for every t > 0:

P (σ > t) ≤ A exp(−Bt),

P
(

‖Y ‖ > t
)

≤ A2 exp(−B2t),



26 AURELIA DESHAYES

Proof. We start the process with some f : Zd → N. We use the previous construction to
extend the well-known exponential control of extinction time of the percolation setting
to our process. The random variables L and (Ni) have both exponentially decaying tail
probabilities. The Corollary 23, say that the same is true for Mi. So, we take β1 > 0
such that E[eβ1L] < ∞, and then β2 > 0 such that E[eβ2(N1+1+30bM1)] ≤ eβ1 . Then

E
[

eβ2σ
]

= E
[

E
[

eβ2σ|L
]]

= E
[

E
[

eβ2

∑L
i=1 Ui |L

]]

= E

[

E
[

eβ2(N1+1+30bM1)
]L
]

≤ E
[

eβ1L
]

< ∞.

It follows that σ has exponentially decaying tail probabilities, which is the first inequality.

Using the fact that the growth is at most linear and that Y ∈ Af
σ, we can obtain the

second inequality. For every t ∈ R+:

P (‖Y ‖ > t) ≤ P ({‖Y ‖ > t} ∩ {σ > ct}) + P ({‖Y ‖ > t} ∩ {σ ≤ ct})
≤ P (σ > ct) + P (∃ Y ∈ Hct with ‖Y ‖ > t)

≤ 2Ae−
B
M

t,

taking c = 1
M where M is the constant appearing in Lemma 22. �

We deduce from Corollary 27:

Theorem 2. For f : Zd → N, if (ξft ) survives, then there exist A,B > 0 such that for
all t > 0 and x ∈ Zd, one has

P
(

t < τ f < ∞
)

≤ A exp(−Bt).

Proof. By construction, on the event {τ f < ∞}, σ > τ f . Therefore,

P(t < τ f < ∞) ≤ P(σ > t)

and the expected result follows. �

Now, we handle the second fundamental estimate.

Theorem 3. For f : Zd → N, if (ξft ) survives, then there exist A,B > 0 such that for
all t > 0 and x ∈ Zd, one has

P(tf (x) ≥ C‖x‖+ t, τ f = ∞) ≤ A exp(−Bt),

which we call the “at least linear growth”.

Proof. The natural idea is to use the corresponding result about the percolation process
and to adapt it to the CPA as we did it in the previous corollaries. But here Corollary 24
is not sufficient because when we hit a macroscopic point with W we do not hit the
whole associated zone in the microscopic grid, but only a part of it. To ensure that we
hit every point in this zone we have to “repeat the hit” . For this reason, we will need
Corollary 25.

In order to use Corollary 25, we have to use the percolation construction again. How-
ever, we recall that our construction was made in a slab Z× [−a, a]d−1. First, we explain
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how to deal with the case where x is in the slab and then we will explain the general
case.

The restart argument gives the existence of random variables Y ∈ Z × [−a, a]d−1,
σ ∈ R+, as well as a macroscopic percolation W surviving from 0 (which corresponds
to Y + S6

0,0 at time σ), and living in a macroscopic grid L ◦ θσ ◦ TY . The following
construction is illustrated by Figure 4.

Let x ∈ Zd and x1 be its first coordinate. Then there exists a unique pair (j, r) ∈
Z× [0, 2a[ such that x1 − Y1 = (2j − 1)a+ r; we put x = j the macroscopic site nearest
to x.

Let R
a
0(x) = 0 and for i ≥ 1, let

R
a
i (x) = inf{n > R

a
i−1(x) : there exists a path from 0 to (x, n) in W}

be the i-th time when W hits x. In an analogous way, we set

Ra
0(x) = 0

Ra
i+1(x) = inf{t ≥ R′

i : ∃y ∈ x+ [−7a, 7a]d with y ∈ Af
t } and R′

i = Ra
i (x) + 59b.

Ra
i (x) is the i-th time when we hit the box x + [−7a, 7a]d with the constraint that

these times are separated by at least 59b.
By definition of γ, if we choose k ≥ θγ, then the number of times when we hit x from

0 before time k
θ is at least k. So

R
a
k(x) ≤

1

θ
max

(

γ(θ, 0, x), k
)

.

We remark that if we hit k times the point x in the macroscopic grid then we hit at least
k times the zone x+ [−7a, 7a]d in the microscopic grid, and these touches are separated
from at least 59b (the height of two edges) so

Ra
k(x) ≤ σ +

31b

θ
max

(

γ(θ, 0, x) ◦ θσ, k
)

.

Then, using Corollary 25 on the points 0 and x we have

P
(

γ(θ, 0, x) ≤ β|x|+ k
)

≥ 1−Ae−Bk.(4)

This leads us to

P

(

Ra
k(x) ≤ k +

31b

θ

(

β

2a
(‖x‖+ k) + k

))

≥ P

(

{γ(θ, 0, x) ≤ β

2a
(‖x‖+ k) + k} ∩ {σ ≤ k}

)

≥ P
(

{γ(θ, 0, x) ≤ β|x|+ k} ∩ {|0| ≤ k} ∩ {σ ≤ k}
)

≥ P
(

γ(θ, 0, x) ≤ β|x|+ k
)

+ P
(

|0| ≤ k
)

+ P (σ ≤ k)− 2

≥ 1− 3Ae−Bk(*)

applying Corollary 27 and Equation (4). Taking C1 =
31bβ
2aθ and C2 =

31bβ
θ +2 we obtain

that
P (Ra

k(x) ≥ C1‖x‖+ C2k) ≤ Ae−Bk.

Now that we have succeeded in controlling hitting times of points that are not far from
x, we try to reach x from these points.
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Consider the event B = {∀y ∈ x+ [−7a, 7a]d, ∃t ≤ 58b such that x ∈ A
δy
t } and also,

for n ≥ 1
An = ∩n

i=0{Ra
i (x) < +∞, θ−Ra

i (x)(Bc)}.
Note that by construction, θ−Ra

i (x)(B) is FRa
i+1

(x)-measurable, so, by the Markov property

P(An|FRa
n(x)

) = 11An−1∩{Ra
n(x)<+∞}P(B

c).

We can see that P(B) ≥ c > 0 so for each n ≥ 1, P(An) ≤ (1− c)n. Finally, using (*) we
obtain

P
(

τ f = +∞, t(x) ≥ C1‖x‖+ C2n
)

≤ P
(

τ f = +∞, Ra
n(x) ≥ C1‖x‖+ C2n

)

+ P
(

τ f = +∞, Ra
n(x) ≤ C1‖x‖+ C2n ≤ t(x)

)

≤ Ae−Bn + (1− c)n.

Finally, if x is not in the slab, we repeat the previous construction through the path
(x1, 0, . . . , 0) → (x1, x2, 0, . . . , 0) → · · · → (x1, . . . , xd). The hitting time between two
successive points satisfies the inequality above so the same result follows for the total
hitting time. �

0
|
Y

−σ
0

|
x x

x+ [−7a, 7a]

59b

Figure 4. Restart construction

6. Ergodicity

The previous exponential controls are the ingredients required to show the ergodicity
of the dynamical system (Ω,F ,P, θ̃x). First we establish properties of K(x) that will be
very useful in Section 7.
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Lemma 28. • For all x ∈ Zd and n ∈ N, P(K(x) > n) ≤ (1− ρ)n.
• Almost surely, for every x ∈ Zd, (K(x) = k and τ0 = +∞) ⇐⇒ (uk(x) <
+∞ and vk(x) = +∞).

Proof. We recall that ρ is the constant given in (3). Let x ∈ Zd and n ∈ N. Applying
the strong Markov property at time un+1(x), we have:

P(K(x) > n+ 1) = P(un+2(x) < +∞)

≤ P(un+1(x) < +∞, vn+1(x) < +∞)

≤ P(un+1(x) < +∞, τx ◦ θun+1(x) < +∞)

≤ P(un+1(x) < +∞)P(τx < +∞)

≤ P(un+1(x) < +∞)(1− ρ) = P(K(x) > n)(1− ρ),

which proves the first point. Suppose that {τ0 = +∞}. Let k ∈ N and x ∈ Zd. Applying
the strong Markov property at time vk(x), we have

P(τ0 = +∞, vk(x) < +∞, uk+1(x) = +∞|Fvk(x))

= 11{vk(x)<+∞}P(τ
� = +∞, t�(x) = +∞) ◦ ξ0vk(x).

The last term is equal to zero due to the growth being at least linear (Theorem 3). We
deduce the second point. �

It means that, on the event {τ0 = ∞}, K(x) is almost surely finite, σ(x) is well defined
and the procedure stops when we find a moment where x has an infinite descent. Thanks
to the previous equivalence and following the proofs of Lemmas 8 and 9 in [GM12a] we
establish the “law after the restart” and show the expected properties of invariance and
independence. This is the content of the following result.

Corollary 29. Let x and y in Zd and assume that x 6= 0.

• For A in the σ-algebra generated by σ(x), and B ∈ F we have: P(A∩(θ̃x)−1(B)) =
P(A)P(B).

• The probability measure P is invariant under the translation θ̃x.
• Under P, σ(y) ◦ θ̃x is independent from σ(x) and it has the same law as σ(y).

• The random variables (σ(x)◦(θ̃x)j)j≥0 are independent and identically distributed

under P.

The expected Theorem 4 is contained in the previous result.

Remark. In Lemma 10 of [GM12a], the authors approximate a Ft-measurable event by
events in the σ-algebras generated by iterations of σ(x) and obtain the following mixing
property: for t > 0 and q > 1 there exists a constant A(t, q) such that for any x ∈ Zd\{0},
for any A ∈ Ft, for any B ∈ F , and every ℓ ≥ 1,

∣

∣P
(

A ∩ (θ̃ℓx)
−1(B)

)

− P(A)P(B)
∣

∣ ≤
A(t, q)q−ℓ. In this way, can conclude about obtain the ergodicity of the system. We can
do exactly the same thing in our setting but we only need the properties of invariance and
independence for the asymptotic shape theorem.
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7. Almost subadditivity and difference between σ and t

Here, we want to bound the quantities σ(x + y)− [σ(x) + σ(y) ◦ θ̃x] and σ(x)− t(x).
For this, we need to go back to the definition of the essential hitting time σ and to deal
with two types of sum of random variables: sum of vi − ui on one hand, which are quite
simple to control thanks to Theorem 2, and sum of ui+1 − vi on the other hand. The
quantity ui+1 − vi depends on the whole configuration of the process at time vi and thus
is more difficult to handle. For this control, we will need all the results about the growth
that we have previously established.

7.1. Easy case: vi − ui.

Lemma 30. There exist A,B > 0 such that for all x ∈ Zd and t > 0 one has

P (∃i < K(x) : vi(x)− ui(x) > t) ≤ A exp(−Bt).

Proof. Using (3) and Markov property we have

P(∃i < K(x) : vi(x)− ui(x) > t) ≤ 1

ρ
P

(

+∞
⋃

i=1

{vi(x)− ui(x) > t} ∩ {i < K(x)}
)

≤ 1

ρ

+∞
∑

i=1

P ({t < vi(x)− ui(x) < +∞} ∩ {ui(x) < ∞})

≤ 1

ρ

+∞
∑

i=1

P
(

θ−1
ui(x)

({t < τx < ∞}) ∩ {ui(x) < ∞}
)

≤ 1

ρ
P (t < τx < ∞)

+∞
∑

i=1

P (i− 1 < K(x))

≤ 1

ρ2
P (t < τx < ∞) .

We conclude using Theorem 2. �

7.2. Box of bad growth points. To deal with the regeneration times ui+1(x)− vi(x),
the idea of Garet and Marchand is to find a point close to (x, ui(x)), descendant of (0, 0)
and with infinite life time, which will quickly regenerate x. To this end, they introduce
a box of “bad growth point” around x. For every x ∈ Zd, L > 0 and t > 0, let

NL(x, t) =
∑

y∈x+BMt+2

∫ L

0
11Ey(x,t) ◦ θs d



ω1
y +

∑

e∈Ed:y∈e
ωe + δ0



 (s)

with Ey(x, t) ={ωy[0, t/2] = 0} ∪ {Hy
t 6⊂ y +BMt} ∪ {t/2 < τy < +∞}

∪{τy = +∞, inf{s ≥ 2t : x ∈ Ay
s} > κt}.

We recall that for every y ∈ Zd and e ∈ Ed, ω1
y and ωe are the Poisson processes giving

respectively the possible death times at y and the possible times of births through e.
Applying Lemmas 13 and 15 of [GM12a] to the process (At) we obtain the following
result.
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Lemma 31. If NL(x, t) ◦ θs = 0 and s + t ≤ ui(x) ≤ s+ L, then either vi(x) = +∞ or
ui+1(x)− ui(x) ≤ κt.
Besides, for any t, s > 0 and x ∈ Zd, the following inclusion holds:

{τ0 = +∞} ∩ {∃u ∈ x+BMt+2, τu ◦ θs = +∞, u ∈ A0
s}

∩
{

NK(x)κt(x, t) ◦ θs = 0
}

∩
⋂

1≤i<K(x)

{vi(x)− ui(x) < t}

⊂ {τ0 = +∞} ∩ {σ(x) ≤ s+K(x)κt}.

Now we estimate the probability that a space-time box contains no bad points. If we
choose κ = 3M(1+C), where M and C are the constants respectively given in Lemma 22
and Theorem 3, the next control follows.

Lemma 32. There exist A,B > 0 such that for all L > 0, x ∈ Zd and t > 0 one has

P (NL(x, t) ≥ 1) ≤ A exp(−Bt).

Proof. Here again, we only consider the alive or dead nature of the points (and not their
ages) so we work with At = supp ξt. Let x ∈ Zd, t > 0 and y ∈ x + BMt+2. First we
control the probability of Ey(x, t). There exist A1, B1, A2, B2 such that

• P (ωy([0, t/2]) = 0) = exp(−t/2),
• P(Hy

t 6⊂ y +BMt) ≤ A1 exp(−B1t) by Lemma 22,
• P(t < τx < ∞) ≤ A2 exp(−B2t) by Theorem 2,
• If τy = +∞, there exists z ∈ Ay

2t with τ z ◦ θ2t = +∞. Thus, the choice of κ
implies that

{τy = +∞, inf{s ≥ 2t : x ∈ Ay
s} > κt}

⊂ {Ay
2t 6⊂ y +B2Mt} ∪

⋃

z∈y+B2Mt

{tz(x) ◦ θ2t > (κ− 2M)t}

⊂ {Ay
2t 6⊂ y +B2Mt} ∪

⋃

z∈y+B2Mt

{tz(x) ◦ θ2t > C‖x− z‖+Mt− 3C} .

Hence, with Lemma 22 and Theorem 3,

P(τy = +∞, inf{s ≥ 2t : x ∈ Ay
s} > κt)

≤ A exp(−2BMt) + (1 + 4Mt)dA exp (−B(Mt− 3C)) .

So we obtain the existence of A3, B3 such that for all x ∈ Zd, t > 0 and for all y ∈
x+BMt+2 we have

P(Ey(x, t)) ≤ A3 exp(−B3t).

For y ∈ x + BMt+2 we write βy = ω1
y +

∑

e∈Ed:y∈e ωe. βy is a Poisson point process

with intensity 1+ 2dλ∞. We recall that (T∞
n )n≥1 is the increasing sequence of the times
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given by this process (with T∞
0 = 0). One has

P(NL(x, t) ≥ 1) ≤ E[NL(x, t)] =
∑

y∈x+BMt+2

E

[∫ L

0
11Ey(x,t) ◦ θs d(βy + δ0)(s)

]

=
∑

y∈x+BMt+2

E

[

+∞
∑

n=0

11{T∞
n ≤L}11Ey(x,t) ◦ θT∞

n

]

=
∑

y∈x+BMt+2

+∞
∑

n=0

E
[

11{T∞
n ≤L}

]

P(Ey(x, t))

≤
∑

y∈x+BMt+2

(1 + E[βy([0, L])]) P(E
y(x, t))

≤ (2Mt+ 5)d (1 + L(2dλ∞ + 1))P(Ey(x, t)). �

7.3. Bound for the lack of subadditivity. To bound σ(x + y) − [σ(x) + σ(y) ◦ θ̃x],
we apply the strategy we have just explained around site x+ y. To initiate the recursive
process, one can benefit here from the existence of an infinite start at the specific point
(x+ y, σ(x) + σ(y) ◦ θ̃y). We recall Theorem 5:

Theorem 5. If (ξt) survives, then there exist A,B > 0 such that for all x, y ∈ Zd and
t > 0, one has

P
(

σ(x+ y)−
(

σ(x) + σ(y) ◦ θ̃x
)

≥ t
)

≤ A exp
(

−B
√
t
)

.

Proof. Let x, y ∈ Zd and t > 0. We set s = σ(x) + σ(y) ◦ θ̃x:

P
(

σ(x+ y) > σ(x) + σ(y) ◦ θ̃x + t
)

≤ P

(

K(x+ y) >

√
t

κ

)

+ P

(

K(x+ y) ≤
√
t

κ
, σ(x+ y) ≥ s+ t

)

.

Thanks to Lemma 1, P
(

K(x+ y) >
√
t

κ

)

≤ 1
ρ exp

(√
t

κ ln(1− ρ)
)

. For the second term

we want to apply Lemma 31. Note that if K(x + y) ≤
√
t

κ , then t ≥ K(x + y)κ
√
t and

τ0 = ∞. Then
{

NK(x+y)κ
√
t

(

x+ y,
√
t
)

≥ 1
}

⊂
{

Nt

(

x+ y,
√
t
)

≥ 1
}

.

So using Lemma 31 around x + y, on a scale
√
t, at initial time s and with the source

point u = x+ y,

P

(

τ0 = +∞,K(x+ y) ≤
√
t

κ
, σ(x+ y) ≥ s+K(x+ y)κ

√
t

)

≤ P
(

Nt

(

x+ y,
√
t
)

◦ θs ≥ 1
)

+ P
(

∃i < K(x+ y) : vi(x+ y)− ui(x+ y) >
√
t
)

≤ P
(

Nt

(

x+ y,
√
t
)

◦ θs ≥ 1
)

+A exp(−Bt)
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by Lemma 30. Since Nt(x+ y,
√
t) ◦ θs = Nt(0,

√
t) ◦ Tx ◦ Ty ◦ θσ(x) ◦ θσ(y)◦θ̃x , we have

Nt

(

x+ y,
√
t
)

◦ θs = Nt

(

0,
√
t
)

◦ θ̃y ◦ θ̃x.

Thus P(Nt(x+ y,
√
t) ◦ θs ≥ 1) = P(Nt(0,

√
t) ≥ 1), which is controlled by Lemma 32.

�

Corollary 33. For x, y ∈ Zd, set r(x, y) = (σ(x + y) − (σ(x) + σ(y) ◦ θ̃x))
+. For any

p ≥ 1, there exists Mp > 0 such that for all x, y ∈ Zd,

E[r(x, y)p] ≤ Mp.

Proof. We write E[r(x, y)p] =
∫ +∞
0 pup−1P(r(x, y) > u) du and use Theorem 5. �

7.4. Difference between σ and t.

Proposition 34. There exist A,B,α > 0 such that for every z > 0 and every x ∈ Zd,

P (σ(x) ≥ t(x) +K(x) (α log(1 + ‖x‖) + z)) ≤ A exp(−Bz).

Proof. We proceed in the same spirit as previously. First, we introduce a new box of
bad growth points. Then, we show that the probability of these points is small and we
conclude by the fact that the quantity to control is dominated by this probability. For
further details, see Proposition 17 of [GM12a]. �

We now have all the elements to prove Theorem 6:

Theorem 6. If (ξt) survives, then, P almost surely, it holds that

lim
‖x‖→+∞

|σ(x)− t(x)|
‖x‖ = 0.

Proof. For every p ≥ 1, we will control E (|σ(x)− t(x)|p). According to Proposition 34,

the random variable Vx = σ(x)−t(x)
K(x) − α log(1 + ‖x‖) is stochastically dominated by a

random variable W with exponential moments. Using the Minkowski inequality, we have

(E|σ(x)− t(x)|p)1/p = (E|K(x)(α log(1 + ‖x‖) + Vx)|p)1/p

≤ α log(1 + ‖x‖)(EK(x)p)1/p + (E[K(x)pV p
x ])

1/p

≤ α log(1 + ‖x‖)(EK(x)p)1/p + (EK(x)2pEV 2p
x )1/(2p)

≤ α log(1 + ‖x‖)(EK ′p)1/p + (EK ′2pEW 2p)1/(2p),

where K ′ is a geometric random variable which stochastically dominates K(x) by Lemma 1.
So, there exists C(p) > 0 such that for every x ∈ Zd,

E (|σ(x)− t(x)|p) ≤ C(p) (log(1 + ‖x‖))p .
Let p > d. We have:

∑

x∈Zd

E
|σ(x) − t(x)|p
(1 + ‖x‖)p ≤ C(p)

∑

x∈Zd

(log(1 + ‖x|))p
(1 + ‖x‖)p < +∞.

So ( |σ(x)−t(x)|
1+‖x‖ )x∈Zd is almost surely in ℓp(Zd) and thus goes to 0. �
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We deduce three fundamental properties of σ:

Corollary 35. There exist A,B,C > 0 such that

∀x ∈ Zd,∀t > 0, P (σ(x) ≥ C‖x‖+ t) ≤ A exp
(

B
√
t
)

.

Proof. Let α be given as in Proposition 34.

P
(

σ(x) > (C + 1)‖x‖ + t
)

≤ P (t(x) ≥ C‖x‖+ t/2) + P

(

K(x) >
1

2α

√

‖x‖+ t/2

)

+ P

(

σ(x) > (C + 1) ‖x‖+ t, t(x) < C‖x‖+ t/2, K(x) ≤ 1

2α

√

‖x‖+ t/2

)

.

The first term is controlled with the estimate of Theorem 3, the second one with Lemma 1
and for the last one note that if K(x) ≤ 1

2α

√

‖x‖+ t/2 then

K(x)[α log(1 + ‖x‖) + α
√

‖x‖+ t/2] ≤ 1

2α

√

‖x‖+ t/2[α
√

‖x‖+ α
√

‖x‖+ t/2]

≤ ‖x‖+ t/2,

so the last term is smaller than

P
(

σ(x) > t(x) +K(x)
(

α log(1 + ‖x‖) + α
√

‖x‖+ t/2
))

,

which is controlled by Proposition 34. �

Corollary 36. For any p ≥ 1, there exists C(p) > 0 such that

∀x ∈ Zd, E[σ(x)p] ≤ C(p)(1 + ‖x‖)p.
Proof. Using the Minkowski inequality, one has

(E[σ(x)p])1/p ≤ C‖x‖+
(

E
[

(

(σ(x)− C‖x‖)+
)p
])1/p

.

Moreover, by Corollary 35,

E
[

(

(σ(x) −C‖x‖)+
)p
]

=

∫ +∞

0
pup−1P (σ(x)− C‖x‖ > u) du < +∞. �

From the control of the tail of σ together with the almost subadditivity, we deduce
the uniformity of σ:

Corollary 37. For every ǫ > 0, P-a.s., there exists R > 0 such that

∀x, y ∈ Zd, (‖x‖ ≥ R and ‖x− y‖ ≤ ǫ‖x‖) =⇒ (|σ(x)− σ(y)| ≤ Cǫ‖x‖) .
Proof. For m ∈ N and ε > 0, we define the event

Am(ǫ) = {∃x, y ∈ Zd : ‖x‖ = m, ‖x− y‖ ≤ ǫm and |σ(x) − σ(y)| > Cǫm}.
Noting that

Am(ǫ) ⊂
⋃

(1−ǫ)m≤‖x‖≤(1+ǫ)m

‖x−y‖≤ǫm

{σ(y − x) ◦ θ̃x + r(x, y − x) > Cǫm},
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we have

P(Am(ǫ)) ≤
∑

(1−ǫ)m≤‖x‖≤(1+ǫ)m

‖z‖≤ǫm

P
(

σ(z) ◦ θ̃x + r(x, z) > Cǫm
)

≤
∑

(1−ǫ)m≤‖x‖≤(1+ǫ)m

‖z‖≤ǫm

P (σ(z) > 2Cǫm/3) + P (r(x, y − x) > Cǫm/3) .

Using the controls of Corollary 35 and Theorem 5, we have

P(Am(ǫ)) ≤ (1 + 2ǫm)d (1 + 2(1 + ǫ)m)d A exp
(

−B
√

Cǫm/3
)

+A′ exp
(

−B′√C ′ǫm/3
)

.

We conclude the proof using the Borel-Cantelli lemma. �

8. Asymptotic shape theorem

To obtain an asymptotic shape theorem we recall the almost subadditive theorem of
Kesten and Hammersley ([Ham74]):

Theorem 38. Let (Ω,F ,P) be a probability space. On this space, we consider a collection
(Xn)n≥1 of real random variables with finite second moments and collections (Yn,p)n,p≥1,
(X ′

n,p)n,p≥1 of real random variables such that

∀n, p ≥ 1 Xn+p ≤ Xn +X ′
n,p + Yn,p.

We assume that the following conditions are satisfied:

• For every n, p, X ′
n,p and Xp have the same distribution.

• supn,pCorr(Xn,X
′
n,p) < 1.

• There exist a non decreasing sequence of reals (Ap)p≥1 with
∑+∞

p=1
Ap

p2 < +∞ and

a constant β > 0 such that:
– for every n, E[(Xn + nβ)−]2 ≤ A2

n,
– for every n, p, E[Y 2

n,p] ≤ A2
n+p.

Then Xn

n converges in L2(P) to a constant µ. Moreover, for every m ≥ 1, the subse-

quence nk = m2k satisfies:

∀ǫ > 0,

+∞
∑

k=1

P(|Xnk
| > ǫ) < +∞.

If we assume in addition that there exists a constant C such that for all ǫ > 0

lim sup
n→∞

sup
p:|n−p|≤ǫn

|Xn −Xp|
n

≤ Cǫ,

then Xn/n converges a.s. to µ.

Using this theorem, we can formulate a general result on some random variables
(σ(x))x∈Zd to conclude an asymptotic shape theorem.
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Theorem 39. Let (Ω,F ,P) be a probability space. Let (σ(x))x∈Zd be random variables

with finite second moments and such that, for every x ∈ Zd, σ(x) and σ(−x) have the
same distribution. Let (s(y))y∈Zd and (r(x, y))x,y∈Zd be collections of random variables
such that:

Hyp 1: ∀x, y ∈ Zd, σ(x + y) ≤ σ(x) + s(y) + r(x, y) with s(y) having the same law as
σ(y), and being independent from σ(x).

Hyp 2: ∀x, y ∈ Zd, ∃Cx,y and αx,y < 2 such that E[r(nx, py)2] ≤ Cx,y(n+ p)αx,y .

Hyp 3: ∃C > 0 such that ∀x ∈ Zd, P(σ(nx) > Cn‖x‖) n→∞−−−→ 0
Hyp 4: ∃K > 0 such that ∀ǫ > 0,P − p.s ∃M such that (‖x‖ ≥ M and ‖x − y‖ ≤

K‖x‖) ⇒ ‖σ(x) − σ(y)‖ ≤ ǫ‖x‖.
Hyp 5: ∃c > 0 such that ∀x ∈ Zd, P(σ(nx) < cn‖x‖) n→∞−−−→ 0

Then there exists µ : Zd → R+ such that

lim
‖x‖→∞

σ(x)− µ(x)

‖x‖ = 0 a.s.

Moreover, µ can be extended to a norm on Rd and we have the following asymptotic shape
theorem: for every ǫ > 0, P-a.s., for every large t,

(1− ǫ)Bµ ⊂ G̃t

t
⊂ (1 + ǫ)Bµ,

where G̃t = {x ∈ Zd : σ(x) ≤ t}+ [0, 1]d and Bµ is the unit ball for µ.

Proof. Step 1: Convergence in one given direction: we fix x ∈ Zd \ {0} and we choose
for all n, p ≥ 1, Xn = σ(nx), X ′

n,p = s(px), Yn,p = r(nx, px), An = Cx,xn
αx and the

probability measure P = P. The hypotheses 1, 2 and 4 allow us to use Theorem 38. We
obtain that for all x ∈ Zd, there exists µ(x) such that P-a.s.:

lim
n→+∞

σ(nx)

n
= lim

n→+∞
Eσ(nx)

n
= µ(x).

This convergence also holds in L2(P).
Step 2: Then we extend µ to a semi-norm on Rd:

• homogeneity: it holds that σ(nx) and σ(−nx) have the same distribution, so
µ(x) = µ(−x) and extracting subsequences we obtain that for all k ∈ Z, µ(kx) =
|k|µ(x).

• subadditivity: thanks to the hypotheses 1 and 2 and to the convergence in L1(P)
we obtain that µ(x+ y) ≤ µ(x) + µ(y).

• extension to Rd: first we extend µ to Qd by homogeneity. Next, using the hy-
pothesis 3, we extract a subsequence (nk)k such that P(σ(nkx) > Cnk‖x‖) ≤
exp(−nk) and we use the Borel-Cantelli lemma to obtain that µ(x) ≤ C‖x‖.
This inequality allows us to extend µ to every x ∈ Rd by continuity.

Step 3: µ is in fact a norm: thanks to the hypothesis 5 and the Borel-Cantelli lemma
again, we obtain that µ(x) ≥ c‖x‖ for every x ∈ Zd, and then for every x ∈ Rd by
extension. So µ separates points.
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Step 4: Thanks to the hypothesis 4, we can show the uniform convergence, that is

lim
‖x‖→∞

σ(x)− µ(x)

‖x‖ = 0,

exactly as in Lemma 27 of [GM12a]. Let us briefly recall quickly the main ideas. We
assume by contradiction that there exists a sequence (yn) of points of Zd converging to a
direction z′ (which can be chosen rational) such that ‖σ(yn)−µ(yn)‖ ≥ ǫ‖yn‖1. Then we
project this sequence on z′Z and we use the almost convergence in the direction z′. We
obtain a contradiction using the uniform continuity of σ and µ (between the sequence
(yn) and its projection).

Step 5: It is now easy to obtain a geometric asymptotic shape theorem: we suppose

by contradiction that there exists an increasing sequence (tn), with tn → +∞ and Gtn

tn
6⊂

(1 + ǫ)Aµ and we obtain a subsequence (xn) such that σ(xn) ≤ tn and µ(xn)/tn > 1+ ǫ,
which contradicts the uniform convergence. We do the same thing with the reverse
inclusion. �

Let us go back to the contact process with aging. We obtain the expected asymptotic
shape theorem for the hitting time t:

Theorem 7. If (ξt) survives, then there exists a norm µ on Rd such that for every ǫ > 0,
almost surely under P, for every large t

(1− ǫ)Bµ ⊂ H̃t

t
⊂ (1 + ǫ)Bµ

H̃t = {x ∈ Zd : t(x) ≤ t}+ [0, 1]d and Bµ is the unit ball for µ.

Proof. First, we use Theorem 39 to show that σ satisfies an asymptotic shape theorem.
We check the hypotheses of Theorem 39. Thanks to Corollary 36, σ has finite second
moment required (in fact σ has finite pth moment for every p ≥ 1 and the inequality

satisfied by σ in Corollary 36 allow us to conclude that the convergence of σ(nx)
n also

holds in Lp(P)). We take s(y) = σ(y) ◦ θ̃x. The hypotheses 1 and 2 are satisfied thanks
to Corollaries 29 and 33. The hypothesis 3 that is the at least linear growth has been
shown in Corollary 35 and the hypothesis 5 of at most linear growth is immediately
checked thanks to the at most linear growth for t in Lemma 22:

P(σ(nx) < Cn‖x‖) ≤ P(t(nx) < Cn‖x‖) ≤ A

ρ
exp(−BCn‖x‖).

Finally, the hypothesis 4 has been shown in Theorem 37.
Then we deduce the result for t from the result for σ thanks to Corollary 6. �
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