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EULER OBSTRUCTION AND LIPSCHITZ-KILLING

CURVATURES

NICOLAS DUTERTRE

Abstract. Applying a local Gauss-Bonnet formula for closed subana-
lytic sets to the complex analytic case, we obtain characterizations of the
Euler obstruction of a complex analytic germ in terms of the Lipschitz-
Killing curvatures and the Chern forms of its regular part. We also
prove analogous results for the global Euler obstruction. As a corollary,
we give a positive answer to a question of Fu on the Euler obstruction
and the Gauss-Bonnet measure.

1. Introduction

In [11] Corollary 5.2, we established the following local Gauss-Bonnet
formula for closed subanalytic sets:

1 =

n∑

k=0

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
,

where X ⊂ Rn is a closed subanalytic set containing 0, Bǫ is the closed ball
of radius ǫ centered at 0, bk is the volume of the unit ball of dimension k

and the Λk(X,−)’s are the Lispchitz-Killing measures introduced by Fu in
[15].

The aim of this paper is to apply this formula to the complex analytic case.
In Section 4, we consider a reduced complex analytic germ (X, 0) ⊂ (Cn, 0) of
dimension d > 0 equipped with a finite complex analytic stratification. We
write X = ∪q

i=0Vi where V0 is the stratum that contains 0. Let φ : X → Z
be a constructible function. Our main result is the following consequence of
the above Gauss-Bonnet formula (see Theorem 4.4):

φ(0) = η(V0, φ)+

q∑

i=1




di∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2di−2e(x)dx


 η(Vi, φ) =

η(V0, φ) +

q∑

i=1




di∑

e=d0+1

lim
ǫ→0

1

e!b2eǫ2e

∫

Vi∩Bǫ

chdi−e(Vi) ∧ κ(Vi)
e


 η(Vi, φ),
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where for each i ∈ {0, . . . , q}, di is the dimension of the stratum Vi, K2di−2e

is the (2di−2e)-th Lipschitz-Killing curvature of Vi, chdi−e(Vi) is the (di−e)-
th Chern form of Vi, κ(Vi) is the Kähler form of Vi and η(Vi, φ) is the normal
Morse index of φ along Vi (see Definition 3.11). Here s2n−2e−1 is the volume
of unit sphere of dimension 2n− 2e − 1. Applying this equality to the case
where X is equidimensional, we obtain in Corollary 4.5 characterizations of
the Euler obstruction EuX(0) (see Definition 3.2) in terms of the Lipschitz-
Killing curvatures and the Chern forms of the regular part Xreg of X and
in Corollary 4.7 a new proof of the local index formula of Brylisnki, Dubson
and Kashiwara [7]. One should mention that, using the relation between
the Euler obstruction and the polar multiplicities of Lê and Teissier [23],
Loeser [24] (p.227) gave a characterization of the Euler obstruction in terms
of the Chern-Weil forms of two hermitian bundles, which looks very similar
to ours. We believe that it should be possible to give a “complex” proof of
our result using Loeser’s equality.

In Section 5, using a Gauss-Bonnet formula for closed semi-algebraic sets
(see [11] Theorem 3.3), we prove global versions of all these local formulas.
Here the Euler obstruction is replaced with the global Euler obstruction
introduced by Seade, Tibăr and Verjovsky in [29].

In [16] Section 5, Fu asked a question on the Euler obstruction and the
Gauss-Bonnet measure. The Gauss-Bonnet measure is the Lipschitz-Killing
measure Λ0(X,−). More precisely, Fu suggested that EuX(0) should in
the limit be equal to the Gauss-Bonnet curvature of X ∩ Bǫ within Xreg ∩
Sǫ. Then he gave, following in own words, “two loosely connected remarks
supporting this assertion”. In Section 6, using our previous study of the
Lipschitz-Killing curvatures in the complex analytic case, we give a proof of
Fu’s assertion (Corollary 6.8).

Throughout the paper, we will use the following notations and conventions
(some of them have already appeared in this introduction):

• sk is the volume of unit sphere of dimension k and bk is the volume
of the unit ball of dimension k,

• for k ∈ {0, . . . , n}, Gk
n is the Grassmann manifold of k-dimension

linear spaces in Rn, gkn is its volume,
• if H is a linear subspace of Rn, SH is the unit sphere in H and H⊥

is the normal space to H,
• for v ∈ Rn, the function v∗ : Rn → R is defined by v∗(y) = 〈v, y〉,
• Bǫ(x) is the closed ball of radius ǫ centered at x and Sǫ(x) is the
sphere of radius ǫ centered at x, if x = 0, we simply write Bǫ and
Sǫ,

• if X ⊂ Rn, X is its topological closure and X̊ is its topological
interior.

The paper is organized as follows. In Section 2, we introduce the Lipschitz-
Killing curvatures and the polar invariants of Comte and Merle [8] and we
present results that we proved in [11] and [13]. We also give the relation
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between the Lipschitz-Killing curvatures and the Chern forms. In Section 3,
we recall the definitions of the Euler obstruction, the complex link and con-
structible functions. In Section 4, we apply the local Gauss-Bonnet formula
for closed subanalytic sets to the complex case and established our main
results. In Section 5, we study the global situation. Section 6 is devoted to
the proof of Fu’s question.

The reader can refer to [9], [10], [14] and [24] for other relations between
the Euler obstruction and curvatures.

The author is grateful to Jean-Paul Brasselet and Nivaldo Grulha for
introducing him to the subject of Euler obstruction. He is also grateful to
Jörg Schürmann for valuable discussions on this topic and for explaining
to him the language of constructible functions and to Joe Fu and Andreas
Bernig for giving him the relation between the Lipschitz-Killing curvatures
and the Chern forms.

2. The local Gauss-Bonnet formula for closed subanalytic

sets

In this section, we present the Lipschitz-Killing measures of a subanalytic
set and we recall the local Gauss-Bonnet formula for closed subanalytic sets.

In [15], Fu developped integral geometry for compact subanalytic sets.
Using the technology of the normal cycle, he associated with every compact
subanalytic set X of Rn a sequence of curvature measures

Λ0(X,−), . . . ,Λn(X,−),

called the Lipschitz-Killing measures. In [6] (see also [1]), Broecker and
Kuppe gave a geometric characterization of these measures using stratified
Morse theory. Let us describe their work.

Let X ⊂ Rn be a compact subanalytic set equipped with a finite suban-
alytic stratification V = {Va}a∈A. Let us assume that X has dimension d

and let us fix a stratum V of dimension e with e < n. For k ∈ {0, . . . , e}
and for x ∈ X, let λV

k (x) : V → R be defined by

λV
k (x) =

1

sn−k−1

∫

S
TxV ⊥

α(x, v)σe−k(IIx,v)dv,

where IIx,v is the second fundamental form on V in the direction of v and
σe−k(IIx,v) is the (e−k)-th elementary symmetric function of its eigenvalues.
We recall that IIx,v is defined on TxV as follows:

IIx,v(W1,W2) = −〈∇W1
W,W2〉,

for W1 and W2 in TxV , where ∇ is the covariant differentiation in Rn and
W is a local extension of v normal to V . The index α(x, v) is defined as
follows:

α(x, v) = 1− χ
(
X ∩Nx ∩Bǫ(x) ∩ {v∗ = v∗(x)− δ}

)
,
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where 0 < δ ≪ ǫ ≪ 1 and Nx is a normal (subanalytic) slice to V at x in
Rn such that Nx ∩ V = {x}. Since we work in the subanalytic setting, this
index is well-defined thanks to Hardt’s theorem [19]. Furthermore when v∗|X
has a stratified Morse critical point at x, it coincides with the normal Morse
index at x of a function f : Rn → R such that f|X has a stratified Morse
critical point at x and ∇f(x) = v (see [17], I.1.8 and [6], Lemma 3.5). For
k ∈ {e+ 1, . . . , n}, we set λV

k (x) = 0.

If V has dimension n then for all x ∈ V , we put λV
0 (x) = · · · = λV

n−1(x) =

0 and λV
n (x) = 1. If V has dimension 0 then we set

λV
0 (x) =

1

sn−1

∫

Sn−1

α(x, v)dv,

and λV
k (x) = 0 if k > 0.

Definition 2.1. For every Borel set U ⊂ X and for every k ∈ {0, . . . , n},
we define Λk(X,U) by

Λk(X,U) =
∑

a∈A

∫

Va∩U
λVa

k (x)dx.

These measures Λk(X,−) are called the Lipschitz-Killing measures of X.
Note that for any Borel set U of X, we have

Λd+1(X,U) = · · · = Λn(X,U) = 0,

and Λd(X,U) = Ld(U), where Ld is the d-th dimensional Lebesgue measure
in Rn. If X is smooth then for k ∈ {0, . . . , d}, Λk(X,U) is equal to

1

sn−k−1

∫

U

Kd−k(x)dx,

where Kd−k is the (d− k)-th Lipschitz-Killing-Weyl curvature.
Furthermore when X is a smooth complex analytic subset of dimension d

in Cn, the Lipschitz-Killing measures are related to the Chern forms of X.

Lemma 2.2. Let X ⊂ Cn be a smooth complex analytic subset of dimension
d. For any Borel set U of X and for k ∈ {0, . . . , d}, we have

Λ2k(X,U) =
1

s2n−2k−1

∫

U

K2d−2k(x)dx =
1

k!

∫

U

chd−k(X) ∧ κ(X)k,

where chi(X) is the i-th Chern form and κ(X) is the Kähler form of X.

Proof. Apply (2.7.1) and Lemma 2.33 in [2] (or Theorem 4.8 and Lemma
7.6 in [18]). �

In [11] Section 5, we studied the asymptotic behavior of the Lipschitz-
Killing measures in the neighborhood of a point of X. We considered a
closed subanalytic set X such that 0 ∈ X and we showed the following
theorem ([11], Theorem 5.1):
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Theorem 2.3. Let X ⊂ Rn be a closed subanalytic set such that 0 ∈ X.
We have

lim
ǫ→0

Λ0(X,X ∩Bǫ) = 1− 1

2
χ(Lk(X)) − 1

2gn−1
n

∫

Gn−1
n

χ(Lk(X ∩H))dH.

Furthermore for k ∈ {1, . . . , n− 2}, we have

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= − 1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL,

and:

lim
ǫ→0

Λn−1(X,X ∩Bǫ)

bn−1ǫn−1
=

1

2g2n

∫

G2
n

χ(Lk(X ∩H))dH,

lim
ǫ→0

Λn(X,X ∩Bǫ)

bnǫn
=

1

2g1n

∫

G1
n

χ(Lk(X ∩H))dH.

�

As a corollary, we obtained ([11], Corollary 5.2):

Corollary 2.4. We have

1 =
n∑

k=0

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
.

�

In [13], we continued our study of the Lipschitz-Killing measures and

related the above limits limǫ→0
Λk(X,X∩Bǫ)

bkǫ
k to the polar invariants introduced

by Comte et Merle in [8]. These invariants can be defined as follows. Let
H ∈ Gn−k

n , k ∈ {1, . . . , n}, and let v be an element in SH⊥ . For δ > 0, we
denote by Hv,δ the (n − k)-dimensional affine space H + δv and we set

α0(H, v) = lim
ǫ→0

lim
δ→0

χ(Hδ,v ∩X ∩Bǫ),

α0(H) =
1

sk−1

∫

S⊥
H

α0(H, v)dv,

and then

σk(X, 0) =
1

gn−k
n

∫

Gn−k
n

α0(H)dH.

Moreover, we put σ0(X, 0) = 1. In [13], we proved the following theorem.

Theorem 2.5. For k ∈ {0, . . . , n− 1}, we have

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= σk(X, 0) − σk+1(X, 0).

Furthermore, we have

lim
ǫ→0

Λn(X,X ∩Bǫ)

bnǫn
= σn(X, 0).
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�

Let d0 be the dimension of the stratum that contains 0. It is explained
in [8] that σk(X, 0) = 1 if 0 ≤ k ≤ d0. Therefore, we find that

lim
ǫ→0

Λd0(X,X ∩Bǫ)

bd0ǫ
d0

= 1− σd0+1(X, 0),

and for k < d0,

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= 0.

We can refine the above corollary.

Corollary 2.6. Let X be a closed subanalytic set of dimension d such that
0 ∈ X. Let d0 be the dimension of the stratum that contains 0. We have

1 =

d∑

k=d0

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
.

�

3. Euler obstruction, complex link and constructible

functions

3.1. The Euler obstruction. The Euler obstruction was defined by Mac-
Pherson [25] as a tool to prove the conjecture about existence and unicity
of the Chern classes in the singular case. For an overview about the Euler
obstruction see [3, 4]. Let us now introduce some objects in order to define
the Euler obstruction.

Let (X, 0) ⊂ (Cn, 0) be an equidimensional reduced complex analytic
germ of dimension d in an open set U ⊂ Cn. We consider a complex analytic
Whitney stratification V = {Va}a∈A of X. We choose a small representative
of (X, 0) such that 0 belongs to the closure of all the strata. We will denote
it by X and we will write X = ∪q

i=0Vi. We will assume that the strata

V0, . . . , Vq are connected and that the analytic sets V0, . . . , Vq are reduced.
Let G(d, n) denote the Grassmanian of complex d-planes in Cn. On the

regular part Xreg of X the Gauss map φ : Xreg → U×G(d, n) is well defined
by φ(x) = (x, Tx(Xreg)).

Definition 3.1. The Nash transformation (or Nash blow up) X̃ of X is the
closure of the image Im(φ) in U×G(d, n). It is a (usually singular) complex

analytic space endowed with an analytic projection map ν : X̃ → X which
is a biholomorphism away from ν−1(Sing(X)) .

The fiber of the tautological bundle T over G(d, n), at the point P ∈
G(d, n), is the set of the vectors v in the d-plane P . We still denote by T
the corresponding trivial extension bundle over U × G(d, n). Let T̃ be the

restriction of T to X̃, with projection map π. The bundle T̃ on X̃ is called
the Nash bundle of X.
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An element of T̃ is written (x, P, v) where x ∈ U , P is a d-plane in Cn

based at x and v is a vector in P . We have the following diagram:

T̃ →֒ T
π ↓ ↓
X̃ →֒ U ×G(d, n)
ν ↓ ↓
X →֒ U.

Let us recall the original definition of the Euler obstruction, due to Mac-
Pherson [25]. Let z = (z1, . . . , zn) be local coordinates in Cn around {0},
such that zi(0) = 0. Let us consider the norm ‖z‖ =

√
z1z1 + · · · + znzn.

Then the differential form ω = d‖z‖2 defines a section of the real vector bun-

dle T ∗Cn, cotangent bundle on Cn. Its pull back restricted to X̃ becomes a

section denoted by ω̃ of the dual bundle T̃ ∗. For ǫ small enough, the section
ω̃ is nonzero over ν−1(z) for 0 < ‖z‖ ≤ ǫ. The obstruction to extend ω̃ as

a non-zero section of T̃ ∗ from ν−1(Sǫ) to ν−1(Bǫ), denoted by Obs(T̃ ∗, ω̃),
lies in H2d(ν−1(Bǫ), ν

−1(Sǫ);Z). Let us denote by Oν−1(Bǫ),ν−1(Sǫ) the ori-

entation class in H2d(ν
−1(Bǫ), ν

−1(Sǫ);Z).

Definition 3.2. The local Euler obstruction of X at 0 is the evaluation of

Obs(T̃ ∗, ω̃) on Oν−1(Bǫ),ν−1(Sǫ), i.e.:

EuX(0) = 〈Obs(T̃ ∗, ω̃),Oν−1(Bǫ),ν−1(Sǫ)〉.
An equivalent definition of the Euler obstruction was given by Brasselet

and Schwartz in the context of vector fields [5].

3.2. The complex link and the normal Morse datum. The complex
link is an important object in the study of the topology of complex analytic
sets. It is analogous to the Milnor fibre and was studied first in [20]. It plays
a crucial role in complex stratified Morse theory (see [17]) and appears in
general bouquet theorems for the Milnor fibre of a function with isolated
singularity (see [21, 22, 30, 33]).

We recall first the definitions of a conormal covector, a degenerate tangent
plane, a degenerate covector and an exceptional point. Let X ⊂ Cn be a
reduced complex analytic set of dimension d. We assume that X is included
in an open set U and that is is equipped with a Whitney stratification
V = {Va}a∈A, which strata are connected.

Definition 3.3. Let x be a point in X and let Vb be the stratum that contains
it. A cotangent vector η ∈ T ∗

xU is conormal for X at x if η(TxVb) = 0.

Definition 3.4. Let x be a point in X and let Vb be the stratum that contains
it. A degenerate tangent plane of the stratification V at x is an element T
(of an appropriate Grassmanian) such that T = limxi→x Txi

Va, where Va is
a stratum that contains Vb in its frontier and where the xi’s belong to Va.
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Definition 3.5. A degenerate covector of V at a point x ∈ X is a covector
which vanishes on a degenerate tangent plane of V at x, i.e. an element η
of T ∗

pU such that there exists a degenerate tangent plane T of V at x with
η(T ) = 0.

Definition 3.6. A point x in X is exceptional if the degenerate conormal
vectors at x form a codimension 0 subvariety of the conormal space at x.

Teissier [32] (Prop. 1.2.1, p. 461) proved that a Whitney stratified com-
plex analytic set does not admit exceptional points.

We can now define the complex link. Let V be a stratum of the strati-
fication V of X and let x be a point in V . Let g : (Cn, x) → (C, 0) be an
analytic complex function-germ such that the differential form Dg(x) is not
a degenerate covector of V at x. Let NC

x be a normal slice to V at x, i.e.
NC

x is a closed complex submanifold of Cn which is transversal to V at x

and NC
x ∩ V = {x}.

Definition 3.7. The complex link LV of V is defined by

LV = X ∩NC
x ∩Bǫ(x) ∩ {g = δ},

where 0 < |δ| ≪ ǫ ≪ 1.
The normal Morse datum NMD(V ) of V is the pair of spaces

NMD(V ) = (X ∩NC
x ∩Bǫ(x),X ∩NC

x ∩Bǫ(x) ∩ {g = δ}).
The fact that these two notions are well-defined, i.e. independent of all

the choices made to define them, is explained in [17].
The set X can be viewed as a real analytic set in R2n and we can compare

χ(LV ) to the indices α(x, v), x ∈ V and v ∈ STxV ⊥ , introduced in Section 2.
Since HomR(TxV,R) is canonically isomorphic to HomC(TxV,C), the point
x is not exceptional in the real sense. Therefore, for almost all v in TxV

⊥,
the form v∗ is a non-degenerate conormal covector at x in the real sense.
Hence, for almost all v in TxV

⊥, the set

X ∩Nx ∩Bǫ(x) ∩ {v∗ = v∗(x)− δ},
introduced in Section 2 is the lower half-link of the function v∗|X and by [17]

(Theorem I 3.9.3 and Corollary 1, Section 2.5, Part II), its Euler character-
istic is equal to χ(LV ). We can conclude that for all x in V and almost all
v in TxV

⊥, we have
α(x, v) = 1− χ(LV ).

3.3. Constructible functions. Let (X, 0) ⊂ (Cn, 0) be a reduced complex
analytic germ of dimension d in a open set U ⊂ Cn. We consider a complex
analytic Whitney stratification V = {Va}a∈A of X. We choose a small
representative of (X, 0) such that 0 belongs to the closure of all the strata.
We still denote it by X and we write X = ∪q

i=0Vi. We assume that the

stratum V0, . . . , Vq are connected and that the analytic sets V0, . . . , , Vq are
reduced.



Euler obstruction and Lipschitz-Killing curvatures 9

Definition 3.8. A constructible function with respect to the stratification V
of X is a function β : X → Z which is constant on each stratum Vi.

This means that there exist integers n0, . . . , nq such that we can write

β =

q∑

i=0

ni · 1Vi
,

where 1Vi
is the characteristic function on Vi.

Remark 3.9. When X is equidimensional, there are two distinguished bases
for the free abelian group of such constructible functions: the characteristic
functions 1V and the Euler obstruction EuV of the closure V of all strata
V .

Definition 3.10. The Euler characteristic χ(X,β) of a constructible func-
tion β : X → Z given by β =

∑q
i=0 ni1Vi

is defined by

χ(X,β) =

q∑

i=0

ni χ(Vi).

Definition 3.11. Let β : X → Z be a constructible function with respect to
the stratification V. Its normal Morse index η(V, β) along V is defined by

η(V, β) = χ(NMD(V ), β) = χ(X ∩N ∩Bǫ(x), β) − χ(LV , β).

If Z ⊂ X is a closed union of strata, then η(V,1Z) = 1−χ(LV ∩Z). The
key role of the Euler obstruction comes from the following identities (see
[28] p.34 or [27] p.292 and p.323-324):

η(V ′,EuV ) = 1 if V ′ = V,

and
η(V ′,EuV ) = 0 if V ′ 6= V.

4. Euler obstruction and curvatures

We apply the result of Section 2 to the case of a complex analytic germ.
Let (X, 0) ⊂ (Cn, 0) be a reduced complex analytic germ of dimension

d > 0 in a open set U ⊂ Cn and let V = {Va}a∈A be a complex analytic
Whitney stratification of X. We choose a small representative of (X, 0) such
that 0 belongs to the closure of all the strata. We still denote it by X and
we write X = ∪q

i=0Vi where V0 is the stratum containing 0. We assume that

the stratum V0, . . . , Vq are connected and that the analytic sets V0, . . . , Vq

are reduced. We observe that V0 = V0 as analytic germs. We set di = dimVi

for i ∈ {0, . . . , q}. We call a top stratum a stratum not contained in the
frontier of any other stratum.

Viewing Cn as R2n and applying the results of Section 2, we already know
that

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= 0,
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for k = 0, . . . , 2d0−1 and k = 2d+1, . . . , 2n. If k is an even integer between
2d0 and 2d and H is a generic element of the Grassmaniann G2n−k

2n , then
Lk(X ∩H) is a Whitney stratified set with only odd-dimensional strata so,
by Sullivan’s theorem [31], χ(Lk(X ∩H)) = 0. Hence by Theorem 2.3, we
see that

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= 0,

if k is an odd integer between 2d0 and 2d, and so

1 =

d∑

e=d0

lim
ǫ→0

Λ2e(X,X ∩Bǫ)

b2eǫ2e
.

Let us focus now on the polar invariants σk(X, 0). By [8], we know that

σ0(X, 0) = · · · = σ2d0(X, 0) = 1 and σ2d+1(X, 0) = · · · = σ2n(X, 0) = 0.

By the above equality and Theorem 2.5, we get that for e ∈ {d0 +1, . . . , d},
σ2e−1 = σ2e. Therefore, Theorem 2.5 can be rewritten as follows.

Theorem 4.1. We have

lim
ǫ→0

Λ2d0(X,X ∩Bǫ)

b2d0ǫ
2d0

= 1− σ2d0+1(X, 0) = 1− σ2(d0+1)(X, 0),

and for e ∈ {d0 + 1, . . . , d− 1}

lim
ǫ→0

Λ2e(X,X ∩Bǫ)

b2eǫ2e
= σ2e(X, 0) − σ2e+1(X, 0) = σ2e(X, 0) − σ2(e+1)(X, 0),

and

lim
ǫ→0

Λ2d(X,X ∩Bǫ)

b2dǫ2d
= σ2d(X, 0).

�

Let us study the Lipschitz-Killing curvatures Λ2e(X,X ∩ Bǫ) more care-
fully. We have

Λ2e(X,X ∩Bǫ) =

q∑

i=0

∫

Vi∩Bǫ

λVi

2e(x)dx,

where

λVi

2e(x) =
1

s2n−2e−1

∫

S
TxV ⊥

i

σ2(di−e)(IIx,v)α(x, v)dv,

if e ≤ di and λVi

2e(x) = 0 if e > di. But we know that for x ∈ Vi and for
almost all v in STxV

⊥
i
,

α(x, v) = 1− χ(LVi
) = η(Vi,1X).

Therefore, for e ≤ di, we have

λVi

2e(x) = η(Vi,1X )
1

s2n−2e−1

∫

S
TxV ⊥

i

σ2(di−e)(IIx,v)dv =
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η(Vi,1X)
1

s2n−2e−1
K2(di−e)(x).

Putting K2(di−e)(x) = 0 if e > di, we can write

Λ2e(X,X ∩Bǫ) =

q∑

i=0

η(Vi,1X)

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx.

Proposition 4.2. For i ∈ {0, . . . , q}, for e ∈ {0, . . . , n},

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx,

is finite. Furthermore, for e ∈ {0, . . . , d0 − 1} ∪ {di + 1, . . . , n}, this limit
vanishes.

Proof. It is clear that

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx = 0

if e > di by definition of K2(di−e).
We prove the finiteness of the other limits by induction on the depth of

the stratum. Let us start with the stratum V0. In this case, the finitess of
the limits is guaranteed by Theorem 2.3 and, by the remark before Corollary
2.6, we have

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

V0∩Bǫ

K2(d0−e)(x)dx = 0,

for e ∈ {0, . . . , d0 − 1}. Furthermore, Corollary 2.6 implies that

lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

V0∩Bǫ

K0(x)dx = 1.

Let us fix now a stratum Vi. By induction, we can assume that the result is
true for any stratum W included in Vi \Vi. For e ∈ {0, . . . , d0 − 1}, we have

Λ2e(Vi, Vi ∩Bǫ) =
∑

W⊂Vi\Vi

1

b2eǫ2e

η(W,1Vi
)

s2n−2e−1

∫

W∩Bǫ

K2(dW−e)(x)dx+

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx,

where dW denotes the dimension of the stratum W . Since

lim
ǫ→0

1

b2eǫ2e
Λ2e(Vi, Vi ∩Bǫ) = 0,

and, by the induction hypothesis,

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

W∩Bǫ

K2(dW−e)(x)dx = 0,
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we find that

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx = 0.

The same argument works in order to prove that

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2(di−e)(x)dx,

exists and is finite for e ∈ {d0, . . . , di}. �

Let us focus now on the limits

lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

Vi∩Bǫ

K2(di−d0)(x)dx,

for i ∈ {0, . . . , q}. We already know that

lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

V0∩Bǫ

K0(x)dx = 1.

Proposition 4.3. For i ∈ {1, . . . , q}, we have

lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

Vi∩Bǫ

K2(di−d0)(x)dx = 0.

Proof. By Theorem 4.1, we know that

lim
ǫ→0

Λ2d0(X,X ∩Bǫ)

b2d0ǫ
2d0

= 1− σ2d0+1(X, 0).

Let H ∈ G2n−2d0
2n be a generic linear space that intersects V0 transversally

at 0. We can choose the scalar product in Cn = R2n in such a way that
H = T0V

⊥
0 . Since 0 is not an exceptional point forX is complex analytic, for

almost all v ∈ S⊥
H , the lower half-linkX∩{v∗ = −δ}∩Bǫ∩H, 0 < δ ≪ ǫ ≪ 1,

does not depend on the scalar product, on H and on v and we have

χ
(
X ∩ {v∗ = −δ} ∩Bǫ ∩H

)
= χ(LV0

).

Since H and v are generic, we see that

lim
ǫ→0

Λ2d0(X,X ∩Bǫ)

b2d0ǫ
2d0

= 1− χ(LV0
) = η(V0,1X).

We can prove the proposition by induction on the depth of the stratum. Let
W be a stratum of depth equal to 1. We have

lim
ǫ→0

Λ2d0(W,W ∩Bǫ)

b2d0ǫ
2d0

=

η(W,1W ) lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

W∩Bǫ

K2(dW−d0)(x)dx+

η(V0,1W ) lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

V0∩Bǫ

K0(x)dx.
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By the above equality applied to X = W and the remark before the propo-
sition, we find that

η(V0,1W ) = lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

W∩Bǫ

K2(dW−d0)(x)dx+ η(V0,1W ).

Hence the result is true for any stratum of depth 1.
Let us fix now a stratum Vi. By induction, we can assume that the result

is valid for any stratum W included in Vi \ Vi. We have

lim
ǫ→0

Λ2d0(Vi, Vi ∩Bǫ)

b2d0ǫ
2d0

= η(V0,1Vi
) =

lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

Vi∩Bǫ

K2(di−d0)(x)dx+

∑

W⊂Vi\Vi
W 6=V0

η(W,1Vi
) lim
ǫ→0

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

W∩Bǫ

K2(dW−d0)(x)dx+

η(V0,1Vi
)

1

b2d0ǫ
2d0

1

s2n−2d0−1

∫

V0∩Bǫ

K0(x)dx.

Using the induction hypothesis, we get the result for the stratum Vi. �

Now we can state the main results of this section.

Theorem 4.4. Let φ : X → Z be a constructible function. We have

φ(0) = η(V0, φ)+

q∑

i=1




di∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2di−2e(x)dx


 η(Vi, φ) =

η(V0, φ) +

q∑

i=1




di∑

e=d0+1

lim
ǫ→0

1

e!b2eǫ2e

∫

Vi∩Bǫ

chdi−e(Vi) ∧ κ(Vi)
e


 η(Vi, φ).

Proof. Let us prove the first equality. For φ = 1X , we just reformulate
Corollary 2.6 using the previous two propositions. Let V be a stratum of X.
Then the formula is also true for φ = 1V because η(Vi,1V ) = 0 if Vi * V .
Since both sides of the equality are linear in φ, this gives the result.

The second equality is an application of Lemma 2.2. �

Corollary 4.5. Assume that X is equidimensional. We have

EuX(0) =
d∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Xreg∩Bǫ

K2(d−e)(x)dx =

d∑

e=d0+1

lim
ǫ→0

1

e!b2eǫ2e

∫

Xreg∩Bǫ

chd−e(Xreg) ∧ κ(Xreg)
e.
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Proof. In this situation Xreg is exactly the union of the top strata. We apply
the previous theorem to φ = EuX and use the fact that η(Vi,EuX) = 0 if Vi

is not a top stratum and that η(Vi,EuX) = 1 if Vi is a top stratum. �

Remark 4.6. As mentioned in the introduction, we think that the above
corollary can be proved by complex methods using Loeser’s results [24]. More-
over, motivated by the relation between the Euler obstruction and the polar
multiplicities established by Lê and Teissier [23] (see also [26]), we believe
that the following equality shoud be true:

lim
ǫ→0

1

e!b2eǫ2e

∫

Xreg∩Bǫ

chd−e(Xreg) ∧ κ(Xreg)
e = (−1)em0(Γe),

where m0(Γe) is the multiplicity of the polar variety of codimension e.

As a corollary, we recover the local index formula of Brylinski, Dubson
and Kashiwara [7], which in this general form is due to Schürmann [27]
(Equality 5.40, p.294). Note that since here we use the real orientation in
the definition of the Euler obstruction instead of the complex orientation, our
formula differs from Schürmann’s equality, where each η(Vi, φ) is replaced
by (−1)diη(Vi, φ) (see remark 5.0.3, p.293 in [27]).

Corollary 4.7. Assume that X is equidimensional. Let φ : X → Z be a
constructible function. We have

φ(0) =

q∑

i=0

EuVi
(0)η(Vi, φ).

Proof. Apply the previous corollary toX = Vi and use the fact that EuV0
(0) =

1. �

5. Global Euler obstruction and curvatures

In this section, we give global versions of the results that we established
in the previous section.

We recall first the Gauss-Bonnet formula for closed semi-algebraic sets
that we proved in [11]. Let X ⊂ Rn be a closed semi-algebraic set of dimen-
sion d, equipped with a semi-algebraic Whitney stratification {Va}a∈A. The
Lipschitz-Killing measures

Λ0(X,−), . . . ,Λn(X,−),

are defined as in the subanalytic case.
In [11], Theorem 3.3, we proved the following Gauss-Bonnet formula.

Theorem 5.1. Let X ⊂ Rn be a closed semi-algebraic set of dimension d.
We have

χ(X) =
d∑

k=0

lim
R→+∞

Λk(X,X ∩BR)

bkRk
.
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�

Next we apply this formula when X ⊂ Cn is a complex algebraic set. We
write X = ∪q

i=0Vi. We assume that the stratum V0, . . . , Vq are connected

and that the analytic sets V0, . . . , Vq are reduced. We observe that V0 = V0.
We set di = dimVi for i ∈ {0, . . . , q}.

Let φ : X → Z be a constructible function with respect to this stratifi-
cation. In this situation and using the same arguments as in the previous
section, the above Gauss-Bonnet formula leads to the following theorem.

Theorem 5.2. Let φ : X → Z be a constructible function. We have

χ(X,φ) =
q∑

i=0

[
di∑

e=0

lim
R→+∞

1

b2eR2e

1

s2n−2e−1

∫

Vi∩BR

K2di−2e(x)dx

]
η(Vi, φ) =

q∑

i=0

[
di∑

e=0

lim
R→+∞

1

e!b2eR2e

∫

Vi∩BR

chdi−e(Vi) ∧ κ(Vi)
e

]
η(Vi, φ).

�

Now we assume that X is equidimensional. In this case, Seade, Tibăr and
Verjovsky introduced a global analogous of the Euler obstruction called the
global Euler obstruction and denoted by Eu(X) (see [29], Definition 3.3).
They also gave a global version of the Lê-Teissier formula relating Eu(X) to
global polar invariants ([29], Theorem 3.4). This result was later generalized
by Schürmann and Tibăr in [28] using the language of constructible functions
and Mac-Pherson cycles.

When we apply the above theorem to φ = EuX , we get the following
Gauss-Bonnet formula for the global Euler obstruction.

Corollary 5.3. Assume that X is equidimensional. We have

Eu(X) =
d∑

e=0

lim
R→+∞

1

b2eR2e

1

s2n−2e−1

∫

Xreg∩BR

K2(d−e)(x)dx =

d∑

e=0

lim
R→+∞

1

e!b2eR2e

∫

Xreg∩BR

chd−e(Xreg) ∧ κ(Xreg)
e.

�

We remark that as in the local case, each member of this last sum should
be equal up to sign to a global polar invariant. As a corollary, we obtain a
global version of the Brylinski-Dubson-Kashiwara formula.

Corollary 5.4. Assume that X is equidimensional. Let φ : X → Z be a
constructible function. We have

χ(X,φ) =

q∑

i=0

Eu(Vi)η(Vi, φ).
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�

We note that for φ = 1X , this formula was proved by Tibăr [34].

6. Euler obstruction and the Gauss-Bonnet measure

In this section, using our results on the Euler obstruction, we give a
positive answer to a question of Fu [16] on the Euler obstruction and the
Gauss-Bonnet measure.

Let us go back before to the subanalytic case. Let X ⊂ Rn be a closed
subanalytic set such that 0 ∈ X. Since we work in a neighborhood of
0, we can assume that X is equipped with a finite Whitney subanalytic
stratification X = ∪q

i=0Vi, where 0 belongs to the closure of each stratum Vi

and V0 is the stratum containing 0. For ǫ > 0 sufficiently small, Bǫ intersects
X transversally and so X ∩Bǫ admits the following Whitney stratification:

X ∩Bǫ = ∪q
i=0Vi ∩ B̊ǫ

⋃
∪q
i=0Vi ∩ Sǫ,

(note that V0 ∩ Sǫ = ∅ if V0 = {0}). By the Gauss-Bonnet theorem of Fu
[15] and Broecker and Kuppe [6], we have

χ(X ∩Bǫ) = Λ0(X ∩Bǫ,X ∩Bǫ) = Λ0(X ∩Bǫ,X ∩ B̊ǫ)+

Λ0(X ∩Bǫ,X ∩ Sǫ) = Λ0(X,X ∩Bǫ) + Λ0(X ∩Bǫ,X ∩ Sǫ).

Since limǫ→0 χ(X∩Bǫ) = 1 and, by Theorem 5.1 in [11], limǫ→0Λ0(X,X∩Bǫ)
exists and is finite, we find that limǫ→0Λ0(X∩Bǫ,X∩Sǫ) exists and is finite.
In the sequel, we will give a characterization of this limit in terms of indices
of critical points onX∩Sǫ of generic linear functions. We will apply Theorem
3.1 and Lemma 2.1 of [12]. Let us recall first the definition of the index of
an isolated stratified critical point.

Definition 6.1. Let Z ⊂ Rn be a closed subanalytic set, equipped with a
Whitney stratification. Let p ∈ Z be an isolated critical point of a subana-
lytic function g : Z → R, which is the restriction to Z of a C2-subanalytic
function G. We define the index of g at p as follows:

ind(g, Z, p) = 1− χ
(
Z ∩ {g = g(p)− δ} ∩Bǫ(p)

)
,

where 0 < δ ≪ ǫ ≪ 1.

The following lemma is necessary in order to apply Lemma 2.1 of [12].

Lemma 6.2. Let V be a stratum of X such that 0 < dimV < n. For
almost all v ∈ Sn−1, there exists ǫv > 0 such that for 0 < ǫ ≤ ǫv, v

∗
|Sǫ

is a

submersion at any point of Sǫ ∩ V , and so at any critical point of v∗|Sǫ∩V
.

Proof. By Lemma 5.4 in [13] applied to H = Rn, we know that for almost
all v in Sn−1, the line lv generated by v intersects V transversally. This
implies that the intersection lv ∩ V has dimension at most 0 and so lv does
not intersect V in a small punctured neighborhood of the origin. �
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Lemma 6.3. For almost all v in Sn−1, v∗|X has an isolated critical point at

the origin.

Proof. See [13], Corollary 4.2. �

Let (ǫs)s∈N be a sequence of positive real number such that lims→+∞ ǫs =
0. There exists s0 such that for s ≥ s0, Bǫs intersects X transversally and
Bǫs ∩X is naturally Whitney stratified. Let s be such that s ≥ s0. By [6]
Lemma 3.5, for almost all v in Sn−1, v∗|X∩Bǫs

is a Morse function. Since a

countable union of sets of measure zero has measure zero, for almost all v
in Sn−1 the function v∗|X∩Bǫs

is a Morse function for any s ≥ s0.

Let us fix a generic v in Sn−1 which satisfies this condition and the con-
ditions of Lemma 6.2 and 6.3. There exists sv such that for any s ≥ sv,
v∗|X∩Bǫs

is a Morse function, 0 is its only critical point lying in B̊ǫs and v∗|Sǫs

is a submersion at any critical point of v∗|X∩Sǫs
. Let p be a critical point of

v∗|X∩Bǫs
in Sǫs and let V be the stratum that contains it. Since v∗|X has no

critical point on V \ {0}, there exists λ(p) 6= 0 such that

∇(v∗|S)(p) = λ(p)∇(ω|S)(p),

where ω is the euclidian distance function. We say that p is outwards-
pointing (resp. inwards-pointing) if λ(p) > 0 (resp. λ(p) < 0).

We can apply Lemma 2.1 of [12] and find that ind(v∗,X ∩ Bǫs , p) = 0 if
p is outwards-pointing and

ind(v∗,X ∩Bǫs , p) = ind(v∗,X ∩ Sǫs , p),

if p is inwards-pointing.
Since v∗|X∩Bǫs

is a Morse function, v∗|X∩Sǫs
is a Morse function as well.

Therefore we can write

ind(v∗,X ∩ Sǫs , p) = (−1)σ(p) · indnor(v∗,X ∩ Sǫs, p),

where σ(p) is the Morse index of v∗|V ∩Sǫs
at p and where indnor(v,X ∩Sǫs, p)

is the normal Morse index at p. It is defined as follows:

indnor(v,X ∩ Sǫs, p) = 1− χ
(
X ∩ Sǫs ∩Np ∩Bν(p) ∩ {v∗ = v∗(p)− δ}

)
,

where 0 < δ ≪ ν ≪ 1 and Np is a normal slice to the stratum V ∩ Sǫs such
that Np ∩ V ∩ Sǫs = {p}. Let us denote by Iv,s the set of inwards-pointing
critical points of v∗|X∩Bǫs

. By Theorem 3.1 in [12], we have that for s ≥ s0

χ(X ∩Bǫs) = ind(v∗,X, 0) +
∑

p∈Iv,s

(−1)σ(p) · indnor(v∗,X ∩ Sǫs , p). (∗)

Since lims→+∞ χ(X ∩Bǫs) = 1, we see that

lim
s→+∞

∑

p∈Iv,s

(−1)σ(p) · indnor(v∗,X ∩ Sǫs , p),
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exists and is equal to 1 − ind(v∗,X, 0). Taking the mean-value on Sn−1 in
this last equality and passing to the limit, we get that

1− lim
s→+∞

Λ0(X,X ∩Bǫs) =

1

sn−1

∫

Sn−1

lim
s→+∞

∑

p∈Iv,s

(−1)σ(p) · ind(v∗,X ∩ Sǫs , p)dv.

Proposition 6.4. We have

lim
ǫ→0

Λ0(X ∩Bǫ,X ∩ Sǫ) = lim
s→+∞

Λ0(X ∩Bǫs ,X ∩ Sǫs) =

1

sn−1

∫

Sn−1

lim
s→+∞

∑

p∈Iv,s

(−1)σ(p) · indnor(v∗,X ∩ Sǫs , p)dv,

for any sequence (ǫs)s∈N of positive real numbers such that lims→+∞ ǫs = 0.

�

We believe that this equality has its own interest in the subanalytic case
because it gives a topological description of limǫ→0Λ0(X ∩ Bǫ,X ∩ Sǫ). In
the sequel, we will refine it when X is a complex analytic set.

Let (X, 0) ⊂ (Cn, 0) be the germ of an analytic complex variety. We keep
the notations of Section 4. We consider a sequence (ǫs)s∈N of positive real
numbers tending to 0 and a vector v in S2n−1 generic as above and we choose
s ≥ sv. Let p ∈ V ∩ Sǫs be an inwards-pointing critical point of v∗|X∩Bǫs

.

Let Np be a normal slice to V ∩ Sǫs such that Np ∩ (V ∩ Sǫs) = {p}. Then
Np ∩ Sǫs is a normal slice to V such that (Np ∩ Sǫs) ∩ V = {p}. Moreover,
since the form v∗|Np

is non-degenerate for X∩Sǫs∩Np at p, the form v∗|Np∩Sǫs

is non-degenerate for X ∩ Sǫs ∩Np at p as well. Therefore the set

X ∩Np ∩ Sǫs ∩Bν(p) ∩ {v∗ = v∗(p)− δ},
is the lower half-link of v∗|X and, as already explained in Section 3, its Euler

characteristic is equal to χ(LV ). Equality (∗) becomes

χ(X ∩Bǫs) = ind(v∗,X, 0) +

q∑

i=0

η(Vi,1X)
∑

p∈Ii
v,s

(−1)σ(p),

where I i
v,s is the set of inwards-pointing critical points of v∗|X∩Bǫs

in Vi∩Sǫs.

Applied to X = V0, this gives that lims→+∞
∑

p∈I0
v,s
(−1)σ(p) exists, is finite

and does not depend on the choice of the sequence. Note that if dimV0 = 0
then I0

v,s is empty and lims→+∞
∑

p∈I0
v,s
(−1)σ(p) = 0. Applied to X = Vj,

where Vj is a stratum of depth 1, it gives that lims→+∞
∑

p∈Ij
v,s
(−1)σ(p)

exists, is finite and does not depend on the choice of the sequence. By
induction on the depth of the stratum, we see that for i ∈ {0, . . . , q},
lims→+∞

∑
p∈Ii

v,s
(−1)σ(p) exists, is finite and does not depend on the choice

of the sequence. Proposition 6.4 becomes
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Proposition 6.5. We have

lim
ǫ→0

Λ0(X ∩Bǫ,X ∩ Sǫ) = lim
s→+∞

Λ0(X ∩Bǫs ,X ∩ Sǫs) =

1

s2n−1

∫

S2n−1

q∑

i=0

η(Vi,1X) · lim
s→+∞

∑

p∈Ii
v,s

(−1)σ(p)dv =

q∑

i=0

η(Vi,1X)
1

s2n−1

∫

S2n−1

lim
s→+∞

∑

p∈Ii
v,s

(−1)σ(p)dv,

for any sequence (ǫs)s∈N of positive real numbers such that lims→+∞ ǫs = 0.

�

Corollary 6.6. For i ∈ {0, . . . , q}, limǫ→0Λ0(Vi ∩Bǫ, Vi ∩ Sǫ) exists and is
finite. Furthermore, we have

lim
ǫ→0

Λ0(X ∩Bǫ,X ∩ Sǫ) =

q∑

i=0

η(Vi,1X) · lim
ǫ→0

Λ0(Vi ∩Bǫ, Vi ∩ Sǫ).

Proof. We remark first that limǫ→0Λ0(V0 ∩Bǫ, V0 ∩ Sǫ) = 0 if dimV0 = 0.
Let (ǫs)s∈N be a sequence of positive real numbers such that lims→+∞ ǫs =

0. We have

Λ0(Vi ∩Bǫs , Vi ∩ Sǫs) =
1

s2n−1

∫

S2n−1

∑

q∈Vi∩Sǫs

ind(v∗, Vi ∩Bǫs , q)dv.

Taking the limit as s tends to +∞, we find

lim
s→+∞

Λ0(Vi∩Bǫs, Vi∩Sǫs) =
1

s2n−1

∫

S2n−1

lim
s→+∞

∑

q∈Vi∩Sǫs

ind(v∗, Vi∩Bǫs , q)dv.

By our previous study, we know that for v generic,

lim
s→+∞

∑

q∈Vi∩Sǫs

ind(v∗, Vi ∩Bǫs , q) = lim
s→+∞

∑

p∈Ii
v,s

(−1)σ(p),

and so, this limit exists and is finite. Therefore, we find that

lim
s→+∞

Λ0(Vi ∩Bǫs , Vi ∩ Sǫs),

exists and is equal to

1

s2n−1

∫

S2n−1

lim
s→+∞

∑

p∈Ii
v,s

(−1)σ(p)dv.

Since this last integral does not depend on the choice of the sequence, we
can conclude that limǫ→0Λ0(Vi ∩Bǫ, Vi ∩ Sǫ) exists and is equal to

1

s2n−1

∫

S2n−1

lim
s→+∞

∑

p∈Ii
v,s

(−1)σ(p)dv.

The previous proposition enables us to finish the proof. �
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Theorem 6.7. If dimV0 > 0 then limǫ→0Λ0(V0 ∩Bǫ, V0 ∩Sǫ) = 1. Further-
more, for i ∈ {1, . . . , q}, we have

lim
ǫ→0

Λ0(Vi∩Bǫ, Vi∩Sǫ) =

di∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2di−2e(x)dx =

di∑

e=d0+1

lim
ǫ→0

1

e!b2eǫ2e

∫

Vi∩Bǫ

chdi−e(Vi) ∧ κ(Vi)
e.

Proof. To prove the first equality, we use the fact that

lim
ǫ→0

Λ0(V0 ∩Bǫ, V0 ∩ Sǫ) = 1− lim
ǫ→0

Λ0(V0, V0 ∩Bǫ),

and the fact that limǫ→0Λ0(V0, V0 ∩Bǫ) = 0 since V0 is smooth.
We prove the second equality by induction on the depth of the stratum.

We assume first that dimV0 > 0. Let W be a stratum of depth 1. By the
previous corollary, we have

lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) = η(V0,1W ) + lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ).

But we also know that

lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) = 1− lim
ǫ→0

Λ0(W,W ∩Bǫ).

By Corollaries 2.4 and 2.6 and the description of the limits limǫ→0
Λk(W,W∩Bǫ)

bkǫ
k

given in Section 4, we get

1− lim
ǫ→0

Λ0(W,W ∩Bǫ) = η(V0,1W )+

dW∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

W∩Bǫ

K2dW−2e(x)dx,

where dW is the dimension of W . Comparing these relations, we obtain the
result for a stratum of depth 1. Let us prove the result for a stratum Vi,
i ∈ {1, . . . , q}. We have

1− lim
ǫ→0

Λ0(Vi, Vi ∩Bǫ) = lim
ǫ→0

Λ0(Vi ∩Bǫ, Vi ∩ Sǫ) =
∑

W⊂Vi\Vi

η(W,1Vi
) lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) + lim
ǫ→0

Λ0(Vi ∩Bǫ, Vi ∩ Sǫ),

and

1− lim
ǫ→0

Λ0(Vi, Vi ∩Bǫ) = lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2di−2e(x)dx+

∑

W⊂Vi\Vi
W 6=V0

η(W,1Vi
) ·

dW∑

e=d0+1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

W∩Bǫ

K2dW−2e(x)dx+

η(V0,1Vi
).
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The result is obtained applying the induction hypothesis.
If dimV0 = 0 and W is a stratum of depth 1, then we have

lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) = lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ),

and

lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) = 1− lim
ǫ→0

Λ0(W,W ∩Bǫ).

But, in this situation, Corollary 2.6 becomes

1− lim
ǫ→0

Λ0(W,W ∩Bǫ) =

dW∑

e=1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

W∩Bǫ

K2dW−2e(x)dx,

because the stratum {0} has no contribution in the computation of the
curvatures Λk(W,W ∩ Bǫ), k ≥ 1. This gives the result for a stratum of
depth 1. Let Vi be a stratum, i ∈ {1, . . . , q}. We have

1− lim
ǫ→0

Λ0(Vi, Vi ∩Bǫ) = lim
ǫ→0

Λ0(Vi ∩Bǫ, Vi ∩ Sǫ) =
∑

W⊂Vi\Vi
W 6=V0

η(W,1Vi
) lim
ǫ→0

Λ0(W ∩Bǫ,W ∩ Sǫ) + lim
ǫ→0

Λ0(Vi ∩Bǫ, Vi ∩ Sǫ),

and, because the stratum V0 is zero-dimensional,

1− lim
ǫ→0

Λ0(Vi, Vi ∩Bǫ) = lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

Vi∩Bǫ

K2di−2e(x)dx+

∑

W⊂Vi\Vi
W 6=V0

η(W,1Vi
) ·

dW∑

e=1

lim
ǫ→0

1

b2eǫ2e
1

s2n−2e−1

∫

W∩Bǫ

K2dW−2e(x)dx.

We obtain the result comparing these two equalities and applying the in-
duction hypothesis. �

The following corollary gives a positive answer to Fu’s question.

Corollary 6.8. Assume that X is equidimensional. We have

EuX(0) = lim
ǫ→0

Λ0(X ∩Bǫ,Xreg ∩ Sǫ).

Proof. We apply Corollary 4.5 and the fact that Xreg is exactly the union
of the top strata. �
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[23] LÊ, D. T. and TEISSIER, B.: Variétés polaires Locales et classes de Chern des
variétés singulières, Ann. of Math. 114 (1981), 457-491.
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[27] SCHÜRMANN, J.: Topology of singular spaces and constructible sheaves, In-
stytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New
Series), 63 Birkhauser Verlag, Basel, 2003.



Euler obstruction and Lipschitz-Killing curvatures 23
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