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Abstract This work proposes a novel variational frame-
work for exemplar-based image colorization in RGB

while most of existing methods use a luminance-chro-
minance space. Using directly these three RGB chan-
nels, our model does not need any pre or post-pro-

cessing step. We design a primal-dual like algorithm

that solves the proposed variational approach. The con-

straint when colorizing a gray-scale image is to main-

tain its luminance. In our RGB model this constraint

is added in the variational model. Its preservation re-
quires introducing a novel projection scheme that takes
care of the hue value (H) of the HSI color-space. The

behavior of our algorithm is illustrated on numerous

examples, and a qualitative comparison is made with

state-of-the-art methods.
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1 Introduction

Image colorization consists in turning a gray-scale im-

age into a color one by adding some color information
for each pixels. This treatment is used in the film in-
dustry to make old productions more attractive to the

consumers, or to produce some special effects. It can

also be used in embedded applications for sensor fu-

sion [34]. The colorization problem can be explained as

follows. The gray-scale image is considered to be the

luminance channel. In order to preserve the initial im-
age content, colorization methods impose that the lumi-
nance channel remains constant. The colorization prob-

lem can be reformulated as the problem of reconstruct-

ing the two chrominance channels. Combined with the

luminance channel, that is the initial gray-scale image,

a final RGB image is recovered. Most colorization sys-

tems therefore work in luminance-chrominance spaces,
typically YUV or lαβ, only dealing with the chromi-

nance channels without coupling them correctly with

the luminance channel. As we will see later in this pa-

per, this lack of coupling leads to some errors on the

colorized images.

While turning a color image into a gray-scale one

is only a matter of standard, the reverse operation is

a strongly ill-posed problem. No information on which

color has to be added is known. To add color infor-

mation, all colorization systems need some prior in-

formation. In the state-of-the-art methods there exist

two types of approaches. The first category includes the

manual methods. The user puts some colors (referred

as scribbles) directly onto the gray-scale image. He de-

cides the position on the image and the exact color he

wants, depending on the semantic and his own experi-

ence. A lot of methods have been proposed to solve the

colorization problem using this prior [19, 22, 29, 30, 33].

1



2 Pierre, Aujol, Bugeau, Ta.

(a) Source image. (b) Target image. (c) Our result.

Fig. 1 Exemplar-based image colorization. The source image (a) is used to obtain the colorized image (c) from the target (b).

For instance, the method of Levin et al. [22] diffuses

the color information of the scribbles to the rest of

the image with the assumption that chrominances have

small variations if the luminance has small ones. The

advantage of these methods is the regularity of the re-

sult. Among these methods the ones of [19] and [30]

work in the RGB color-space. For each pixel without

color neighbour of a colored pixel, the algorithm com-

putes the nearest color (for the l2 norm) to the ones

of this neighbour. This color is chosen among all of it

which luminance is equal to the gray level of the cur-

rent pixel. However, all these manual methods have the

same strong drawback: if the image represents a com-
plex scene, the user has to put a lot of scribbles which
is a tedious work.

The second category replaces the manual interven-

tion by providing a color image (also called source)

as prior information. This color image is used to col-

orize the gray-scale image (also called target). These

approaches are called exemplar-based methods. In this
paper, the proposed method belongs to the second cate-

gory. Fig. 1 shows an exemplar-based colorization, where
the result (Fig. 1(c)) is obtained with the proposed
method.

One of the first exemplar-based methods has been

proposed by Welsh et al. [32] and it is widely inspired

by the algorithms for texture synthesis [14, 31]. This

method works with the lαβ color-space that provides

decorrelated channels. For each pixel of the target, the
method searches within the source for the pixel having

the closest luminance and standard deviation in a patch

of size 5× 5. Finally, the α and β channels of this pixel

are extracted and their values are attributed to the cur-

rent pixel. Di Blasi et al. [13] and Chen et al. [9] improve

this method. Di Blasi et al. propose to speed it up by
tree clustering, and Chen et al. use an image matting

to improve the regularity of the colorized image.

To the best of our knowledge, the first approach pro-

posing exemplar-based prior with regularization of the

colorized image is the method of Irony et al. [20]. First

the image is segmented and a specified classifier based

on DCT (discrete cosine transform) is used to initialize

micro-scribbles on the gray-scale image. Finally, colors

are diffused using the approach of [22]. Based on the

same idea, Gupta et al. [17] propose to use more com-

plex features (Gabor, SURF, intensity and standard de-

viation) computed from blocks of pixels (super-pixels,

see [23] for details). The features are employed to pro-

vide a correspondence between textures of super-pixels

in the target and color of the super-pixels in the source.

The method places micro-scribbles on the gray-scale
image at the center of each super-pixel and uses the
approach of [22] to colorize the image. Authors of [17]
remark that the use of super-pixel representation can

be inaccurate for object boundaries or thin image struc-

tures (see results on Fig. 16 for instance).

The exemplar-based approach of Charpiat et al. [8]

ensures a spatial coherency without a segmentation of

the image but by minimizing the Euclidean norm be-

tween the 8 neighbors. The optimization of this prob-
lem is performed in two steps. First, the graph-cut al-
gorithm is used, and then, a refinement is provided by
a gradient descent. To make the link between textures

and colors, SURF descriptors [2] are used. For the sake

of simplicity, the authors prefer to avoid the coloriza-

tion of the borders of the image, which is a practical

drawback.

The method proposed by Bugeau et al. [5], provides

a framework for exemplar-based colorization with a reg-

ularization by total variation (TV). The YUV color

space is used. The initial gray-scale image is considered

to correspond to the luminance channel Y , defined for

a RGB color (R,G,B), as

Y (R,G,B) = 0.299R+ 0.587G+ 0.114B. (1)

For each pixel x of the target, 8 chrominance candi-

dates, denoted as ci with i = 1, . . . , 8, are extracted

according to eight textural criteria computed on image

patches. The choice of the best candidate is then made

by minimizing a functional with a primal-dual like al-

gorithm. Since the human vision is sensitive to small

changes of colors when they are spatially close, the au-

thors enforce the result to be regular. Hence, the model

of Bugeau et al. [5], is given by the following functional,

where u = (U, V ) is the chrominance to compute, and
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Ω the image domain:

F1(u,W ) := TV (u)+

λ

2

∫

Ω

∑8
i=1 wi(x) ‖u(x)− ci(x)‖

2
2 dx+

α
∫

Ω

∑8
i=1 wi(x)(1− wi(x)) dx+

χU∈[0,255]2 + χW∈∆ ,

(2)

where

TV (u) =

∫

Ω

√

∑

K=U,V

∂xK(x)2 + ∂yK(x)2 dx , (3)

∆ = {(w1, . . . , wk) such that ∀1 ≤ i ≤ k ,

0 ≤ wi ≤ 1 and
∑

i wi = 1} ,
(4)

and

W : x 7→ {wi(x) , i ∈ {1, . . . , 8}}. (5)

The first term is the total variation (TV) used to
regularize the image while allowing the image to have

some discontinuities by preserving strong contours [28].

The term
∫

Ω

∑8
i=1 wi(x)‖u(x)− ci(x)‖

2
2 makes the link

between the candidate color ci and the selected u color.

The weights wi are used to select one candidate. To
avoid mixing the colors, they are forced to go to 0

or 1 during the minimization process. Finally the au-
thors make sure to retrieve color values in the range of
[0, 255]2. Although this functional is not convex, it is

minimized with a primal-dual algorithm. This method
provides good results but the colorized images are too
drab and contours are not preserved as illustrated in

Fig. 2. These effects are due to the lack of coupling be-

tween YUV channels. The classical total variation on

chrominance channels is not able to preserve contours.

Contributions This paper presents in details a new
model for exemplar-based colorization working directly

in the RGB color-space. This new model is based on

the minimization of a functional inspired by [5]. Most of

the state-of-the-art methods work in luminance-chromi-

nance color-spaces. Since the proposed approach works

in the RGB color-space, we do not convert the images

into a luminance-chrominance space.

The proposed method is able to couple the different

RGB channels of color which enables to get clean con-

tours on the final results and shinier color images than

the one of [5]. Hence, the new method does not require

any post-processing step. The improvements come from

the change of the color-space, the use of a coupled to-

tal variation (TV) and the suppression of a non-convex

term of the functional.
The optimization on the RGB color-space of the new

functional is difficult due to the numerous terms and the

use of TV. Regularization by minimization of TV has

been very useful in the image processing community

since the work of [28]. In this paper, we describe the

associated algorithm that solves these problems. It is
inspired by the one of Chambolle and Pock [7] which
uses a primal-dual formulation of the TV.

Even if we work in the RGB color space, we must

ensure the full conservation of the luminance Y. Projec-
tions onto the luminance space are therefore included

on the algorithm. We notice that the orthogonal pro-
jection is not relevant in the RGB color space for the
colorization problem and introduce a new color projec-
tion which is able to preserve the hue (H channel of the

HSI color-space) during the minimization process. The
computation of this projection is detailed and a theo-
retical justification is provided. The colors of the final

result are more realistic with this control of the hue.

[26] proposes a variational model working in the

RGB color-space. This method does not ensure the preser-

vation of the luminance, leading to blur effects.

Outline The paper is organized as follows: first,
the new model working in the RGB color-space is pre-

sented. Next, a primal dual-like algorithm minimizing
this model is given. We recall definitions and properties
about the cylindrical color spaces (e.g., HSI). In addi-

tion we explain how to compute the oblique projection
in order to control the hue during the minimization
process. Since non classical total variations for color
images have been proposed in [15] and [3], a qualitative

comparison with [15] is also provided. Finally, the con-
vergence is numerically verified on numerous examples.
We also study the behavior of this new algorithm on nu-

merous examples and compare it with state-of-the-art

colorization methods.

2 RGB Model for Colorization

The model of Bugeau et al. [5] produces good results.

Nevertheless, images are too drab and halo effects are

visible near strong contours due to a lack of coupling

between the YUV channels. This coupling constitutes

the major improvement produced by our method.

Another problem appears when the method retains

a color candidate. Since the value of the luminance is

given by the target image, the method only retains the

chrominances. Changing the luminance of the color can-

didate while holding its chrominances constant gives
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(a) Source image. (b) Target image. (c) Result with [5].

Fig. 2 Exemplar-based colorization results performed with strong regularization by the method of [5].

colors with various hue. Fig. 3 illustrates this effect:
for a given U and V , different colors can be obtained

when Y varies, leading to inconsistent hue. To solve

this problem, we propose to work directly in the RGB
color-space. Moreover, working in the RGB color-space
avoids color transformation at input and output of the

method as done in most existing approaches.

Fig. 3 If U and V are constant, and Y varies, different colors
are obtained.

2.1 Presentation of the RGB Model

As in [5], assume that C different RGB candidates have

been extracted for each pixel according to criteria based

on texture features. In order to compute a regular im-

age, the following functional is introduced, where u =

(R,G,B) stands for a RGB image:

F2(u,W ) := TVRGB(u)+

1

2λ

∫

Ω

∑C

i=1 wi(x)‖u(x)− ci(x)‖
2
2 dx+

χu∈[0,255]3 + χY (u)=Ig + χW∈∆.

(6)

where

TVRGB(u) =

∫

Ω

√

∑

K=R,G,B

∂xK(x)2 + ∂yK(x)2 dx.

(7)

Other notations in (6) are the same as in (2).
In this model, the non-convex term α

∫

Ω

∑C

i=1 wi(1−

wi) of the chrominance model (2) is suppressed. Indeed,

assume that u is constant and consider the term

1

2λ

∫

Ω

C
∑

i=1

wi(x)‖u(x)− ci(x)‖
2
2 dx+ χW∈∆. (8)

The minimum of this term with respect to the variable
W is given by

W = (0, . . . , 0, 1, 0, . . . , 0) (9)

with 1 at the position i such that ‖u− ci‖ = minj ‖u−

cj‖. Intuitively, if u is constant, the minimum of (8) is
realized when the closest candidate of u is used as data

term. Without this non-convex term, the regularization
of u has an influence on W . Moreover, the model be-

comes simpler and the new functional is convex with

respect to u and W separately.

The constraint Y (u) = Ig means that the luminance

of the colorized image will be the same as the target

one. This constraint preserves the initial target image

content. The luminance constraint is obtained solving

A.u = Ig where u is the vector of three channels, R, G,

B and Ig is the luminance of the target image, leading
to A = (0.299, 0.587, 0.114) thanks to equation (1).

2.2 Minimization of the RGB Model

Many optimization techniques dedicated to image pro-

cessing have been developed. If the functional has only

two terms, the classical forward-backward algorithm

is sufficient [11, 12]. When there are more terms, the

generalized forward-backward [27] is more appropriate.
However, these methods require the computation of the
proximal operator of the total variation which is com-
putationally expensive. To overcome these limitations,

a primal-dual formulation is proposed and solved by [7],

avoiding inner loops in the case of TV minimization. To

this end, the following dual problem is defined:

minu maxp −〈div p|u〉+
1

2λ

∫

Ω

∑C

i=1 wi‖u− ci‖
2
2+

χu∈[0,255]3 + χY (u)=Ig+

χB(0,1) (p) + χW∈∆, .

(10)

where B(0, 1) is the unit ball of R6.
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Following the ideas of [7], Algorithm 1 presents the

different steps of the resolution scheme of the prob-
lem (10).

Algorithm 1 Primal-dual like algorithm minimizing

the RGB model (6).

1: Z0 ← 0, W0 ← 1/C, u0 ←
∑

i wici
2: for n ≥ 0 do
3: Zn+1 ← PB (Zn + σ∇un)

4: Wn+1 ← P∆

(

Wn − ρ
1

λ
(‖un − ci‖

2)i

)

5: un+1 ← PG









un + τ

(

div(Zn+1) +
1

λ

∑

i(wn)ici

)

1 +
τ

λ









6: un+1 ← 2un+1 − un

7: end for

P∆ is the projection onto the simplex ∆ and is com-
puted using [10]. (‖u − ci‖

2)i represents the array of

the same size of W such that each weight is equal to

‖u(x) − ci(x)‖
2 for each index i ∈ 1, . . . , C and for all

pixels x ∈ Ω.

PB represents the projection onto the unit ball of

R
6.

PG is the projection onto LIg , which stands for the

intersection:

LIg := [0, 255]3 ∩ {u such that Y (u) = Ig} . (11)

We use the following definition for u : R2 → R
3:

u(x, y) = (R(x, y), G(x, y), B(x, y)) := (ux,y,1, ux,y,2, ux,y,3).

(12)

The discrete gradient ∇ and divergence div operators

are defined as in [4]. For the sake of clarity, the following

definitions only consider square images of size N × N

but extension to rectangular case is straightforward.

Definition 1 Let

∇ux,y =























{

ux+1,y,1 − ux,y,1 if x < N ,

0 if x = N ,
{

ux,y+1,1 − ux,y,1 if y < N ,
0 if y = N .

...
{

ux,y+1,3 − ux,y,3 if y < N ,
0 if y = N .























. (13)

Next, we propose the dual operator:

div(p)x,y =























p1x,y − p1x−1,y if 1 < x < N ,

p1x,y if x = 1,

− p1x−1,y if x = N ,

+ . . .

+























p6x,y − p6x,y−1 if 1 < y < N ,

p6x,y if y = 1,

− p6x,y−1 if y = N ,

.

(14)

In the convex case the behavior of primal dual al-

gorithms has been studied in [7]. For one channel, the

square of the operator norm of the divergence, neglect-

ing borders effect, is equal to 8 (see [6], Remark page

92). The convergence of this algorithm to a minimizer

is verified for τ, σ > 0 such that τσ < 1/8 (see [7], The-

orem 1). In the case of three color channels, neglecting

borders effects, and simplifying to a square image:

‖ div p‖22 =
∑

1≤x,y≤N

(

p1x,y − p1x−1,y + . . .− p6x,y−1

)2

≤ 12
∑

1≤x,y≤N

(

p1x,y
)2

+ . . .+
(

p6x,y−1

)2

≤ 24‖p‖22

(15)

Choosing p1x,y = p2x,y = . . . = p6x,y = (−1)x+y, we

obtain that

κ = ||| div ||| = sup
‖p‖≤1

‖ div p‖2 , (16)

the norm of the divergence operator can be approxi-

mated with κ = 24−O(M), withM = width+height in
pixels of the considered image. The value 24 is retained

for the square of the norm of the operator div, equal to

the gradient operator one (Theorem IV.5.6 in [21]).

Since the functional is convex with respect to u,

our algorithm computes the solution of the saddle-point

problem (10) with respect to this variable. To that end,

the proximal operator of the constraint χu∈[0,255]3 +

χY (u)=Ig must be computed. It is equal to 0 on the in-
tersection between a plan and the cube [0, 255]3 and

equal to +∞ otherwise. To satisfy this constraint the

projection is computed, first on the plan, and second

on the intersection of the plan and the cube (see Ap-

pendix A).
With the implementation of this projection, the pri-

mal-dual algorithm, minimizing the functional (6) with

respect to u and W is summarized in Algorithm 1. In
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the iteration of the primal-dual algorithm, a step of

gradient descent is added with respect to W .

At this point, the algorithm does not produce sat-

isfying results (see Fig. 7). The contours are well re-

spected and the images are not drab, but they are now

too shiny, containing irrelevant colors due the orthogo-

nal projection PG that does not preserve the hue. The

following section explains how to compute suitable col-

ors.

3 Hue Consistent Projection

The algorithm presented in the previous section suffers

from a lack of consistency of the hue when computing

the orthogonal projection PG. This is due to unequal
weights in the definition of the luminance (1). We solve

this problem by replacing this projection by an oblique

one. In the following, we review the HSI color-space that

enables to propose a hue consistent oblique projection.

3.1 A Geometrical Point of View of the HSI
Color-space

The RGB color-space is not adapted to the human de-

scription of colors. Indeed, the description of colors with

the three values of primaries of the RGB color-space

is not intuitive. People prefers to describe color with
words such as red, purple or orange. To that end, par-

ticular color-spaces have been created. For instance,

the HSV color-space defines colors with three partic-

ular channels which are the hue, the saturation and the

value. In the same trend, other spaces exist, e.g., HSI,
HSL or HSY. In the following, we focus on the HSI

color-space (presented in [16]) for its simplicity in term
of geometric interpretation. This point of view has been
used recently for image enhancement by Nikolova et al.

[24].

The hue represents the human perception of the

pure color. The hue is not defined if R = G = B, i.e.,

the color gray has no hue. Otherwise, the hue H is de-

fined as

H =

{

θ if B ≤ G

360− θ otherwise,
(17)

where

θ = arccos











1

2
[(R−G) + (R−B)]

√

(R−G)2 + (R−G)(G−B)











, (18)

which is an angle in degrees. All the points in the RGB
color-space which have the same hue are on the same

open half-plane. The edge of this half-plane is the axis
passing through coordinates (0, 0, 0) (black b) and (255,
255, 255) (white w). For a given color u, the plan of all

the colors with the same hue as u contains u, b and

w (Fig. 4). The only operation letting H constant is

addition with the combination of the two vectors
−→
bu

and
−→
bw. Indeed, these two vectors constitute a basis of

the plan.

The human perception uses two other descriptors:

the saturation S and the intensity I. The saturation

represents how the color is mixed with the white:

S = 1−
3

R+G+B
[min(R,G,B)]. (19)

It is equal to 0 if the color is gray, and has its maximum

value if the color is away from the axis (bw) (Fig. 4).

The value of the intensity I can be compared to the

illumination of an electric light. If the light is turned

off, the intensity is low. If it is turned on, the value of

intensity is high. I is defined as:

I =
R+G+B

3
. (20)

The parametrization of R3 by the coordinates HSI de-
scribes all this space.

Fig. 4 The HSI components represented in the RGB color-
space. All the RGB colors which have the same hue as u are
on the half-plane containing u and the line (bw).

To manipulate the components on an image by mod-

ifying only one or two values of the HSI color-space, a

simple method consists in first transforming the RGB
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color into HSI, then work on these new values, and fi-

nally invert the transformation. Nevertheless, the new

RGB values are not guaranteed to be inside the cube

[0, 255]3, i.e., the new value might not respect the stan-

dard range of an image. It is therefore preferable to

work directly in the RGB color-space. For instance, if

the H channel must remain constant during an oper-

ation on a color, one must ensure that the new color

value stays in the open half-plane containing w, b and

the original value.

At each iteration of our colorization process, we are

obtaining a RGB color image ũ. Given the luminance

l of the original image, we are facing the problem of

finding a RGB vector u having the same hue as ũ. It is

solved by projecting ũ on the half-line

{u s.t. H(u) = H(ũ)} ∩ {u s.t. Y (u) = l}

staying in the half-plane {u s.t. H(u) = H(ũ)}. To avoid

changing the hue, it is important to stay in the open

half-plane, but the orthogonal projection on the line

Y (u) = l can produce a color on the opposite half-

plane (see Fig. 5). To overcome this limitation, we pro-

pose in this work to use a non-Euclidean projection in

the direction of the I axis. A similar problem (preser-

vation of the range and the hue) has been addressed

in [24] for image enhancement. The main advantage of

our approach compared to [24] is its simpler geometric

interpretation.

Fig. 5 The orthogonal projection of a color (here dark blue)
onto the constraint {u ∈ R

3 such that Y (u) = Ig} changes
the hue. The color is projected onto the light green instead
of an other blue. The oblique projection permits to obtain a
color respecting luminance condition and that has the same
hue as the initial dark blue.

Fig. 6 The projection of ũ on the convex set LIg
∩

{H(ũ) = H(u)} is computed in two steps. First the oblique
projection of ũ on {û such that Y (û) = Ig} in the direction
of I is computed and denoted by u′. Secondly, the algo-
rithm computes û, the closest point of u′ on the convex set
LIg
∩ {H(ũ) = H(u)}

3.2 An Oblique Projection

Due to the unequal weights in the definition of the lu-

minance (1), the orthogonal projection PG onto the

plan {u such that Y (u) = l} changes the hue. For in-

stance, a pure blue (0, 0, 2) with H = 0.67 is mapped

to (66, 131, 27) which is a green with H = 0.17. In
this section a new projection P̃G, maintaining the hue

constant, is introduced and formalized. Instead of pro-

jecting orthogonally a color ũ on LIg (yellow plane in

Fig. 6), the projection is chosen on the half-plane con-

taining colors with the same hue as ũ (blue plane in
Fig. 6). More precisely, the point ũ is projected onto the

plane {u such that Y (u) = l} with direction
−→
bw, giving

a point denoted as u′. Along this axis the hue is con-

stant, and this first result u′ is a point with correct hue
and luminance.

If this point u′ is out of range, a solution with the

same hue has to be computed. To this end, consider

the half-line passing through u′ and crossing the (bw)

half-line (D on Fig. 6). D is contained in the plane
{u such that Y (u) = l} (yellow plane on Fig. 6). On

this half-line, the luminance and the hue are correct.

Therefore, solutions in the RGB cube lie on D. The

nearest of them u is retained as a final result, in order

to avoid as much as possible to reduce the saturation

(u on Fig. 6).
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In the following, we detail the different steps of this

new oblique projection. First, we need to compute the
projection u′ onto D corresponding to the intersection

{H(ũ) = H(u)} ∩ {Y (u) = Ig} (21)

in the direction of
−→
bw. In the following, the coordinates

of u in the RGB color-space are denoted by (R,G,B).

To compute this projection, we define γ such that

Y [(R,G,B) + γ (1, 1, 1)] = Ig. (22)

Thus, γ = Ig − Y (R,G,B).

After this first result (denoted u′ = (R′, G′, B′)),

the projection onto the polygon LIg of u′ must be com-
puted. u′ is on the half line D. There are now two pos-

sibilities: u′ is inside the cube [0, 255]3 or not. If so,

no further processing is needed. Otherwise the half line

D is parametrized as follows: the point g = (Ig, Ig, Ig)

and u′ are on D. The projection of u′ is equal to g +

β ((R′, G′, G′)− g). The computation of β is now de-

scribed. For each edge of the polygon LIg denoted by
[u0, u1], the following system is solved with respect to

α and β:

{

u = g + α(u′ − g)

u = u0 + β(u1 − u0)
(23)

where u is the intersection of the line (u0u1) and the
line (gu′). The detailed expression of α and β is given

in Algorithm 2. If α ∈ [0, 1] and β ∈ [0, 1] then the

intersection of the half-line D and the edge [u0, u1] is

given by g + α(u′ − g) which corresponds to the final

result.

This oblique projection has a variational formula-

tion described hereafter. Compared to the orthogonal

projection, which is the proximal operator of a convex

function:

PG(ũ) = argminu ‖u− ũ‖2 + χu∈[0,255]3 + χY (u)=Ig ,

(24)

the oblique projection stands for:

P̃G(ũ) = argminu ‖A(u− ũ)‖2 + χu∈[0,255]3+

χY (u)=Ig + χH(u)=H(ũ) ,
(25)

where A is an invertible matrix chosen such that

argminu ‖A(u− ũ)‖2 + χC is the projection onto a vec-

torial subspace C in the direction of the line (bw). The
existence of this matrix is detailed in Appendix B.

The complete algorithm solving (25) is given in Al-

gorithm 2, and is justified in Appendix B. Finally, the

orthogonal projection PG in Algorithm 1 is replaced by

P̃G computed with Algorithm 2.

Algorithm 2 Computation of the solution of (25).

1: u = (R,G,B) u′ = (R′, G′, B′) ui = (Ri, Gi, Bi)
2: γ ← 3(Ig − Y (u))

3: u′ ← u+
γ

3
(1, 1, 1)

4: Λ← ∅
5: for {ui, uj} points of the polygon LIg

do
6: d← (R′ − Ig)(Gi −Gj)− (G′ − Ig)(Ri −Rj)
7: if d 6= 0 then

8: β ←
(Ri − bx)(Ig −G′) + (R′ − Ig)(Gi − Ig)

d
9: if R′ − Ig 6= 0 then

10: α←
(Ri − Ig) + β(Ri −Rj)

R′ − Ig
11: else if B′ − Ig 6= 0 then

12: α←
(Bi − Ig) + β(Bi −Bj)

B′ − Ig
13: else
14: projection ← (Ig, Ig, Ig) is the final result.
15: end if

16:
α←

1

d
[(Ri − Ig)(Gi −Gj)−

(Gi − Ig)(Ri −Rj)]

17:
β ←

1

d
[(Ig −R′)(Gi − Ig)−

(R′ − Ig)(Gi − Ig)]

18: if α ∈ [0, 1] and β ∈ [0, 1] then

19: Λ← Λ ∪ α

20: end if

21: end if

22: end for

23: Mα ← maxΛ

24: projection ← g +Mα(u
′ − g)

(a) Source image. (b) Target image.

(c) Colorization with or-
thogonal projection.

(d) Colorization with
oblique projection.

Fig. 7 Colorization results with the orthogonal and the
oblique projections. The oblique projection is able to hold
the hue constant and therefore produces better results than
the orthogonal projection.

Fig. 7 illustrates the benefits of the oblique pro-

jection for image colorization, in particular when the
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source image is drab (Fig. 7(a)). In this figure, we can

see that in the case of the orthogonal projection, the

result of the algorithm can produce some unrealistic

colors (Fig. 7(c)). Indeed, the orthogonal projection

onto LIg is not able to respect the original hue. With

the oblique projection, the algorithm computes colors
which are perceptually close to the source image (Fig. 7(d)).

4 Experimental Results

In this section, we present the results obtained with

our method. We also provide a numerical analysis of
our approach and a comparison with state-of-the-art
methods.

4.1 Features and Candidates Extraction

In this section, we describe the process to extract color
candidates. To extract these candidates, we follow the

same scheme as in [5]. The first step consists in con-

verting the source image into a gray-scale one using

(1). In order to make this converted image comparable

to the target one, a linear transformation [18] of the two

grayscale images (luminance-remapping) is applied. No-

tice that, in order to speed up our approach, the search

for the candidates is performed over a randomly sub-

sampling of 200 pixels of the source image. [5] choose

empirically the following three features based on image

patches:

– standard deviation for patches of size 5× 5 and

3× 3
– the spectral amplitude of the Discrete Fourier Trans-

form for patches of size 7× 7, 9× 9 and 11× 11
– the cumulative histogram for patches of size 7 × 7,

9× 9 and 11× 11

leading to a set of 8 possible candidates for each pixel

of the target image.

These criteria and the associated distances are de-

tailed as follows. For a patch Px, centered on pixel x,

the first distance ρ1(x,y, P ) between the pixels x (resp.
y) in the target (resp. source) image, is defined as:

ρ1(x,y, P ) := |σ2(Px)− σ2(Py)| , (26)

where σ2(Px) (resp. σ
2(Py)) represents the variance of

the luminance values in Px (resp. Py). For a given pixel

x of the target image, the nearest pixel according to this

distance is found in the source image (converted into a

gray-scale image). The RGB values of this nearest pixel

are kept for further processing.

Let P̂x(ξ) be the Fourier transform of the patch Px.

The second distance is given by:

ρ2(x,y, P ) :=
∑

ξ

∣

∣

∣|P̂x(ξ)| − |P̂y(ξ)|
∣

∣

∣ , (27)

and the last distance is defined as:

ρ3(x,y, P ) :=
∑

i

∣

∣HPx
(i)−HPy

(i)
∣

∣ , (28)

where HPx
(resp. HPy

) corresponds to the cumulative

histogram of the patch Px (resp. Py). This distance
is equivalent to the Wasserstein distance. To extract

the candidates, the method proceeds as with the first

distance.

4.2 Parameter Settings

Influence of λ. Fig. 8 presents the influence of the pa-

rameter λ (6). If λ is low, the regularization has no
influence on the final result and the colors are not real-

istic. The algorithm does not take care of the coupling
of the contours, see for example on the right above the
mountain edges. If the parameter λ is high, the result-

ing image is drab (see Fig. 8(c)).

We found that λ = 5.103 provides satisfying re-

sults, but a refinement of λ for each image can slightly
improve the result. Other parameters of Algorithm 1

are fixed and are chosen as follow: ρ = 1, τ = 2 and
σ = 0.01.

(a) λ = 102.

(b) λ = 103. (c) λ = 104.

Fig. 8 Influence of the λ parameter on the result. If λ is
high, the regularization of the image is strong, if it is low the
regularization is weaker and the result is closer of the labelling
∑

i wici. With a strong regularization, the result is drab.

All the experiments presented in this paper are per-
formed on a standard computer equipped with an Intel
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Xeon Processor X5550 with 24 Go of RAM. The colori-

zation of an image of size 680× 512 pixels takes about
290sec on this equipment. This time is divided into two

parts: 170sec for the search of candidates, and 120sec

for the minimization of the functional (600 iterations).

The search of candidates could easily be accelerated

with recent methods such as [1].

4.3 Analysis of the Behavior of the Method

Influence of coupled TV. Fig. 9 compares the proposed

method with the chrominance model of [5] and shows

the influence of the coupled TV. With our RGB model

and our oblique projection, images are less drab (Fig. 9(b)),

and contours are well preserved (Fig. 9(d)) as compared

to [5] (Fig.s 9(a) and 9(c)). This figure clearly demon-
strates that the coupling of the RGB channels is effi-
cient in order to preserve contours during colorization
process as compared to the chrominance model of [5].

(a) Chrominance model. (b) Our result.

(c) Zoom on (a) (d) Zoom on (b)

Fig. 9 Comparison of different regularization. With the RGB
model, the coupling is better than with the luminance-chro-
minance one of [5]. This better coupling produces contours
without halo effect.

In the definition of the coupled total variation used

in this paper, the three channels are only spatially cou-

pled. Recently, the vectorial total variation introduced

by Goldluecke et al. in [15] also couples contours direc-

tionally. With this regularization term, the minimiza-
tion of the associated functional is performed by sim-
ply replacing PB in Algorithm 1 with the projection

described in detail in [15]. Fig. 10 shows the effects of
this vectorial TV term. The colorized image looks bet-
ter if the three color channels are directionally coupled.

In the case of strong changes of direction on the con-

tours, the consistency of color is improved as compared

(a) Vectorial TV of [15]. (b) Classical total variation.

(c) Zoom on (a). (d) Zoom on (b).

Fig. 10 Comparison of the vectorial total variation proposed
in [15] and the classical total variation defined in (7). On noisy
contours with strong changes of direction, the vectorial total
variation improves the results and avoids slight halo effect.

to the classical TV where some little halo effects are

visible on Fig. 10(d). These halo effects disappear with

the vectorial total variation. Nevertheless, this vectorial

TV creates artifacts in case of complex contours and

strong regularization (Fig. 11). In Fig. 11(f) the con-

stant part (the sky) contains pink artifacts (Fig. 11(f)).
This problem might be explained by the matching of
the directions of the three color channels. Moreover, the

minimization of this TV term is time consuming induc-

ing a slower convergence than the classical TV due to a

more complex projection. For all these reasons, we do

not consider this vectorial total variation in this paper

and we prefer to use the classical one.

Influence of the non-convex Term. In the new proposed

functional, the non-convex term
∫

Ω

∑

i wi(1−wi) [5] has

been removed. We explain this choice in the following.

In order to study the behavior of the model, it is

necessary to verify numerically the convergence of the

algorithm. In Fig. 12(a) we can see that the value of

the functional decreases and becomes asymptotically

constant. This result demonstrates that our algorithm
numerically converges. After convergence, Fig. 12(b)
shows that only 1.8% of weights W do not go to 0 or

1. It corresponds to about 14.5% of the pixels of the

image. These outliers do not come from the absence of

the non-convex term but to the case where the metrics

choose at least the two same color candidates. The al-

gorithm is therefore unable to decide which candidate
it has to choose. The random choice of 8 candidates
over the set of 200 pixel gives a probability of 13.22%

to have at least 2 similar candidates. The value of the

histogram of W (Fig. 12(b)) is concentrated in 0 and 1,
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(a) Source image. (b) Target image.

(c) Colorized with vectorial
total variation.

(d) Classical total variation.

(e) Zoom on 11(d). (f) Zoom on 11(c).

Fig. 11 Comparison of the vectorial total variation proposed
in [15] and the classical total variation defined in (7) on im-
ages with complex contours. The vectorial total variation pro-
duces artifacts on the constant parts near the contour.

even without the term
∫

Ω

∑

i wi(1−wi) that shows that

it is unnecessary in our model, since the weights goes

naturally to 0 and 1.

Fig. 13 shows the influence of the non-convex term,

where Fig. 13(b) is the labeling provided with, and
Fig. 13(c) without. The labeling is equal to

∑

i wici, i.e.

to the minimum of the term
∫

Ω

∑

i wi‖u− ci‖
2
2 with re-

spect to u. The initialization is presented in Fig. 13(a).

With this non-convex term, the final value of W is not

able to be modified and the result of the algorithm does

not depend on the regularization. It only depends on
the initialization. Without this non-convex term, the
values of W can change if the value of u becomes closer

to another color candidate. Thus the regularization of
u has an influence on W . The consequence is a better

regularity of the data-fidelity term
∑

i wici which corre-

sponds to the final labeling provided by the algorithm.
Fig. 13 illustrates this effect. The data-fidelity term is
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(a) The value of the functional is decreasing during the
convergence of the algorithm.
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(b) Histogram of W at convergence of the algorithm.

Fig. 12 Histogram of W and value of the functional during
the iterations of the algorithm, for the colorization of 9(b).
The value of the functional during the minimization process
shows that the algorithm converges to a fix point. The his-
togram contains weights equal to 0 and 1, which provides a
labeling without mixing of colors.

more regular without the non-convex term (Fig. 13(c)).

The suppression of this term improves the results.

4.4 Results and Comparisons

In this section, we provide colorization results obtained

by our method and compare with state-of-the-art ap-

proaches.

Fig. 14 shows a comparison of our method with ap-

proaches of Irony et. al. [20], Welsh et. al. [32] and
Gupta et. al. [17] where the results are taken directly

from the paper of [17]. On the left, the targets and

sources are shown. Our results are in the third column.

The results of [20], and [8] are not so realistic although

the algorithms are complex. The images of [32] are ac-

ceptable but the absence of regularization involves dam-

aging artefacts. Indeed, areas that were originally ho-



12 Pierre, Aujol, Bugeau, Ta.

Source. Target. Our result. [17]. [20]. [32]. [8].

Fig. 14 Comparison with state-of-art methods. On the left, the target image in gray-scale and the source image in color.
Results of our method on four images, compared with the results of the state-of-the-art methods presented in [17] ( [17], [20], [32]
and [8]). Our results are comparable to [17] but our algorithm works without any preliminary segmentation.

(a) Initialization.

(b) Labeling provided with
the non-convex term.

(c) Labeling provided without
the non-convex term.

Fig. 13 Labeling provided by the algorithm:
∑

i wici at con-
vergence and at initialization. This term corresponds to the
minimum of the functional with respect to u in the case λ = 0,
with weights obtained at convergence of the algorithm.

mogeneous now present some irregularities. Our algo-

rithm better preserves the homogeneous parts, as in the

sky. The quality of our results are comparable to the

one of Gupta et al. [17], whereas our algorithm is much
simpler since our method does not require local segmen-

tation like super-pixels [23]. Nevertheless, such segmen-

tation can sometimes have a positive effect, which can

be seen for instance in the sky of the first line of Fig.

14.

Fig. 16 reads comparisons of our result with ones

performed with the method of [17]. Image of the first

Fig. 15 Results obtained with our method on different types
of images.

line shows that their texture features are not better

that ours, and this method can fail. The second and

the third lines show that the method of [17] fail on thin

structures. For example, for the second line, at the left
of the image, between trees the color is not consistent
for the method of [17] contrary to our which provides
a good color. At the third line, there is a gray color

between leaves of the tree on the method of [17] instead

of our.
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Source. Target. Our result. [17].

Fig. 16 Comparison with Gupta for images with this structures. state-of-art methods. On the left, the target image in gray-
scale and the source image in color. Results of our method on four images, compared with the results of the state-of-the-art
methods presented in [17] ( [17], [20], [32] and [8]). Our results are comparable to [17] but our algorithm works without
segmentation.

Finally, Fig. 15 provides additional colorization re-

sults. This figure clearly demonstrates the efficiency and

the potential of our method in order to colorize images

of various types.

5 Conclusion and Future Work

In this paper a new variational model for image exem-

plar-based colorization has been presented. This varia-

tional model improves the chrominance model of [5] by

working directly in the RGB color-space. An oblique

projection respecting a given hue and a given luminance

has been proposed to improve colorization results. A

new primal-dual like algorithm has been described and

its behavior numerically studied. In future works, we

plan: to propose an interactive method that would solve

the problems in the constant parts of the images, to in-

crease the speed of convergence of the method by test-

ing discrete algorithms, and to use the generalized total

variation [3] on the problem of colorization.
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A About the Orthogonal Projection

The natural problem that arises when implementing Algo-
rithm 1 is the projection of u onto its constraints, i.e., the

computation of the proximal operator of
λ

2

∫

Ω

∑

C
i=1 wi‖u−

ci‖22 + χu∈[0,255]3 + χY (u)=Ig
. Indeed, defining

F (u) =
1

2λ

∫

Ω

C
∑

i=1

wi‖u−ci‖
2
2+χu∈[0,255]3+χY (u)=Ig

, (29)

proxF (ũ)

= argminu ‖u− ũ‖22 +
τ

λ

∫

Ω

∑

C
i=1 wi‖u− ci‖22+

χu∈[0,255]3 + χY (u)=Ig

= argminu

∥

∥

∥

∥

∥

∥

∥

u−







ũ+
τ

λ

∑

C
i=1 wici

1 +
τ

λ







∥

∥

∥

∥

∥

∥

∥

2

2

+

χu∈[0,255]3 + χY (u)=Ig

(30)

It is equivalent to compute the projection of

ũ+
τ

λ

∑

C
i=1 wici

1 +
τ

λ

(31)
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onto the intersection of the cube [0, 255]3 and the affine plane
defined by A.u = Ig. There are many cases for this set: it can
be a singleton, a triangle, a quadrilateral or a pentagon.

The computation of this projection is performed in two
steps. The projection onto the plane is first achieved. Next
the projection onto the intersection is computed. This two
steps approach is justified by the theory, as shown by the
following Lemma.

Lemma 1 (Two-steps projection.) Let x ∈ R
3, and P

an affine plane of R3, u the orthogonal projection of x onto

P . Let C a non empty closed convex set included in P . And

let v the orthogonal projection of u onto C.

So v is the orthogonal projection of x onto C.

The first step (the projection onto the plane) has an al-
gebraic expression given in the following Lemma.

Lemma 2 (Projection on the plane.) Let a ∈ R
3, a 6=

0, let α ∈ R, let

W := {x ∈ R
n such that 〈a|x〉 = α}, and s ∈ R

n.

So the orthogonal projection of s on the affine plane W
is given by:

PW (s) =
a

||a||2

(

α− 〈a|s〉

||a||2

)

+ s. (32)

Assume now that the projection onto the plane is com-
puted and denoted by u′. There are two possibilities: u′ is on
the intersection or out of it. To determine this, the algorithm
has to check if the point is inside the cube (by computing 6
inequalities). If u′ is inside the cube, it is the final solution of
the projection. Else, the final result is on an edge of the in-
tersection. To determine the edge where it lies, the projection
onto each edge is computed. The nearest projection among
them is retained as final output.

Now, the complete algorithm computing the projection
of a point onto the intersection of the cube [0, 255]3 and the
affine plane defined by A.u = Ig is given in Algorithm 3,
assuming this intersection is a polygon defined by points
P1, . . . , Pn. This algorithm has been described in [25].

Algorithm 3 Algorithm computing the proximal op-
erator of χ[0,255]3 + χ{u∈R3 st Au=c}.

1: X ←
A

||A||2
(Ig − 〈X|A〉) +X ⊲ Orthogonal projection

on the plane.
2: if X 6∈ [0, 255]3 then
3: for i = 1 : n− 1 do
4: for j = i+ 1 : n do ⊲ For each edge.

5: α←
〈−−−→
PiPj |

−−→
PiX

〉

/
(

‖
−−−→
PiPj‖2‖

−−→
PiX‖2

)

6: if α > 1 then
7: Xi,j ← Pj

8: else if α < 0 then
9: Xi,j ← Pi

10: else
11: Xi,j ← Pi + α

−−−→
PiPj

12: end if
13: end for
14: end for
15: X ← argminXi,j

‖X −Xi,j‖2
16: end if

B About the Oblique Projection

In this section, the formulation of the oblique projection as
the minimum of a convex functional is done. Next, a theo-
retical justification of the two steps in the oblique projection
Algorithm 2 is provided.

Let P the vectorial plan defined by

P := {(r, g, b) such that 0.299r + 0.587g + 0.114b = 0} ,

(33)

and Pl the affine plan defined by

Pl := {(r, g, b) such that 0.299r + 0.587g + 0.114b = l} ,

(34)

Proposition 3 The projection on the plan Pl of v in the

direction of the vector

f3 :=

(

1

3
,
1

3
,
1

3

)

is given by

argminu∈Pl
‖A(u− v)‖22 , (35)

with A a given matrix.

Proof Let {f1, f2} an orthonormal spanning set of P. The
basis {f1, f2, f3} is denoted by f . It is a basis because f3 6∈
P. {e1, e2, e3} denotes the canonical basis. With the Gram-

Schmidt process the orthonormal basis
{

f1, f2, f̃3
}

denoted

by f̃ is constructed. f̃3 = ω1f1 + ω2f2 + ω3f3 with
(ω1, ω2, ω3) ∈ R

3. Denote by P f
e the matrix of the change of

basis from e to f . Let us define the matrix A such that,

A = P f
e





1 0 ω1

0 1 ω2

0 0 ω3



P f
e

−1
. (36)

It is easy to see that:

∀v ∈ Pl, ∃λ1, λ2 ∈ R such that v = λ1f1 + λ2f2 + 3lf3. (37)

Let us now compute:

argminu∈Pl
‖A(u− v)‖22. (38)

As v ∈ R
3, v = λ1f1 + λ2f2 + λ3f3.

For u ∈ R
3, u = µ1f1 + µ2f2 + µ3f3. We write now:

‖A(u− v)‖22 = ‖(λ1−µ1)f1 +(λ2−µ2)f2 +α(λ3−µ3)f3‖
2
2.

(39)

u ∈ Pl ⇒ µ3 = 3l, thus:

argminu∈Pl
‖A(u− v)‖22

= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1 + (λ2 − µ2)f2+

(λ3 − 3l)(ω1f1 + ω2f2 + ω3f3)‖22
= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1 + (λ2 − µ2)f2+

(λ3 − 3l)f̃3‖22
= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1‖22 + ‖(λ2 − µ2)f2‖22

+ ‖(λ3 − 3l)f̃3‖22 because the basis is orthogonal.

= (λ1, λ2).

(40)

Finally:

argminu∈Pl
‖A(u− v)‖22 = λ1f1 + λ2f2 + 3lf3 , (41)

which is the projection of v onto Pl in the direction of f3.
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Algorithm 4 Algorithm providing the solution of (42).

1: u1 ← PPl
(v)

2: if u1 ∈ [0, 255]2 then
3: u0 ← u1

4: else
5: u0 ← argminu∈C ‖u− u1‖22
6: end if

In the following, we theoretically justify Algorithm 4.

Proposition 4 Algorithm 4 provides the solution of (42).

Proof We want now to compute:

u0 := argminu∈C ‖A(u− v)‖22. (42)

First we write it as done in (40), which gives:

u0 = argminu∈Pl
‖A(u− v)‖22

= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1‖22+

‖(λ2 − µ2)f2‖22 + ‖(λ3 − 3l)f̃3‖22 ,

(43)

because the basis is orthogonal.
The point u0 is on the plan Pl because C ∈ Pl. First

we compute u1 := argminu∈Pl
‖A(u − v)‖22. u1 is on Pl ∩

{u such that H(u) = H(v)}, which is a line. If u1 ∈ [0, 255]3,
u0 = u1 provides the result. If not, by remarking that

u0 = argminu∈Pl
‖A(u− v)‖22

= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1‖22 + ‖(λ2 − µ2)f2‖22
+‖(λ3 − 3l)f̃3‖22

= argmin(µ1,µ2)∈R2 ‖(λ1 − µ1)f1‖22 + ‖(λ2 − µ2)f2‖22

+‖(3l − 3l)f̃3‖22

= argminu∈C ‖A(u− u1)‖22.

(44)

thus u0 is the closest point of u1 = PPl
(v) on C.

i.e., Algorithm 4 computes the solution of (42).
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