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Eupolars and their Bialternality Grid.

We assume some familiarity with [E1] or [E3], though the main definitions have been recalled towards the end, in the appendix §17. In the main, the present paper concerns itself with the simplest, most basic flexion structure, namely the multialgebra-cum-multigroup Flex (E) generated by a single flexion unit E, and the companion structure Flex (O) generated by the conjugate unit O. Under the polar specialisation (E, O) → (Pi , Pa), this becomes the eupolar structure, seemingly much simpler than the general eumonogenous structure 1 but in fact isomorphic to it. Eupolars can therefore serve as a prop for the intuition as well as a vehicle for simple proofs.

Within its self-assigned limits (eupolars and monogenous flexion structures) our paper deals with two sorts of questions -some clearly and provenly essential, others at first sight gratuitous but, we suspect, potentially of equal relevance. Let us explain.

The essential part revolves around the eupolar bisymmetral pair pal • /pil • and its mirror image, the somewhat less important bisymmetrals par • /pir • . The first pair is doubly relevant to multizeta theory: firstly, because, together with its trigonometric counterpart tal • /til • , it goes into the making of the first factor Zag • I /Zig • I in the classical trifactorisation of the fundamental bimould Zag • /Zig • that "carries all multizetas"; and secondly because it enters into the construction of the so-called singulators, themselves key to the study of the canonical multizeta irreducibles.

The pair pal • /pil • , as also par • /pir • , had already been dealt with in our previous papers, but somewhat desultorily, on a piecemeal basis. So a unified treatment, complete with motivations, definitions, characterisations and proofs, was long overdue. The sections §2- §8 offer just such a treatment and, as is so often the case, systematisation brings its own rewards. Thus we exhibit two series, unsurpassed for simplicity, of alternals {le • r } and {re • r }, and show that they are connected respectively to pal • and pil • , as the ingredients of the mu-dilator dupal • of pal • and the gari-dilator dipil • of pil • . This is a deeply satisfying state of affairs: it not only restores the symmetry (somewhat impaired in the previous approaches) between the co-equal swappees pal • and pil • but also leads to a simple proof of their bisymmetrality -of all extant proofs, the shortest. Nor do the pleasant surprises stop there. We introduce two additional series of alternals {he • r } and {ke • 2r }, less elementary than the first pair but still capable of a simple, transparent description, and show that these, too, are closely related to ripal • (the gari-inverse of pal • ) and its even factor ripal • ev . It is truly gratifying to see that our four elementary or semi-elementary series of alternals (so far the only of their kind, i.e. the only ones known to admit a simple description) turn out to be, each in its own way, intimately interwoven with the central bisymmetrals.

The paper's second part, from section §9 onwards, deals with the eupolar structure per se, without immediate applications in mind. The main challenge here is to generate, describe, and classify all regular, i.e. neg-invariant bisymmetrals and bialternals. Now, unlike the central bisymmetrals pal • /pil • and par • /pir • , which are irregular (in the sense of being invariant under neiprocess, they can all be constructed from the four elementary flexions ⌈, ⌋, ⌊, ⌉ in proper association. They include all operations listed in §17.2- §17.5 with the sole exceptions of swap and pus (push is allowed).

ther neg nor pari but only under the product pari • neg), the regular bisymmetrals Sa • /Si • (as elements of GARI) correspond one-to-one to the regular bialternals (as elements of ARI) via the exponentiation expari from ARI to GARI2 . So the attention now shifts to the bialternals which, living as they do in an algebra, are much easier to handle than the bisymmetrals. Starting from the two central-irregular pairs pal • /pil • and par • /pir • , we describe two distinct procedures for producing two infinite series of bialternals, which in turn generate two distinct bialternal subalgebras of ARI. These two subalgebras do not coincide but partly overlap -though how far is yet unclear. Nor do we know whether, between themselves, they generate all bialternals.

This ignorance is galling. It is true that at the moment the polar bialternals, unlike the central bisymmetrals,3 have no known applications to multizeta algebra. But this may change. It would indeed be strange if the eupolar structure, even in its most recondite aspects, did not have some bearing on the study on multizetas. On the contrary, there is every reason to believe, and past experience strongly suggests, that most difficulties, irregularities or anomalies besetting multizeta theory4 originate in the eupolar domain which, being itself purely singular, holds the key to all the 'singularity' scattered over the wider flexion field. Be that as it may, and all applications aside, the eupolar structure is a fascinating subject in its own right and deserves to be studied for its own sake.

So how are we to advance our knowledge of polar bialternals? Paradoxically, by widening the search: instead of obsessing about the sole bialternals and the spaces ARI al/al r = ARI [START_REF]elif r=1 then[END_REF][START_REF]elif r=1 then[END_REF] r spanned by them, we may relax the notion and consider the larger spaces ARI (d 1 ,d 2 ) r spanned by all eupolars of a (suitably defined) bialternality codegree (d 1 , d 2 ). The new approach embraces all eupolars, since for (d 1 , d 2 ) large enough5 ARI (d 1 ,d 2 ) r coincides with the whole of ARI . Moreover, the dimensions

Bial d 1 ,d 2 r := dim(ARI (d 1 ,d 2 ) r )
or rather the differences

bial d 1 ,d 2 r := Bial d 1 ,d 2 r -Bial d 1 -1,d 2 r -Bial d 1 ,d 2 -1 r + Bial d 1 -1,d 2 -1 r
which constitute the entries of the so-called bialternality grid, seem to follow a remarkable pattern. In particular, when we add the quite natural requirement of push-invariance, every second grid entry vanishes, leading to the so-called bialternality chessboard.

The corresponding computations, however, are extremely complex and progress only haltingly. At the moment we are stuck at length r = 8: enough to discern the outlines of a tantalising pattern; not enough to see the full picture emerge. The investigation goes on but it may be quite some time before the next batch of data arrives. 6 So, rather than delay indefinitely the paper's publication, we have chosen to post this first draft, with its still incomplete section §12. We mean to update it regularly as the computations progress.

The present update (May 2014) already contains two sizeable additions: section §15, which shows what sort of changes the bialternality grid and chessboard undergo when we move on to polynomial-valued bimoulds; and section §16, which (pending a systematic treatment in [E4]) sketches the sort of complications attendant upon the passage from polar to trigonometric bisymmetrals. We wind up with section §17, which recalls the main definitions about flexion theory, and section §18, which gives short Maple programs for generating some of the main objects discussed in the paper. Lastly, numerous illustrative Tables have been posted on our homepage.7 §1-2. Conceptual vs mechanical proofs. The priorities of exploration.

The sheer profusion of formulae in flexion theory makes it strictly impossible to write down regular proofs for each one of them. Clearly, identities involving such key bimoulds as pal • /pil • deserve to be established with care, to do justice to the centrality and flagship quality of these objects. But what about the common run of flexion formulae? For them, it would be nice (time-saving and reassuring) to be able to fall back on a M echanical truth criterion (conjectural): Any bimould-valued flexion identity of the form

R • (F 1 , ..., F p ; A • 1 , ..., A • q ) ≡ 0 with F i ∈ FLEXIONS , A • j ∈ BIMU (1) of total depth d d = depth(R • ) := i depth(F i ) + j depth(A • j ) (2) 
is automatically true for all lengths r as soon as it holds identically for all arguments A • j and all lengths r ≤ d + 1.

This of course would require that we properly define the partial depths in formula (2).

The depth of 'products' F i (associative or pre-Lie) would be 1; that of 'alternate' operations (commutators, Lie brackets etc) would be 2; and that of complex operations like the singulators would probably have to be 3 or 4.

The depth of the arguments A • j would be 1 when A • j is allowed to range unrestrained over BIMU ; or 2 if when A • j ranges over the set of all bimoulds with a simple symmetry; or again 3 or 4 if when it ranges over all bimoulds with a regular double symmetry.

Though the existence of some such truth criterion would seem almost certain, none has been established as yet. On the other hand, in the identities commonly encountered in flexion theory the total depth d, summarily assessed along the above lines, rarely exceeds 6 or 7. So we may make safety doubly or trebly safe by verifying our identities up to the length 2d or 3d instead of d + 1, which remains well within the range of the computationally feasible, and if the identities pass the test, confidently assume their validity.

But there is a catch here: in many important instances the arguments A • j do not range over a vast enough domain of BIMU. For instance, the irregular (though central!) bisymmetrals pal • /pil • are fairly 'isolated' creatures, unlike the regular8 (though less central!) bisymmetrals Sa • /Si • . For the likes pal • /pil • or par • /pir • , therefore, no 'mechanical truth criterion' would work, and there is no way we can dispense with regular proofs here. That said, careful consolidation, essential in the central, vital parts of an evolving theory, is one thing, and unfettered exploration, normal and legitimate at the fringes of the theory, is another. Each has its own logic, norms, and imperatives, and it would be foolish to mix up the two. §1-3. Lie or pre-Lie brackets and group laws. Anti-actions. This first paragraph is there simply to dispel possible misconceptions about the flexion laws, the corresponding anti-actions, and the impact on these of the basic involution swap, which is the very glue of dimorphy.

First, we have the overarching structure AXI/GAXI, whose elements are bimould pairs A • = (A • L , A • R ). Then we have the unary structures (seven in number, up to isomorphism) consisting of simple bimoulds A • and corresponding to as many substructures of AXI/GAXI, each one of which is defined by an involutive linkage A • R ≡ h.A • L between left and right components (the number of suitable involutions h is of course very limited).

Let A I/GA I be such a unary structure9 ; let I A/GI A be the mirror structure under swap; and let h 1 , h 2 , h 3 , h 4 be the four corresponding involutions: a i -→ h 1 ; i a -→ h 2 ga i -→ h 3 ; gi a -→ h 4

The laws are simply derived from the overstructure AXI/GAXI:

prea i(A • , B • ) = preaxi(A • 1 , B • 1 ) ; prei a(A • , B • ) = preaxi(A • 2 , B • 2 ) a i(A • , B • ) = axi(A 1 , B 1 ) ; i a(A • , B • ) = axi(A 2 , B 2 ) ga i(A • , B • ) = gaxi(A • 3 , B • 3 ) ; gi a(A • , B • ) = gaxi(A • 4 , B • 4 ) with A • i,L := A • ; A • i,R := h i .A • (∀i ∈ {1, 2, 3, 4}) B • i,L := B • ; B • i,R := h i .A • (∀i ∈ {1, 2, 3, 4})
The anti-actions also are similarly defined:

a it(A • ) = axit(A • 1 ) ; i at(A • ) = axit(A • 2 ) ga it(A • ) = gaxit(A •
3 ) ; gi at(A • ) = gaxit(A • 4 )

but whereas under the vowel swap a ↔ i the three types of laws (pre-Lie, Lie, or associative) transmute into one another:

prei a(A • , B • ) = swap.prea i(swap.A • , swap.B • ) i a(A • , B • ) = swap.a i(swap.A • , swap.B • ) gi a(A • , B • ) = swap.ga i(swap.A • , swap.B • )
the corresponding anti-actions do not relate in this way i at(A • ) = swap.a it(swap.A • ).swap gi at(A • ) = swap.ga it(swap.A • ).swap and clearly cannot, since the right-hand sides (above) fail to define a muderivation resp. a mu-isomorphism.

Nonetheless, the laws may be expressed in terms of the anti-actions. Thus for the first law we have:

prea i(A • , B • ) = a it(B • ).A • + mu(A • , B • ) a i(A • , B • ) = prea i(A • , B • ) -prea i(B • , A • ) = a it(B • ).A • -a it(A • ).B • + lu(A • , B • ) ga i(A • , B • ) = mu(ga it(B • ).A • , B • )
Of course, the same identities hold with "a i" changed everywhere to "i a". §1-4. Left-right separation.

The phenomenon is summed up by the following identities, which speak for themselves:

axit(A • ) = amit(A • L ) + anit(A • R ) (3) gaxit(A • ) = gamit(A • L ) . ganit (gamit(A • L )) -1 A • R (4) = ganit(A • R ) . gamit (ganit(A • R )) -1 A • L (5)
The last two identities are easier to check in the following, equivalent form:

gamit(A • ).ganit(B • ) = gaxit(C • ) with C • L := A • , C • R := gamit(A • ).B • (6) ganit(A • ).gamit(B • ) = gaxit(D • ) with D • L := ganit(A • ).B • , D • R := A • (7) §1-5.
Closure under the basic involution swap .

There exist many "closure identities", which essentially reduce i a / gi a to a i / ga i . We mention the only one that we shall really require:

gira(A • , B • ) ≡ ganit(rash.B • ).gari(A • , ras.B • ) (8) with rash.B • := mu(push.swap.invmu.swap.B • , B • ) (9) ras.B • := invgari.swap.invgari.swap.B •
(10) §1-6. The monogenous algebra Flex (E). Basis and projectors.

The monogenous algebra Flex (E) = ⊕Flex r (E) was constructed in [E3] §3- §4, along with the standard basis {e

• t } ∼ {e • t } of Flex r (E).
That standard basis has cardinality (2r)!/(r! (r+1)!) and admits a natural indexation either by r-node binary trees t or by some special r-term sequences t that stand in one-to-one correspondance with these trees. The basis elements are defined inductively:

e • t := amnit(e • t 1 , e • t 2 ).E • ⇐⇒ (11) e w t := e w 1 ⌋ t 1 E ⌈w i ⌉ e ⌊w 2 t 2
with w = w 1 .w i .w 2 and r 1 +r 2 = r-1

and the corresponding inductions for trees and sequences go like this:

(t 1 , t 2 ) → t := {t 1 ← • → t 2 } (12) (t 1 , t 2 ) → t := [ t 1 , r 1 +1, t 2 (r 1 +1) ] (13) 
Here, {t 1 ← • → t 2 } denotes of course the binary tree we get by glueing t 1 (resp. t 2 ) to the root-node • as its left (resp. right) branch. On the sequence side, r 1 denotes the length of t 1 and t 2 (r 1 +1) results from t 2 by adding r 1 +1 to its every element, after which we concatenate everything, thus producing a sequence t that is some well-defined permutation of [1, 2, . . . , r].

What we now need is an algorithm for projecting the general element X • of Flex r (E) onto the standard basis. The following formula does just that:

X • ≡ t e • t Res t X • i.e. = e • [i 1 ,...,ir] Res i 1 ,...,ir X • (14) 
with projectors Res i 1 ,...,ir capable of two interpretations:

(i) Res i 1 ,...,ir := Res u ir . . .

Res u i 2 Res u i 1 (15) (ii) Res i 1 ,...,ir := Res v i 1 .Res v i 2 . . . Res v ir (16) 
Mark the order inversion from (i) to (ii). To calculate, Res u i X • , we set all variables v i equal to 0; then take the coefficient of E ( u i 0 ) minus 10 the coefficient of E ( -u i 0 ) ; then set u i = 0. Performing the operation r times, successively with Res u i 1 , Res u i 2 etc, we end up with a scalar that does not depend on the particular expression chosen for X • (elements of Flex r (E), we recall, admit many different expressions).

To calculate Res v i X • , we go through exactly the same motions, but with the roles of the u i 's and v i 's exchanged and the order of the operations reversed. Once again, the final result does not depend on the expression 11 of X • , and coincides with the result of the first procedure.

10 Of course, flexion units being odd functions of their variable w i = ( ui vi ), we have E

( u i v i ) ≡ -E ( -u i -v i
) , but since complex superpositions of flexion operations are liable to yield either form, both possibilities must be taken into account.

11 Elements of Flex (E) can be expressed/expanded in numerous, outwardly distinct ways and, when resulting from a sequence of flexion operations, they usually appear, prior to simplification, in an absurdly complicated shape.

Clearly, in the polar specialisation E = Pa (resp. Pi ), the operator Res u i (resp. Res v i ) corresponds to the taking of the residue at u i = 0 (resp. v i = 0). §1-7. Dilators: what are they, and what are they good for?

Infinitesimal generators and dilators have this in common that they often permit to rephrase problems about groups as more tractable problems about algebras. But of the two, the dilators are the more useful by far, mainly because they are so much closer, conceptually and computationally, to the group elements from which they derive.

Here is how the inflected dilators diS • and daS • and the uninflected dilator duS • relate to the corresponding group element S • (henceforth referred to as the dilatee):

der.S • = preari(S • , diS • ) (diS • = gari-dilator ) (17) der.S • = preira(S • , daS • ) (daS • = gira-dilator ) (18) dur.S • = mu(S • , duS • ) (duS • = mu-dilator ) (19) 
The three relations are entirely parallel: indeed, the Lie bracket corresponding to mu is lu and mu may (trivially) be regarded as a pre-Lie bracket prelu for lu. As for the operators der and dur, they are mu-derivations each:

der.S w 1 ,...,wr := r S w 1 ,...,wr (20) dur.S w 1 ,...,wr := (u 1 +. . . u r ) S w 1 ,...,wr

In the context of the monogenous structures Flex r (E) the latter derivation dur is particularly relevant when E = Pa but even then it has the slight drawback of taking us out of Flex r (E) into something which, with due quotation marks, might be called "Flex r (E) ⊗ {I • }", with an elementary I • that is 1 or 0 according as the length r(•) is 1 or not. 12 To remedy the non-internal character of dur, we must sometimes replace it by duur, which is a bona fide internal mu-derivation of Flex (E) into itself. Since all elements of Flex r (E) may be expressed 13 as a superposition of terms

M • r of the form M • r := amnit(M • r 1 , M • r 2 ).E • with r 1 +r 2 = r-1 and M • r i ∈ Flex r i (E)
it is enough to say how duur acts on these M • r , and here is how it acts: duur.M

• r := mu(M • r 1 , I • , M • r 2 ) ( 22 
)
12 I • is the unit for mould composition • and should be carefully distinguished from the multiplication unit 1 • which is 1 or 0 according as the length r(•) is 0 or > 0.

13 See [E3], (3.35).

The corresponding dilator relation then assumes the form

duur.S • = mu(S • , duur.duuS • ) (23)
or the equivalent form

S • = muu(S • , duuS • ) (24)
with muu denoting a sort of integration-by-part operator but with the twist that the underlying product mu is non-commutative:

muu(A • , B • ) essentially := duur -1 .mu(A • , duur.B • ) (25)
or more rigorously:

muu(A • , B • ) := amnit(mu(A • , B • 1 ), B • 2 ).E • if B • = amnit(B • 1 , B • 2 ).E • §1-8.
Relations between inflected and non-inflected dilators.

For any S • such that S ∅ = 1, the inflected dilators diS • , daS • and the non-inflected dilator duS • relate according to:

der.duS • -dur.diS • + lu(diS • , duS • ) -arit(diS • ).duS • = 0 (26) der.duS • -dur.daS • + lu(daS • , duS • ) -irat(daS • ).duS • = 0 (27)
The shortest way to prove (26), ( 27) is to rewrite the dilator identities (17), ( 18), (19) as follows

D 1 .S • = mu(S • , diS • ) with D 1 := der -arit(diS • ) (28) D 2 .S • = mu(S • , daS • ) with D 2 := der -irat(daS • ) (29) D 3 .S • = mu(S • , duS • ) with D 3 := dur (30)
and to observe that since the derivation dur commutes with all three derivations der , arit(diS • ), irat(daS • ), we have:

[D 1 , D 3 ] = [D 2 , D 3 ] = 0 ( but [D 1 , D 2 ] = 0 ) (31) 
To establish ( 27), which we shall require in the sequel, we apply the commutator [D 2 , D 3 ] to S • . We get successively:

0 = D 2 .D 3 .S • -D 3 .D 2 .S • 0 = D 2 .mu(S • , duS • ) -D 3 .mu(S • , daS • ) 0 = mu(D 2 .S • , duS • ) + mu(S • , D 2 .duS • ) -mu(D 3 .S • , daS • ) -mu(S • , D 3 .daS • ) 0 = mu(S • , daS • , duS • )+mu(S • , D 2 .duS • )-mu(S • , duS • , daS • )-mu(S • , D 3 .daS • )
Since we assumed S ∅ = 1, our S • is mu-invertible. So we may mu-divide the last identity by S • on the left, and what we are left with is exactly the sought-after identity (27). The proof of ( 26) is entirely analogous. We may note that since the relations ( 26) and ( 27) are of the form r(w).duS w = u .diS w + earlier terms (32) r(w).duS w = u .daS w + earlier terms (33) they clearly determine diS • and daS • in terms of duS • and vice versa.

We may also observe that since prelu := mu is, trivially, a pre-Lie law for the Lie law lu, the relation ( 26), ( 27) can be rewritten in the following, particularly harmonious form:

dur.diS • + prelu(duS • , diS • ) = der.duS • + preari(diS • , duS • ) (34) dur.daS • + prelu(duS • , daS • ) = der.duS • + preira(daS • , duS • ) (35)
Furthermore, although there exists no simple direct relation between the inflected dilators diS • and daS • , there exists, interestingly, an indirect one, via the non-inflected duS • . §1-9. Dilatees in terms of the dilators.

One goes from a mu-dilator duS • or duuS • to the source element S • (the "dilatee") via the identities:

S w = 1 w + w 1 ...w s =w Paj |u 1 |,...,|u s | duS w 1 . . . duS w s (36) S • = 1 • + r 1 +...rs=r(•) -→ muu (duuS • r 1 , . . . , duuS • rs ) (37)
with a symmetral mould Paj • defined by: Paj x 1 ,...,xr :=

1≤i≤r 1 x 1 + • • • + x i (38)
Similarly, one goes from a gari-dilator diS • to the source S • via the identity:

S • = r 1 +...rs =r (•) Paj r 1 ,...,rs -→ preari (diS • r 1 , . . . , diS • rs ) (39)
with the same auxiliary mould Paj • but differently indexed.

An analogous formula expresses the product T • = gari (R • , S • ) in terms of the dilators:14 

T • = R • +S • + r 0 +...rs =r (•) Paj r 1 ,...,rs -→ preari (R • r 0 , diS • r 1 , . . . , diS • rs ) (40)
Mark the absence of r 0 in Paj r 1 ,...,rs . We may also, and often must, express the operators garit(S • ) and adari

(S • ) in terms of diS • : garit(S • ) = id + r 1 +...rs = r(•) Paj r 1 ,...,rs arit(diS • rs ), . . . arit(diS • r 1 ) (41) adari(S • ) = id + r 1 +...rs = r(•) Paj r 1 ,...,rs ari(diS • r 1 ), . . . ari(diS • rs ) (42)
where ari denote the adjoint action of ARI on itself. 15 The indexation of the operators ari (diS • r i ) and arit(diS • r i ) goes in opposite directions, but this should not come as a surprise, since adari defines an action (of GARI on ARI) and garit an anti-action (of GARI on BIMU). §1-10. Some other dilator identities.

How does the gari-product affect dilators? Like this:

T • = gari(R • , S • ) =⇒ (43) diT • = diS • + adari(S • ) -1 .diR • (44) 
Since according to (42) adari(S • ) ±1 can also be expressed in terms of diS • , the above identity amounts to a sort of Campbell-Hausdorff formula for the composition of gari-dilators. In the same vein, we must mention the conversion formulae between (i) the dilator diS

• of S • . (ii) the dilator diriS • of riS • := invgari (S • ) (iii) the infinitesimal generator liS • := logari (S • ). The conversion diS • ↔ diriS • is via the involutive formula: diriS • = 1≤s w 1 ...w s = w Japaj r(w 1 ),...,r(w s ) -→ preari (diS w 1 , . . . , diS w s ) = 1≤s 1 s w 1 ...w s = w Japaj r(w 1 ),...,r(w s ) -→ ari (diS w 1 , . . . , diS w s ) (45)
with an alternal mould Japaj • := Compo(Ja • , Paj • ) defined as Paj • precomposed by the elementary mould Ja x 1 ,...,xr := (-1) r x 1 . Thus we get:

Japaj x 1 = 1 ; Japaj x 1 ,x 2 = x 1 -x 2 x 1 x 2 ; Japaj x 1 ,x 2 ,x 3 = x 1 x 3 -x 2 1 +x 2 2 -x 2 3 x 1 x 3 (x 1 +x 2 )(x 2 +x 3 ) etc
The conversion liS • → diS • is via an even simpler formula:

diS • = 1≤s w 1 ...w s = w
Bin r(w 1 ),...,r(w s ) -→ preari (liS w 1 , . . . ,

liS w s ) = 1≤s 1 s w 1 ...w s = w
Bin r(w 1 ),...,r(w s ) -→ ari (liS w 1 , . . . , liS w s ) ( 46)

with an elementary alternal mould Bin • defined by: Bin x 1 ,...,xr := 1 r 1≤j≤r

x j (j -1)!(rj)! (47) §1-11. Internals and externals.

A bimould A • is said to be internal if, for all r, it verifies two dual properties, which in short notation read:

{u 1 + . . . u r = 0} =⇒ {A u 1 v 1 ,..., ,..., ur vr ≡ 0} (48) {v i -v ′ i = const ; ∀i} =⇒ {A u 1 v 1 ,..., ,..., ur vr ≡ A u 1 v ′ 1 ,..., ,..., ur v ′ r } (49) 
and in long notation assume the more natural form: Moreover, when restricted to internals, the ari bracket reduces, up to order, to the simpler lu bracket, and the gari product, again up to order, reduces to the mu product:

{u 0 = 0} =⇒ {A u 0 v 0 , , u 1 v 1 ,..., ,..., ur vr ≡ 0} (50) {∀ v 0 , ∀ v ′ 0 } =⇒ {A u 0 v 0 , , u 1 v 1 ,..., ,..., ur vr ≡ A u 0 v ′ 0 , , u 1 
ari(A • , B • ) ≡ lu(B • , A • ) , ∀A • , B • ∈ ARI intern (54) gari(A • , B • ) ≡ mu(B • , A • ) , ∀A • , B • ∈ GARI intern (55)
Lastly, we have two useful identities governing the action of internal bimoulds on general ones:

arit(A • ).B • ≡ lu(A • , B • ) ; ∀ A • ∈ ARI intern , ∀ B • ∈ ARI (56) garit(A • ).B • ≡ mu(A • , B • ) ; ∀ A • ∈ GARI intern , ∀ B • ∈ GARI (57)
and two anologous identites for the action of general bimoulds on internals:

arit(B • ).A • ≡ ari(A • , B • ) ; ∀ A • ∈ ARI intern , ∀ B • ∈ ARI (58) garit(B • ).A • ≡ gari(A • , B • ) ; ∀ A • ∈ GARI intern , ∀ B • ∈ GARI (59)
Pay attention to the order of the terms, and observe that any bimould, acting on an internal, produces an internal: arit(ARI) . ARI intern ⊂ ARI intern (60) garit(GARI) . GARI intern ⊂ GARI intern (61) §1-12. Short guide to the nomenclature.

Elements of Flex (E) or Flex (O) are always denoted by a short letter combination in Gothic fonts, with e or o as root vowels. The exchange e ↔ o reflects the involution syap16 while vowel change plus the Umlaut double dot (e → ö or o → ë) is expressive of the involution swap17 

In the polar specialisations, for reasons we cannot go into here, the conventions have to be slightly different: the root vowel here is a (resp. i) for elements of Flex (Pa) (resp. Flex (Pi )) but the exchange a ↔ i under conservation of the consonental skeleton usually reflects the swap transform: thus pal • ↔ pil • and par • ↔ pir • . To express the syap transform, on the other hand, we usually change the final consonant plus of course the root vowel: thus pal • ↔ pir • and pil • ↔ par • . Since swap and syap thankfully commute, this leads to no major inconsistencies.

Lastly, inversion under the group laws, whether in the 'Gothic' or 'Roman' context, is usually denoted by a prefix reminiscent of the law: ri for gari, ra for gira, mu for mu. The same applies for the dilators, which take the prefix di, da, du depending on the parent group. The inductive definition, which immediately implies alternality, reads:

re • 1 := E • ; re r • := arit(re • r-1 ) E • (∀r ≥ 2) (62) 
To get a direct definition-description of re • r , we may proceed like this. For any sign sequence ǫ = {ǫ 1 , . . . , ǫ r-1 }, we define the decreasing sets J i (ǫ) by setting J 1 (ǫ) := [1, 2, . . . , r] and, for 1 < i ≤ r, by taking J i (ǫ) to be J i-1 (ǫ) deprived of its largest (resp. smallest) element if ǫ i-1 = + (resp -). Then:

re w 1 ,...,wr r := ǫ 1 ,..,ǫ r-1 ∈{+,-} ǫ 1 . . . ǫ r-1 i=r i=1 E u * i (ǫ) u * i (ǫ) (63) 
with indices u * i (ǫ), v * i (ǫ) defined by the dual conditions:

u * i (ǫ) := u j with j running through J i (ǫ) (64) v * i (ǫ) := v j ′ -v j ′′ with j ′ ∈ J i (ǫ) -J i+1 (ǫ) , j ′′ ∈ J i-1 (ǫ) -J i (ǫ) (65) Of course, for i = 1 we must set v j ′′ = 0.
Alternatively, one may say that, when projected onto the standard basis {e • t } of Flex (E), the alternal re • r takes the coefficient (-1) k when t is a onebranch tree with k right-leaning slopes, and the coefficient 0 whenever t has more than one branch.

The most outstanding property of the alternals re • r is their self-reproduction à la Witt under the ari bracket:

ari(re • r 1 , re • r 2 ) = (r 1 -r 2 ) re • r 1 +r 2 (66) §2-2.
The second alternal series {le • r } .

Here the direct definition reads:

le w 1 ,...,wr r := 1≤i≤r (-1) i-1 (r -1)! (i -1)!(r -i)! E u 1 +...+ur v i j =i E u j v j -v i (67)
Alternality is nearly obvious on this definitious. It is even more obvious for the closely related bimoulds len • r :

len w 1 ,...,wr r := 1≤i≤r (-1) i-1 (r -1)! (i -1)!(r -i)! I u i v i j =i E u j v j (68) 
Clearly len • r = duur.le • r , since we have on the one hand

le • r = 1≤i≤r (-1) i-1 (r -1)! (i -1)!(r -i)! amnit mu i-1 (E • ), mu r-i (E • ) . E •
and on the other

len • r = 1≤i≤r (-1) i-1 (r -1)! (i -1)!(r -i)! mu mu i-1 (E • ), I • , mu r-i (E • )
which again implies:

len • r = lu(I • , (r-1) times E • , ..., E • ) (69)
This last expression (69) ensures the alternality of len • r and the earlier identity len • r = duur.le • r carries alternality back to le • r . §2-3. The third alternal series {he • r } .

We begin here with the direct, descriptive definition, which relies on the standard basis {e • t } of Flex (E). The coefficients he(t) of he • r in that basis are not going to depend on the full structure of the indexing binary trees t but only on a four-parameter 'abstract', slant(t), which gives the numbers p 1 , p 2 (resp. q 1 , q 2 ) of left-leaning (resp. right-leaning) slopes in the two branches issueing from the tree's root node. Clearly, p 1 +p 2 +q 1 +q 2 = r -1, and the inductive calculation of slant(t) goes like this. If e

• t = amnit(e • t ′ , e • t ′′ ).E • with slant(t ′ ) = p ′ 1 q ′ 1 p ′ 2 q ′ 2 and slant(t ′′ ) = p ′′ 1 q ′′ 1 p ′′ 2 q ′′ 2 , then slant(t) = 1 + p ′ 1 + p ′ 2 q ′ 1 + q ′ 2 p ′′ 1 + p ′′ 2 1 + q ′′ 1 + q ′′ 2 if t ′ , t ′′ = ∅ (70) slant(t) = 1 + p ′ 1 + p ′ 2 q ′ 1 + q ′ 2 0 0 if t ′′ = ∅ (71) slant(t) = 0 0 p ′′ 1 + p ′′ 2 1 + q ′′ 1 + q ′′ 2 if t ′ = ∅ (72) 
We can now define e • t :

he • r = r(•)=r he(t) e • t ( 73 
) through coefficients he(t) = he p 1 q 1 p 2 q 2
that depend only on slant(t):

he p 1 q 1 p 2 q 2 = (-1) q 12 -1 (p 12 )!(q 12 )! (p 12 +q 12 )! det p 1 1+q 1 1+p 2 q 2 (74)
with the usual abbreviations p 12 := p 1 +p 2 , q 12 := q 1 +q 2 . The invariance, implied by alternality, of the he • under mantir := minu.anti .pari = -anti .pari is immediate since it amounts to he

p 1 q 1 p 2 q 2 ≡ (-1) p 1 +p 2 +q 1 +q 2 he q 2 p 2 q 1 p 1
but the full alternality is less obvious. It may be derived from the following identities. Indeed, setting

He • := 1≤r 1 r (r+1) he • r ; Rë • := 1≤r 1 r (r+1) rë • r ( 75 
)
with rë • r := swap.ro • r for ro • r := syap.re • r ,18 and introducing two elementary, mutually gani-inverse bimoulds se • , nise • : se w 1 ,...,wr := E w 1 . . . E wr (se ∅ := 1) (76)

nise w 1 ,...,wr := E

( u 1 v 1:2 ) E ( u 12 v 2:3 ) . . . E ( u 1...r vr ) (nise ∅ := 1) (77) 
we can check (see ( 245)-( 246)) either of the two equivalent identities:

He • = ganit(nise • ). Rë • (78) Rë • = ganit(se • ). He • (79)
Since Rë • is elementarily E • -alternal and since the mutually inverse operators ganit(se These new alternals are defined only for even lengths r = 2r * . Like for the preceding series, we begin with a direct, descriptive definition by projection on the standard basis of Flex (E). Here too, the coefficients do not depend on the full structure of the indexing binary tree t but on a four-parameter 'abstract', stack (t), which gives the numbers m 1 , m 2 (resp. n 1 , n 2 ) of endnodes (resp. non end-nodes) carried by the two branches issueing from the root-node. Like in the previous case, we have m 1 +m 2 +n 1 +n 2 = r-1 but, unlike in the previous case, there now exist obvious inequalities between the m i 's and the n i 's. As a result, for any given (even) length r, the number of distinct stacks will be less than that of of distinct slants.

The inductive definition of stack (t) goes like this. If e

• t = amnit(e • t ′ , e • t ′′ ).E • with stack (t ′ ) = m ′ 1 n ′ 1 m ′ 2 n ′ 2 and stack (t ′′ ) = m ′′ 1 n ′′ 1 m ′′ 2 n ′′ 2 , then stack (t) = m ′ 1 + m ′ 2 1 + n ′ 1 + n ′ 2 p ′′ 1 + p ′′ 2 1 + q ′′ 1 + q ′′ 2 if t ′ , t ′′ = ∅ (80) stack (t) = m ′ 1 + m ′ 2 1 + n ′ 1 + n ′ 2 0 0 if t ′′ = ∅ (81) stack (t) = 0 0 m ′′ 1 + m ′′ 2 1 + n ′′ 1 + n ′′ 2 if t ′ = ∅ (82) 
We are now in a position to define ke 

n!! := 1.3.5 . . . (n -2).n = (n + 1)! ((n+1)/2)! 2 -(n+1)/2 (∀ n odd ) (85)
The above definition of ke • 2r * is concise enough, and striking too, but one thing it leaves in the dark20 is the alternality of ke • 2r * . One way (and as far as we know, the only way) round this difficulty is to relate {ke • 2r * } to {he • r }. To this end, we set:

He • := 1≤r 1 r (r + 1) he • r ( 86 
)
He • ev := 1≤r * 1 2r * (2r * + 1) he • 2r (87) Ke • = Ke • ev := 1≤r * 2 -2r * +1 (2r * + 1)(2r * -1) ke • 2r * (88)
and we introduce the elementary operator P (adjoint action on ARI):

P.M • := 1 2 ari(E • , M • ) ( 89 
)
The thing is now to establish the identity:

Ke • ev := - 1 2 E • + exp(P) . He • (90)
or the equivalent but computationally more economical identity, which involves half as many terms

Ke • ev := cosh(P) -1 . He • ev (91)
and may be derived by inverting (90) to

He • := exp(-P) . ( 1 2 E • + Ke • ev ) ≡ exp(-P) . Ke • ev (92)
then parifying (92) to

He • ev := cosh(P) . Ke • ev ( 93 
)
and lastly inverting (93) back to (91).

For ways of establishing (90) we refer to the paragraph "properties of ripal • ev " (see §4.7 below). But here again, if we are loath to go through the tedium of establishing ( 90) or (91) straight from the beautiful descriptive definition (83), we may forgo that direct definition and simply take (91) as the definition of ke 2r * . This is sufficient for all practical purposes and it gives us the alternality of ke 2r * without our having to fire a single shot.

Remark: parity separation in {he • r }.

From ( 90) and ( 91) we derive, after elimination of Ke • ev , an interesting way of expressing the odd-length components he • 2r * +1 in terms of the even-length components. Indeed, setting:

He • = He • ev + He • od = r even 1 r (r + 1) he • r + r odd 1 r (r + 1) he • r ( 94 
)
we get:

He • od = = 1 2 E • + tanh(P).He • ev (95)
Of course, exp(P), cosh (P), tanh(P) etc should be interpreted as power series of the operator P. §2-5. Tables for length r = 4: the elementary alternals.

basis element re w w 2 ,w 3 ,w 4 [1,2,3,4] = E

4 le w 4 e w 1 ,
( u 1234 v 4 ) E ( u 123 v 3:4 ) E ( u 12 v 2:3 ) E ( u 1 v 1:2 ) 1 -1 e w 1 ,w 2 ,w 3 ,w 4 [2,1,3,4] = E ( u 1234 v 4 ) E ( u 123 v 3:4 ) E ( u 12 v 1:3 ) E ( u 2 v 2:1 ) -1 -1 e w 1 ,w 2 ,w 3 ,w 4 [1,3,2,4] = E ( u 1234 v 4 ) E ( u 123 v 2:4 ) E ( u 1 v 1:2 ) E ( u 3 v 3:2 ) 0 -1 e w 1 ,w 2 ,w 3 ,w 4 [2,3,1,4] = E ( u 1234 v 4 ) E ( u 123 v 1:4 ) E ( u 23 v 3:1 ) E ( u 2 v 2:3 ) -1 -1 e w 1 ,w 2 ,w 3 ,w 4 [3,2,1,4] = E ( u 1234 v 4 ) E ( u 123 v 1:4 ) E ( u 23 v 2:1 ) E ( u 3 v 3:2 ) 1 -1 e w 1 ,w 2 ,w 3 ,w 4 [1,2,4,3] = E ( u 1234 v 3 ) E ( u 12 v 2:3 ) E ( u 1 v 1:2 ) E ( u 4 v 4:3 ) 0 3 e w 1 ,w 2 ,w 3 ,w 4 [2,1,4,3] = E ( u 1234 v 3 ) E ( u 12 v 1:3 ) E ( u 2 v 2:1 ) E ( u 4 v 4:3 ) 0 3 e w 1 ,w 2 ,w 3 ,w 4 [1,3,4,2] = E ( u 1234 v 2 ) E ( u 1 v 1:2 ) E ( u 34 v 4:2 ) E ( u 3 v 3:4 ) 0 -3 e w 1 ,w 2 ,w 3 ,w 4 [1,4,3,2] = E ( u 1234 v 2 ) E ( u 1 v 1:2 ) E ( u 34 v 3:2 ) E ( u 4 v 4:3 ) 0 -3 e w 1 ,w 2 ,w 3 ,w 4 [2,3,4,1] = E ( u 1234 v 1 ) E ( u 234 v 4:1 ) E ( u 23 v 3:4 ) E ( u 2 v 2:3 ) -1 1 e w 1 ,w 2 ,w 3 ,w 4 [3,2,4,1] = E ( u 1234 v 1 ) E ( u 234 v 4:1 ) E ( u 23 v 2:4 ) E ( u 3 v 3:2 ) 1 1 e w 1 ,w 2 ,w 3 ,w 4 [2,4,3,1] = E ( u 1234 v 1 ) E ( u 234 v 3:1 ) E ( u 2 v 2:3 ) E ( u 4 v 4:3 ) 0 1 e w 1 ,w 2 ,w 3 ,w 4 [3,4,2,1] = E ( u 1234 v 1 ) E ( u 234 v 2:1 ) E ( u 34 v 4:2 ) E ( u 3 v 3:4 ) 1 1 e w 1 ,w 2 ,w 3 ,w 4 [4,3,2,1] = E ( u 1234 v 1 ) E ( u 234 v 2:1 ) E ( u 34 v 3:2 ) E ( u 4 v 4:3 ) -1 1 
Tables for length r = 4: the semi-elementary alternals.

basis element slant he w w 2 ,w 3 ,w 4 [1,2,3,4] = E

4 stack ke w 4 e w 1 ,
( u 1234 v 4 ) E ( u 123 v 3:4 ) E ( u 12 v 2:3 ) E ( u 1 v 1:2 ) 3 0 0 0 1 1 2 1 e w 1 ,w 2 ,w 3 ,w 4 [2,1,3,4] = E ( u 1234 v 4 ) E ( u 123 v 3:4 ) E ( u 12 v 1:3 ) E ( u 2 v 2:1 ) 2 1 0 0 -2/3 1 2 1 e w 1 ,w 2 ,w 3 ,w 4 [1,3,2,4] = E ( u 1234 v 4 ) E ( u 123 v 2:4 ) E ( u 1 v 1:2 ) E ( u 3 v 3:2 ) 2 1 0 0 -2/3 2 1
-4 3 Polar bisymmetrals: main statements.

e w 1 ,w 2 ,w 3 ,w 4 [2,3,1,4] = E ( u 1234 v 4 ) E ( u 123 v 1:4 ) E ( u 23 v 3:1 ) E ( u 2 v 2:3 ) 2 1 0 0 -2/3 1 2 1 e w 1 ,w 2 ,w 3 ,w 4 [3,2,1,4] = E ( u 1234 v 4 ) E ( u 123 v 1:4 ) E ( u 23 v 2:1 ) E ( u 3 v 3:2 ) 1 2 0 0 1 1 2 1 e w 1 ,w 2 ,w 3 ,w 4 [1,2,4,3] = E ( u 1234 v 3 ) E ( u 12 v 2:3 ) E ( u 1 v 1:2 ) E ( u 4 v 4:3 ) 2 0 0 1 1/3 1 1 2 e w 1 ,w 2 ,w 3 ,w 4 [2,1,4,3] = E ( u 1234 v 3 ) E ( u 12 v 1:3 ) E ( u 2 v 2:1 ) E ( u 4 v 4:3 ) 1 1 0 1 1/3 1 1 2 e w 1 ,w 2 ,w 3 ,w 4 [1,3,4,2] = E ( u 1234 v 2 ) E ( u 1 v 1:2 ) E ( u 34 v 4:2 ) E ( u 3 v 3:4 ) 1 0 1 1 -1/3 1 0 -2 e w 1 ,w 2 ,w 3 ,w 4 [1,4,3,2] = E ( u 1234 v 2 ) E ( u 1 v 1:2 ) E ( u 34 v 3:2 ) E ( u 4 v 4:3 ) 1 0 0 2 -1/3 1 0 -2 e w 1 ,w 2 ,w 3 ,w 4 [2,3,4,1] = E ( u 1234 v 1 ) E ( u 234 v 4:1 ) E ( u 23 v 3:4 ) E ( u 2 v 2:3 ) 0 0 2 1 -1 0 0 -1 e w 1 ,w 2 ,w 3 ,w 4 [3,2,4,1] = E ( u 1234 v 1 ) E ( u 234 v 4:1 ) E ( u 23 v 2:4 ) E ( u 3 v 3:2 ) 0 0 1 2 2/3 0 0 -1 e w 1 ,w 2 ,w 3 ,w 4 [2,4,3,1] = E ( u 1234 v 1 ) E ( u 234 v 3:1 ) E ( u 2 v 2:3 ) E ( u 4 v 4:3 ) 0 0 1 2 2/3 0 0 4 e w 1 ,w 2 ,w 3 ,w 4 [3,4,2,1] = E ( u 1234 v 1 ) E ( u 234 v 2:1 ) E ( u 34 v 4:2 ) E ( u 3 v 3:4 ) 0 0 1 2 2/3 0 0 -1 e w 1 ,w 2 ,w 3 ,w 4 [4,3,2,1] = E ( u 1234 v 1 ) E ( u 234 v 2:1 ) E ( u 34 v 3:2 ) E ( u 4 v 4:3 ) 0 0 0 3 -1 0 
For perspective, let us start with a synoptic table of our central bimoulds:

ess • swap ↔ öss • (E → Pi) pil • swap ↔ pal • syap syap polar specialisation =⇒ syap syap oss • swap ↔ ëss • (O → Pa) par • swap ↔ pir •
We take our stand on the self-reproduction property (66) of the alternals re • r under the ari bracket, which is entirely analogous to the behaviour of the monomials x r+1 under the bracket {φ, ψ} := φ ′ ψ -φψ ′ . As a consequence, the Lie algebra isomorphism induced by x r+1 → re • r extends to an isomorphism of the group of formal identity-tangent mappings f := x → x + a r x r+1 into the group GARI re consisting of bimoulds of the form S • := expari ( γ r re • r ). All elements of GARI re are automatically symmetral.

Proposition 3.1 (Direct bisymmetral: definition)

The source mapping f : x → 1e -x = x -1/2 x 2 + . . . has for images in GARI re resp. GARI ro bimoulds denoted by ess • resp. oss • . They are automatically symmetral, but their swappees öss • resp. ëss • are also symmetral. The same-vowelled bimoulds ess and ëss (and by way of consequence oss and öss) coincide up to length r = 3 inclusively but differ ever after. Under the polar specialisation (O, E) → (Pa, Pi) our universal bimoulds specialise to:

(öss • , ess • ) → (pal • , pil • ) (96) (oss • , ëss • ) → (par • , pir • ) (97)
At this point, the reader may well ask: why, among all identity-tangent mappings f , single out precisely f : x → 1e -x ? The short answer is: because only this choice and no other21 ensures that the separator gepar (ess • ) be symmetral (see ( 109)) below), which in turn is a necessary condition for öss • (not ess • !) to be symmetral. The condition, however, is not sufficient, and the full bisymmetrality proofs (two of them), as indeed all the other proofs backing up this section's statements, shall be given in §4.

Proposition 3.2 (Direct bisymmetral: characterisation)

The bimould pal • has only poles of the form P (u i ) or P (u 1 + ... + u 2i ). Equivalently, its swappee pil • , or rather anti.pil • , has only poles of the form22 P (v iv i-1 ) or P (v 2i ). This pole pattern characterises pal • /pil • among all other polar bisymmetrals.

Proposition 3.3 (Inverse bisymmetral: properties)

The gari-inverses (prefix " ri") of the bisymmetrals are automatically symmetral, but they are not bisymmetral, meaning that their swappees, which may also be viewed as gira-inverses (prefix " ra") are not exactly symmetral, but rather E-symmetral or O-symmetral, depending of course on the root vowel. Thus side by side with the straight symmetries

riess • = invgari(ess • ) and riëss • = invgari(ëss • ) ∈ symmetral (98) riess • = invgari(ess • ) and riöss • = invgari(öss • ) ∈ symmetral (99)
we have the tweaked symmetries

raess • = invgira(ess • ) = swap(riöss • ) ∈ E-symmetral (100) raëss • = invgira(ëss • ) = swap(rioss • ) ∈ E-symmetral (101) raoss • = invgira(oss • ) = swap(riëss • ) ∈ O-symmetral (102) raöss • = invgira(öss • ) = swap(riess • ) ∈ O-symmetral (103) 
In the polar specialisation

(O, E) → (Pa, Pi) this becomes ripal • , ripar • , ripil • , ripir • , ∈ symmetral (104) rapil • = swap.ripal • , rapir • = swap.ripar • ∈ symmetril (105) rapal • = swap.ripil • , rapar • = swap.ripir • ∈ symmetrul (106)
We now recall the definition of the two separators23 gepar and hepar

gepar.S • := mu(anti.swap.S • , swap.S • ) (107) hepar.S • := 1≤k≤r(•) pus k .logmu.swap.S • (108) 
Proposition 3.4 (Direct bisymmetral: separators) . The separation identities read gepar.ess

• := mu(anti.öss • , öss • ) = expmu(-O • ) (109) hepar.ess • := 1≤k≤r(•) pus k .logmu.öss • = - 1 2 O • (110)
with their obvious analogues under the exchange e ↔ o.

Proposition 3.5 (Inverse bisymmetral: separators)

The separation identities read gepar.riess

• := mu(anti.raöss • , raöss • ) = 1 • + r≥1 mu r (O • ) (111) hepar.riess • := 1≤k≤r(•) pus k .logmu.raöss • = 1 2 r≥1 mu r (O • ) (112)
They possess obvious analogues under the exchange e ↔ o. Here mu r (O • ) stands, as usual, for the r-th mu-power of O.

Proposition 3.6 (Direct bisymmetral: gari-dilator)

The identity reads

der.ess • = preari(ess • , diess • ) with (113) diess • := - r≥1 1 (1 + r)! re • r ∈ alternal (114)
and has an obvious analogue under the exchange e ↔ o.

Proposition 3.7 (Inverse bisymmetral: gari-dilator)

The identities read

der.riess • = preari(riess • , diriess • ) (115) der.riöss • = preari(riöss • , diriöss • ) (116)
with dilators equal to

diriess • := + r≥1 1 r.(1 + r) re • r ∈ alternal (117) diriöss • := + r≥1 1 r.(1 + r) ho • r ∈ alternal (118) 
and with the semi-elementary alternals ho • r defined as in (73) but based on the unit O instead of E.

Proposition 3.8 (Bisymmetral swappee: mu-dilator) The identity reads öss • = muu(öss, duuöss) with (119)

duuöss • := + r≥1 α r lo • r ∈ alternal (120)
with muu defined as in ( 25) and the elementary alternals lo • r defined as in §2 but with respect to the unit O instead of E. The coefficients α r are the Bernoulli numbers :

r≥1 α r t r := -1 + t e t -1 = - 1 2 t + 1 12 t 2 - 1 720 t 4 + 1 30240 t 6 + . . . ( 121 
)
Under the polar specialisation O → Pa, the above relations assume the simpler form:

dur.pal • = mu.(pal • , dupal • ) (122) dupal • := r≥1 α r lan • r (123)
relatively to the elementary alternals

lan • r := lu(I • , r-1 times Pa • , ..., Pa • ) (124)
Before examining the parity properties of our bisymmetrals, a few general considerations are in order. It is clear that any bimould M • such that M ∅ = 1 can be uniquely factored as follows

M • = gari(M • od , M • ev ) = mu(M • odd , M • evv ) (125)
or in reverse order

M • = gari(M • ev , M • od ) = mu(M • evv , M • odd ) (126)
with factors that of course differ from ( 125) to ( 126) but in both cases satisfy the parity conditions:

pari.M • ev ≡ M • ev ; pari.M • od ≡ invgari.M • od pari.M • evv ≡ M • evv ; pari.M • odd ≡ invmu. M • odd
With the 'upper' factorisations (125), for example, we find

gari(M • od , M • od ) = gari(M • , pari.invgari.M • ) (127) mu(M • odd , M • odd ) = mu(M • , pari.invmu.M • ) (128)
From there, by square rooting, 24 we go to M • od and M • odd and thence to M • ev and M • evv . None of this requires M • to be symmetral or in Flex (E). Elements of Flex (E), though, behave identically under pari and neg, so that for them the labels even and odd acquire redoubled significance.

In any case the existence of even × odd or odd × even factorisations is a universal phenomenon. 25 What distinguishes the bisymmetrals is the existence of remarkable and multiple factorisations of that sort, with odd factors that tend to be exceedingly simple. 24 an unambiguous operation, if we impose, as we do, that

M ∅ = M ∅ od = M ∅ ev = M ∅ odd = M ∅ evv = 1
Proposition 3.9 (Parity properties)

We have three similar-looking but logically independent identities:

ess • = gari(ess • od , ess • ev ) (129) öss • = gari(öss • od , öss • ev ) (130) öss • = mu(öss • evv , öss • odd ) (131)
with six symmetral factors. Three of these, namely ess 

ess • od = expari - 1 2 E • (132) öss • od = expari - 1 2 O • (133) öss • odd = expmu - 1 2 O • (134) 
or more explicitly:

ess w 1 ,...,wr od = (-1) r 2 r E u 1 v 1:2 E u 12 v 2:3 . . . E u 1...r vr (135) öss w 1 ,...,wr od = (-1) r 2 r O u 1 v 1:2 O u 12 v 2:3 . . . O u 1...r vr (136) öss w 1 ,...,wr odd = (-1) r 2 r 1 r! O w 1 . . . O wr (137) 
They are also "odd" in the sense of being invertible under pari or neg:

invgari(ess • od ) = pari(ess • od ) = neg(ess • od ) (138) invgari(öss • od ) = pari(öss • od ) = neg(öss • od ) (139) invmu(öss • od ) = pari(öss • od ) = neg(öss • od ) (140) 
Three points deserve attention here.

First, note the presence of a factor 1 r! in (137) and its absence in the inflected counterparts ( 135) and (136).

Second, there is no equivalent to (140) on the E-side, that is to say, no remarkable mu-factorisation26 of ess • , whether of type mu(ess ev /öss • ev are not related at all (in any simple way). There would be some justification, therefore, for denoting the odd factor oss • ev rather than öss • ev , though in a way that too might be confusing. The truth is that this theory is so replete with symmetries that no nomenclature can possibly do justice to them all.

Proposition 3.10 (Even factors: separators) The separators of ess ev are unremarkable 27 but those of riess ev exactly mirror, up to parity, the formulae for riess:

gepar.riess ev = 1 • + r≥1 4 -r mu r (O • ) (141) hepar.riess ev = r≥1 4 -r mu r (O • ) (142)
Proposition 3.11 (Even factors: gari-and gira-dilators.)

The three identities read

der.ess • ev = preari(ess • ev , diess • ev ) (143) der.öss • ev = preira(öss • ev , daöss • ev ) (144) der.öss • evv = preira(öss • evv , daöss • ev ) + 1 2 mu(öss • evv , codaöss • ev ) (145) with diess • ev = - 1≤r 1 (2r + 1)! re • 2r (146) daöss • ev = - 1≤r 1 (2r + 1)! rö • 2r (147) codaöss • ev = 1 2 expmu(O • ) + 1 2 expmu(-O • ) -1 • (148) = -daöss • ev -anti.daöss • ev (149)
Warning: the simultaneous occurrence of ev/evv in (145) (where öss We may note, besides, that due to (149) the 'jumbled' identity (145) can be rewritten as follows:

der.öss • evv = irat(daöss • ev ).öss • evv + 1 2 mu(öss • evv , daöss • ev -anti.daöss • ev ) (150)
with id -anti rather than id +anti in front of daöss • ev .

Proposition 3.12 (Inverse even factor: gari-dilator)

We have two similar looking but logically totally distinct identities

der.riess • ev = preari(riess • , diriess • ev ) (151) der.riöss • ev = preari(riöss • , diriöss • ev ) (152)
with dilators equal to

diriess • ev := + r≥1 2 1-2r (2r-1).(2r+1) re • 2r ∈ alternal (153) diriöss • ev := + r≥1 2 1-2r (2r-1).(2r+1) ko • 2r ∈ alternal (154)
and with the semi-elementary alternals ko 

duuöss • ev := + r≥1 α 2r lo • 2r ∈ alternal (157) duuöss • evv := + r≥1 β 2r lo • 2r ∈ alternal (158)
with the bilinear product muu defined as in ( 25) and the same elementary alternals lo • r as above. The coefficients α 2r are also the same as in (121) except for the omission of α 1 , but (158) involves new coefficients β 2r given by r≥1 β 2r t 2r := t e t/2e -t/2 -1 = -

1 24 t 2 + 7 5760 t 4 - 31 967680 t 6 + . . . ( 159 
)
Under the polar specialisation O → Pa the above relations assume a simpler form, with muu replaced by the familiar product mu :

dur.pal • ev = mu.(pal • ev , dupal • ev ) (160) dur.pal • evv = mu.(pal • evv , dupal • evv ) (161)
and with

dupal • ev := r * ≥1 α 2r lan • 2r * ; dupal • evv := r * ≥1 β 2r lan • 2r * (162)
relatively to the same elementary alternals lan • r as in ( 124).

This concludes our list of 'main statements' about the bisymmetrals. For easy reference, we now tabulate the main source functions behind their separators and dilators.

Table 1: gari-dilators and their coefficients:

In all the instances encountered in this section (six in all), we list the identity-tangent diffeomorphisms f with their images in GARI re or GARI ro for the unit choice E or O and the corresponding polar specialisations:

{f := x → x + x a n x n } → {fe • , fo • } and {fi • , fa • } (163)
along with the four relevant generating functions:

• f 0 (x) := x -1 f # (x) = 1 -f (x)
x f ′ (x) : carries the coefficients of the garidilators.

• f 1 (x) := f ′ (x) : carries the coefficients of the first separator gepar.

• f 2 (x) := 1 2 x f ′′ (x) f ′ (x)
: carries the coefficients of the second separator hepar.

• f 3 (x) := f ′′′ (x) f ′ (x) -3 2 f ′′ (x) f ′ (x)
2 = Schwarzian of f : ought to carry the coefficients of a conjectural third separator (still unknown).

Instance 1 : {f (x) = 1 -e -x } → {ess • , oss • } and {pil • , pal • } f 0 (x) = 1 + x -exp(x) x = 1≤r -1 (r + 1)! x r (164) f 1 (x) = exp(-x) = 1 + 1≤r (-1) r r! x r (165) f 2 (x) = - 1 2 x (166) f 3 (x) = - 1 2 (167) Instance : {f (x) = x 1+ 1 2 x } → {ess • od , oss • od } and {pil • od , pal • od } f 0 (x) = - 1 2 x (168) f 1 (x) = = 1 (1 + 1 2 x) 2
(169)

f 2 (x) = = - x 2 1 (1 + 1 2 x) (170) 
f 3 (x) = = 0 (171) Instance : {f (x) = 2 tanh( x 2 )} → {ess • ev , oss • ev } and {pil • ev , pal • ev } f 0 (x) = 1 - sinh(x) x = 1≤r * -1 (2r * +1)! x 2r * (172) f 1 (x) = cosh( x 2 ) -2 = 1 - 1 4 x 2 + 1 24
x 4 -17 2880

x 6 + 31 40320

x 8 + . . . (173)

f 2 (x) = - x 2 tanh( x 2 ) = - 1 4 x 2 + 1 48 x 4 - 1 480
x 6 + 17 80640

x 8 + . . . (174)

f 3 (x) = - 1 2 (175) Instance : {f (x) = log( 1 1 -x )} → {riess • , rioss • } and {ripil • , ripal • } f 0 (x) = 1+ (1-x) x log(1-x) = 1≤r 1 r (r+1)
x r (176)

f 1 (x) = 1 (1 -x) (177) f 2 (x) = x 2 1 (1 -x) (178) f 3 (x) = 1 2 1 (1 -x) 2
(179)

Instance 5 : {f (x) = 1 1 -1 2 x } → {riess • od , rioss • od } and {ripil • od , ripal • od } f 0 (x) = 1 2 x (180) f 1 (x) = 1 (1 -1 2 x) 2
(181)

f 2 (x) = x 2 1 (1 -1 2 x) (182) 
f 3 (x) = 0 (183) Instance 6 : {f (x) = 2 arctanh( x 2 )} → {riess • ev , rioss • ev } and {ripil • ev , ripal • ev } f 0 (x) = 1+( 1 x - x 4 ) log 1-1 2 x 1+ 1 2 x = x 1≤r * 2 1-2 r * (2r * -1)(2r * +1)
x 2r * (184)

f 1 (x) = 1 1 -1 4 x 2 (185) f 2 (x) = x 2 4 1 (1 -1 4 x 2 ) (186) f 3 (x) = 1 2 1 (1 -1 4 x 2 ) 2 (187) 
Table 2: mu-dilators and their coefficients:

The swappees {öss • , ëss • , pal • , pir • } possess simple mu-dilators whose coefficients admit the following generating function:

t e t -1 -1 = - 1 2 t + 1 12 t 2 - 1 720 t 4 + 1 30240 t 6 - 1 120960 t 8 + . . . (188) 
The even gari-factors {öss • ev , ëss • ev , pal • ev , pir • ev } of these swappees possess simple mu-dilators whose coefficients admit the same generating function, minus the first exceptional odd term:

t e t -1 -1 + 1 2 t = 1 12 t 2 - 1 720 t 4 + 1 30240 t 6 - 1 120960 t 8 + . . . (189) 
Their even mu-factors {öss 4 Polar bisymmetrals: proofs.

We shall work mostly with the natural polar specialition (E, O) → (Pi , Pa). §4-1. Separators of pil • and ripil • .

All separator identities in §3 result from the general statement:

If fi • is the image in the group GARI re of the identity-tangent mapping f : x → x + 1≤r a r x r+1 , then its two separators are of the form gepar.fi w 1 ,...,wr = a * r Pa w 1 . . . Pa wr with a * r = (r + 1) a r (191) hepar.fi w 1 ,...,wr = a * * r Pa w 1 . . . Pa wr with 1≤r a * * r x r :=

x 2

f ′′(x) f ′ (x) (192) 
To prove (191) we note that the bimould fi • , being the image of f , has a gari-dilator of the form:

der.fi • = preari(fi • , difi • ) with difi • = 1≤r α r ri • r (193)
so that its swappee fa • has a gira-dilator of the form:

der.fa • = preira(fa • , dafa • ) with dafa • = 1≤r α r sra • r (194)
with sra • r := swap.ri • r and with identical coefficients α r given by

1 - f (x) x f ′ (x) = 1≤r α r x r (195) 
Due to the very special form of sra • r and anti .sra • r :

anti.sra w 1 ,...,wr = P (u 1 + ... u r )

1≤i≤r i j =i P (u j ) ( 196 
)
the pre-bracket preira in (194) may be replaced by preiwa, which becomes:

der.fa • = preiwa(fa • , dafa • ) = iwat(dafa • ).fa • + mu(fa • , dafa • )(197)
Setting gefa • := mu(anti .fa • , fa • ) and applying the mu-derivation der to both sides, we find, in view of (197) and anti .iwat(sra • ) = iwat(sra • ).anti :

der.gefa • = iwat(dafa • ).gefa • + mu(gefa • , dafa • ) + mu(anti.dafa • , gefa • ) (198)
Using the elementary identities

sra • r + anti.sra • r = (r+1). mu r (Pa • ) (199) and irat(sra • p ).mu q (Pa • ) = iwat(sra • p ).mu q (Pa • ) = -(p-q+1) . mu p+q (Pa • ) +mu(sra • p , mu q (P • )) +mu(mu q (P • ), anti.sra • p ) (200)
it is but a short step fom (198) to (191).

The proof for hepar runs along similar lines but is more intricate. Since we do not really require the result in the sequel, let us just mention the key step in the argument. Let r = {r 1 , ..., r s } denote any non-ordered sequence of s positive integers, and let fa

• r resp. lofa • r denote the part of fa • resp. lofa • that is multilinear in sra • r 1 , . . . , sra • rs .
Applying the rules of §1-9 we find:

fa • r = a r 1 ...a rs σ∈S(s) Paj r σ(1) ,...,r σ(s) -→ preira (sra • r σ(1) , ..., sra • r σ(s) ) (201) lofa • r = 1≤m≤s (-1) m-1 m r 1 ...r m =r mu(fa • r 1 , ..., fa • r m ) (202) Next, consider rofa • r = a r 1 ...a rs σ∈S(s) Paj r σ(1) ,...,r σ(s) irat(sra • r σ(r) ) . . . irat(sra • r σ(2) ).sra • r σ(1) (203)
Although rofa • r has a much simpler (less composite) definition than lofa • r and actually differs from it as soon as r ≥ 2, one can nonetheless show that after pus-averaging the two expressions do coincide:

1≤k≤|r| pus k .lofa • r ≡ 1≤k≤|r| pus k .rofa • r (204) §4-2. Shape of the gari-dilators of pil • and ripil • .
This is a standard application of the correspondance f → f # . See the Table 1 at the end of the preceding section, where f 0 (x) ≡ f # (x)/x. See also §4 in [E3], from (4.11) through (4.17). §4-3. Bisymmetrality of pal • /pil • : first proof.

This proof strives to be even-handed, in the spirit of dimorphy: it treats pal • and pil • in exactly the same way, by relating each to its dilator. So, rather than defining pil • from its source mapping f as in Proposition 3.1, we adopt the following, strictly equivalent definition, polar-transposed from Proposition 3.6 and based on the gari-dilator dipil • :

der.pil • = preari(pil • , dipil • ) (205) with dipil • := - 1≤r 1 (r+1)! ri • r
The alternals ri • r are of course the specialisation of re • r under E → Pi . We then consider a bimould pal • defined, not as the swappee of pil • , but directly and independently, via the mu-dilator dupal • : 

dur.pal • = mu(pal • , dupal • ) ( 206 
lan • r = 1≤i≤r (-1) i-1 (r -1)! (i -1)!(r -i)! mu mu i-1 (Pa • ), I • , mu r-i (Pa • ) = lu(I • , (r-1) times Pa • , ..., Pa • ) (207)
Both dilators dipil • and dupal • being alternal, it immediately follows that pil • and pal • are symmetral: this is obvious from the inversion formulae ( 36) and ( 39) and from the symmetrality of the mould Paj • common to both.

So everything now reduces to showing that pal • is actually the swappee of pil • or, what amounts to the same, that the system (206) that defines pal • is equivalent to the system der.pal

• = preira(pal • , dapal • ) = irat(dapal • ).pal • + mu(pal • , dapal • ) (208) with dapal • := - 1≤r 1 (r+1)! sra • r sra • r := swap.ri • r
deduced under the swap transform from the system (205) that defines pil • . Before taking that one last step, let us recall the universal relation ( 27) between the gira-dilator daS • and the mu-dilator duS • of a given S • : der.duS •dur.daS

• + lu(daS • , duS • ) -irat(daS • ).duS • = 0 Specialising the triplet {S • , daS • , duS • } to the triplet {pal • , dapal • , dupal • }, we get: der.dupal • -dur.dapal • + lu(dapal • , dupal • ) -irat(dapal • ).dupal • = 0 (209)
which, as observed in the universal case (cf §1), determines dapal • in terms of dupal • and vice versa. Now, this appealingly symmetrical and winningly simple relation (209) involves only elementary monomials Pa(.) and readily follows from the basic identities (199), ( 200) and ( 207).

This establishes beyond cavil that the symmetral bimould pil • as defined by ( 205) and the equally symmetral bimould pal • as defined by ( 206) are mutual swappees.

Remark: This last identity (209) is totally rigid in the sense that if we tinker with the common coefficients -1/(r + 1)! of dipil • and dapal • , there is no way we can adjust the coefficients α r of dupal • to salvage (209). This rigidity will stand us in good stead in [E4] for unravelling the structure of the trigonometric bisymmetrals tal • /til • . For a foretaste, see §17 infra. §4-4. Bisymmetrality of pal • /pil • : second proof.

This alternative proof is more roundabout29 but makes up for it by yielding valuable extra information. We now starts from pil • and its gari-inverse ripil • , which are automatically symmetral by construction. The challenge is to show that pal • (now defined derivatively, as the swappee of pil • ) is also symmetral or, what amounts to the same but turns out to be easier, that its gari-inverse ripal • is symmetral. The key here is to compare ripal • with the swappee rapal • of ripil • , which may be also be viewed as the gira-inverse of pal • (hence the prefix "ra"). According to (10) ripal • is also the ras-transform of rapal • : ripal

• = ras.rapal • := invgari.swap.invgari.swap.rapal • (210) 
The following picture sums up the situation:

pal • swap ←→ pil • invgari invgari ripal • ripil • ras ↑ ւswapր rapal •
In view of (9) we also have:

rash.rapal • = mu(corapal • , rapal • ) with (211) corapal • = push.swap.invmu.swap.rapal • (212) 
Replacing push by its definition (439) in ( 212) and using the fact that ripil 

• = mu(anti.rapal • , rapal • ) (220) = gepar(ripil • ) (221) = pac • (due to (111) (222) 
with an elementary pac • that admits an equally elementary gani-inverse nipac • : pac w 1 ,...,wr = 1≤i≤r

P (u i ) ( 223 
)
nipac w 1 ,...,wr = (-1) r 1≤i≤r

P (u i +. . .+u r ) (224) gani(pac • , nipac • ) = 1 • (225)
Thus, in view of (8), we go from ripal • to rapal • and back via the relations ganit(pac

• ).ripal • = rapal • (226) ganit(nipac • ).rapal • = ripal • (227)
Now, it is an easy matter to ckeck30 that ganit(pac Let us now write down the dilator identity for ripil • (see ( 151)-( 153)) and the logically equivalent identity for the swappee rapal • :

der.ripil • = preari(ripil • , diripil • ) with diripil • = 1≤r 1 r.(r+1) ri • r (230) der.rapal • = preira(rapal • , darapal • ) with darapal • = 1≤r 1 r.(r+1) sra • r (231)
As usual, sra • r := swap.ri • r . More explicitely:

sra w 1 ,...,wr r = (r+1-i) u i u 1 . . . u r (u 1 +...u r ) (232) 
From that we infer the shuffle identity:

w ∈ sha(w 1 ,w 2 ) esra w r ≡ esra w 1 r 1 expa w 2 r 2 + expa w 1 r 1 esra w 2 r 2 with (233) esra • r := 1 (r + 1)! dur.sra • r (234) expa • r := expmu(Pa • ) (235)
which in turn easily implies that the dilator darapal • , as given by ( 239), is alternul. 31 Now, if from "darapal • ∈ alternul" we could directly deduce "rapal • ∈ symmetrul", life would be easy: we could, applying ( 227) and ( 229), immediately conclude that ripal • and therefore pal • are symmetral, and be done with it. Unfortunately, we cannot 32 -at least not directlyand must take the detour through the dilators darapal • and diripal • . So our goal now is to go from the proven identity ( 231) to an identity of the form:

der.ripal • = preari(ripal • , diripal • ) with diripal • := ganit(nipac • ).darapal • (236) 
and from there to the identity:

der.ripal • = preari(ripal • , diripal • ) with diripal • = 1≤r 1 r.(r+1) ha • r (237)
To deal with the first step, let us parse the identities ( 231) and ( 236) respectively as A 1 + A 2 = 0 and B 1 + B 2 = 0 with

A 1 := -der + irat(darapal • ) .rapal • A 2 := mu(rapal • , darapal • ) (238) B 1 := -der + arit(diripal • ) .ripal • B 2 := mu(ripal • , diripal • ) (239)
and then check that:

ganit(nipac • ).A 1 = B 1 (240) ganit(nipac • ).A 2 = B 2 (241)
31 This fact is already mentioned in [E3], in "universal mode": see (4.6) p 73. 32 To do that directly, we would require the alternulity of the gari-dilator dirapal • of rapal • (not considered here) rather than the alternulity of its gira-dilator darapal • (considered!). Extreme caution is called for here; great care must be taken to distinguish between the various dilators: diripil • (linked to ripil ), diripal • (linked to ripal ), and the pair darapal • /dirapal • (both linked to rapal • , but in different ways). Always pay close attention to the vowels and their placement: no agglutinative language with vocalic alternation could beat flexion theory for fiendish intricacy! But that's no fault of ours. That's just the way things are, and there in no point in carping.

The relation ( 241) is simply the definition of diripal • : see (236), second line. To prove the non-trivial part, namely ganit(nipac

• ).A 1 = B 1 (242)
we apply to rapal • both terms of the operator identity ganit(nipac

• ). -der + irat(darapal • ) ≡ -der + arit(ganit(nipac • ).darapal • ) .ganit(nipac • ) (243)
which is easier to check in this equivalent formulation: 33

-der + irat(darapal • ) .ganit(pac • ) ≡ ganit(pac • ). -der + arit(ganit(nipac • ).darapal • ) (244)
Thus, the mu-isomorphism ganit(nipac • ) takes us from ( 231) to ( 236), thereby establishing the latter identy, with a dilator diripal • which, being the image under ganit(nipac • ) of the alternul darapal • , is automatically alternal. This in turn immediately implies that ripal • and pal • are symmetral. In also implies, in view of ( 227), that rapal • is symmetrul -the very property, recall, that we could not directly derive from "darapal • ∈ alternul". This completes our second, less direct proof of the bisymmetrality of pal • /pil • . What it doesn't do, though, is prove that our definitely alternal bimould diripil • admits the exact expansion (237), with ha • r the polar specialisation of he • r under E → Pa. To rigorously establish this non-essential, but very nice extra bit of information unfortunately requires rather lengthy and tedious, though in a sense elementary calculations. One way to proceed is to start from the expansion (231) of darapal • ; to apply ganit(nipac • ) to each sra r

• separately, resulting in a bimould hasra r • with infinitely many non-vanishing components:

hasra • r := r≤r * hasra • r,r * with hasra • r,r * ∈ BIMU r * (245) 
One may then expand each hasra • r,r * in the standard basis of Flex r * (Pa), where it admits a rather simple, highly lacunary projection; and eventually piece everything together inside the double sum

1≤r≤r * 1 r.(r + 1) hasra • r,r * ≡ 1 r * (r * +1) ha • r * ( 246 
)
33 These are 'rigid' identities, strictly dependent on the nature of the inputs: if we were to modify the definition of darapal • by, say, modifying the coefficients of sra • r in (231), we would have to simultaneously modify the pair pac • , nipac • of gani-inverse elements.

The combinatorially minded reader may fill in the dots. 34 To conclude, let us sum up the various steps of the whole argument (our second bisymmetrality proof -) with the number of stars alongside each arrow reflecting the trickiness of the corresponding implication:

{pil • ∈ symmetr al } =⇒ {ripil • ∈ symmetr al } ⇓ {darapal • ∈ alternul } * ⇐= {diripil • ∈ alternal } ⇓ * * {diripal • ∈ alternal } * * * =⇒ {diripal • = 1 r.(r+1) ha • r } ⇓ {ripal • ∈ symmetr al } * =⇒ {rapal • ∈ symmetr ul } ⇓ {pal • ∈ symmetr al } §4-6. Even and odd factors of pal • /pil • .
We must first establish the three factorisations ( 129), ( 130), (131). Despite their air of kinship, they are in fact quite distinct, and must be dealt with separately. Under our preferred polar specialisation (E, O) → (Pi , Pa) they become respectively:

pil • = gari(pil • od , pil • ev ) with pil • od = expari(- 1 2 Pi • ) (247) pal • = gari(pal • od , pal • ev ) with pal • od = expari(- 1 2 Pa • ) (248) pal • = mu(pal • evv , pal • odd ) with pal • odd = expmu(- 1 2 Pa • ) (249) (i)
The first factorisation (247) merely reflects the factorisation f = f od • f ev of the source diffeomorphisms. Explicitly:

f (x) = 1 -e -x ; f od (x) = x 1 -1 2 x ; f ev (x) = 2 e x/2 -e -x/2 e x/2 + e -x/2 (250)
Of course, as a function, f ev (x) is odd and f od (x) is neither odd nor even, but what matters in this context is that the quotient f ev (x)/x should carry only even powers of x and that f od (•) should admit -f od (-•) as its reciprocal mapping.

(ii) The second factorisation ( 248) is less immediate to derive. We first observe that if we specialise E to Pa rather than Pi , we get instead of (247) the following factorisation:

par • = gari(par • od , par • ev ) with par • od = expari(- 1 2 Pa • ) (251)
Anticipating on the key result of §8 below about the canonical factorisation of bisymmetrals, we may note that the two exceptional (i.e. non-neg-invariant) bisymmetrals pal • and par • necessarily coincide up to gari-postcomposition by a regular (i.e. simultaneously neg-and pari-invariant) bisymmetral, which we may call ral • , and whose first three components ral • 1 , ral • 2 , ral • 3 , as well as all later components of odd length, necessarily vanish. In other words:

pal • = gari(par • , ral • ) = gari(par • od , par • ev , ral • ) (252)
But this is exactly the sought-after factorisation (248), with explicit factors:

pal • od = par • od = expari(- 1 2 Pa • ) (253) pal • ev = gari(par • ev , ral • ) (254) 
(iii) The third factorisation ( 249) is rather special in being a mu-factorisation incongruously arising out of a purely gari-gira context. 35 The quickest way to derive it is to assume the (already doubly established) bisymmetrality of pal • /pil • , then to define the would-be even factor pal • evv via the equation (249) in terms of pal • and pal • odd ; and then to check its evenness. Injecting the factor pal • evv so defined into the first separator identity: gepar.pil • = mu(anti.pal Comparing ( 257) and ( 258), we see that pal • evv is pari-invariant, and so neginvariant as well, and therefore truly even.

Properties of pal •

ev and pal • evv .

In our preferred polar specialisation, the identities ( 143), ( 144), ( 145) become der.pil

• ev = preari(pil • ev , dipil • ev ) (259) der.pal • ev = preira(pal • ev , dapal • ev ) (260) der.pal • evv = preira(pal • evv , dapal • ev ) + 1 2 mu(pal • evv , codapal • ev ) (261)
with the unavoidable ev/evv jumble in ( 261) and with dilators given by dipil

• ev := - 1≤r 1 (2 r+1)! ri • 2r (262) dapal • ev := - 1≤r 1 (2 r+1)! sra • 2r (sra • r := swap.ri • r ) (263) codapal • ev := 1 2 expmu(Pa • ) + 1 2 expmu(-Pa • ) -1 • (264) = -dapal • ev -anti.dapal • ev (265)
The identity (259) simply reflects the form of the preimage f # of the gari-dilator. See f 0 := x -1 f # in (172):

The identity (260) is the mechanical transposition of (259) under the involution swap.

To establish the last identity (261), we must start, not from ( 260), but from the corresponding relation for pal • , which reads der.pal

• = preira(pal • , dapal • ) with dapal • := - 1≤r 1 (r+1)! sra • r (266)
To declumsify our notations, we set:36 

B := - r even 1 (r+1)! sra • r ; C := - r odd 1 (r+1)! sra • r (267) A := B + C ; A * := B -C (268) a := pal • ; b := pal • evv ; c := pal • odd (269)
Further, we shall denote the mu-product by a simple dot "." We shall also abbreviate irat(A), irat(B) etc as Ā, B etc. Lastly, stars in upper (resp. lower) index position shall stand for the involution pari (resp. anti).

With these compact notations, the relation (266) we want to establish reads

R := -der(b.c) + Bb + b.B - 1 2 B - 1 2 B * ≡ 0 (270)
Using the fact that der , Ā, B etc are mu-derivations, we see that R may be decomposed as

R = R 1 .c -1 + R * 1 .c -b.R 2 -b.R * 2 (271)
with

R 1 := -der(b.c) + Ā (b.c) + b.c.A (272) R * 1 := -der(b.c -1 ) + Ā * (b.c -1 ) + b.c -1 .A * (273) R 2 := ( Āc).c -1 + c.A.c -1 - 1 2 A + 1 2 A * - 1 2 P a • (274) R * 2 := ( Ā * c -1 ).c + c -1 .A * .c - 1 2 A * + 1 2 A * * + 1 2 P a • (275) 
Let us now show that

R 1 ≡ R • 1 ≡ R 2 ≡ R * 2 ≡ 0.
The identities R * 1 ≡ 0 and R * 2 ≡ 0 follow respectively from R 1 ≡ 0 and R 2 ≡ 0 under pari, and the identity R 1 ≡ 0 is none other than (266). So the only thing left to check is R 2 ≡ 0. To do this we apply the derivation rule (200) and then the simplification rule (199) to show that in the expression ( Āc).c -1 + c.A.c -1 all 'intermediary terms', i.e. all terms of the form

mu mu r 1 (Pa • ), sra • r 2 , mu r 3 (Pa • ) or mu mu r 1 (Pa • ), anti.sra • r 2 , mu r 3 (Pa • )
with r 1 = 0, r 2 ≥ 2, r 3 = 0 disappear, leaving only 'extreme terms' that cancel out with the terms from -1/2 A + 1/2 A * , plus of course pure mu-powers of Pa • , which also cancel out. This establishes R ≡ 0. §4-7. Properties of ripal • ev .

Applying the identity (44) for dilator composition to the factorisation

ripal • ev = gari(ripal • , pal • od ) (276) we find diripal • ev = dipal • od + adari(pal • od ) -1 . diripal • (277) But since pal • od = expari (-1 /2 Pa • ), this simplifies to diripal • ev = - 1 2 Pa • + (exp P). diripal • (278) 
with diripal • as in ( 236) and with the ordinary exponential expP of the elementary operator P:

P.M • := 1 2 ari(Pa • , M • ) (∀M • ∈ BIMU) (279)
Being the gari-dilator of a symmetral bimould, diripal • ev is of course alternal. And since we have shown that pal • ev and therefore ripal • ev are 'even' (i.e. pariinvariant), the same applies for diripal • ev , so that, as expained in §2 (see ( 89) and ( 90) ) the relation between diripal • and diripal • ev may be rewritten as

diripal • ev = (cosh P) -1 . 1 2 (id + pari).diripal • (280)
which, appearances notwithstanding, is actually simpler than (278), as it involves only even-length components.

In a sense, this is all we need to know. But in order to get the extra information of formula (154) or rather, in our polar specialisation, the explicit expansion of diripal • ev in terms of the remarkable alternals ka • 2r (polarspecialised from the ke • 2r of §2), we must work harder. Rather than derive the expansion of diripal • ev directly 37 from that of diripal • via (278) or (280), it is more convenient to reproduce the approach of ( 245) and ( 246 and then regroup the (highly lacunary) components of r * :

1≤r≤r * 1 r.(r + 1) kasra • r,r * ≡ 2 1-r * (r * -1).(r * +1) ka • r * (281) 
Comparing the components kasra • r,r * with the earlier hasra • r,r * of ( 245), one even gets to understand (however dimly) why the relevant tree-combinatorial 37 The direct method yields only partial but valuable information. Thus, denoting Proj 1 .M • the first coefficient of M • in the standard eupolar basis, we may establish the identity Proj 1 .P 2r * -r .diripal object for calculating the bimould projections in the standard basis {e • t } is slant(t) in the case of ha • r and stack (t) in the case of ka • 2r . Still, the calculations are quite lengthy and the whole approach leaves much to be desired. In particular, one would appreciate a more conceptual explanation for the puzzling slant/stack dichotomy. §4-8. Characterisation of pal • /pil • .

The explicit expansion of pal • as given in (300) below (as a direct consequence of ( 122) and ( 123)) makes it clear that pal • , and therefore pil • too, possess exactly the pole pattern described in Proposition 3.2. To prove the converse, namely that no other Pi -polar bisymmetral varpil • can display the same pole pattern, we must use the results of §8 about the standard factorisation of bisymmetrals. In the case when varpil • 1 = 0, we have varpil

• = expari.bir • with bir • ∈ bialternal (282) 
In the case when our first component varpil • 1 is = 1, it is necessarily of the form c Pi • and, modulo an elementary dilation varpil • r → γ r varpil • r , we may assume c = -1/2 and get varpil • 1 and pil • 1 to coincide, thus ensuring (according to §8) the existence of a factorisation:

varpil • = gari(pil • , expari.bir • ) with bir • ∈ bialternal (283)
The thing now is to focus on the first nonzero component bir • 2r (2r ≥ 4). It is bound to occur linearily in the expansion of varpil • , whether the latter be of type ( 282) or (283). Now, bir • 2r cannot be of the form c ri • 2r , which is simply alternal, not bialternal. But of all alternals, let alone bialternals, ri • 2r alone possesses precisely the pole structure described in Proposition 3.2 for pil • . This clinches the argument.

5 Polar bisymmetrals: explicit expansions. §5-1. Explicit expansions for pil • and pil • ev .

From the {ri • r }-expansions of pil • 's dilator dipil • and infinitesimal generator lipil

• := logari .pil • : dipil • = 1≤r τ r ri • r with τ r = - 1 (r+1)! (284) lipil • = 1≤r θ r ri • r with θ r = horrible (285) 
we at once derive (see ( 39) and ( 478)) two equally valid expansions for pil • itself, which in their first raw form read:

pil • = 1 • + s≥1 r 1 ,...,rs≥1 τ r 1 . . . τ rs Paj r 1 ,...,rs -→ preari (ri • r 1 , ..., ri • rs ) (286) pil • = 1 • + s≥1 r 1 ,...,rs≥1 1 s! θ r 1 ...θ rs -→ preari (ri • r 1 , ..., ri • rs ) (287)
The main difference lies of course in the transparency of the τ r 's compared with the complexity of the θ r 's. But quite apart from the nature of their coefficients, the above expansions are unsatisfactory on two further counts: they are non-unique38 and involve multiple pre-Lie brackets, which are complex, inflected expressions. So we must hasten to replace them by unique expansions involving simple, uninflected mu-products. There are three ways of doing this, based on the elementary series {mi

• r }, {ni • r }, {ri • r } inductively defined as follows: mi • 1 := Pi • ; mi • r := amit(mi • r-1 ).Pi • (288) ni • 1 := Pi • ; ni • r := anit(ni • r-1 ).Pi • (289) ri • 1 := Pi • ; ri • r := arit(ri • r-1 ).Pi • (290) 
and behaving as follows under the anti-action arit:

arit.(ri • q ).mi • p = s≥1 r i =p+q r 1 ≥p (-1) 1+s r s mu(mi • r 1 , ..., mi • rs ) (291) arit.(ri • q ).ni • p = s≥1 r i =p+q rs≥p (-1) 1+s+q r 1 mu(ni • r 1 , ..., ni • rs ) (292) arit.(ri • q ).ri • p = p.ri • p+q + k≤q lu(ri • k , ri • p+q-k ) (293) 
For s ≥ 1 and r 1 + ... + r s = r each of the three sets

mu(mi • r 1 , ..., mi • rs ) ; mu(ni • r 1 , ..., ni • rs ) ; mu(ri • r 1 , ..., ri • rs ) (294) 
consists of linearly independent bimoulds that span one and the same subspace Flexin r (Pi ) of Flex r (Pi ). The six conversion rules between the three bases are mentioned in [E3] §4.1. Let us recall the most useful:

ri • r 0 = 1≤s r i =r 0 (-1) s+1 r s mu(mi • r 1 , ..., mi • r 1 ) (295) ri • r 0 = 1≤s r i =r 0 (-1) s+r r 1 mu(ni • r 1 , ..., ni • r 1 ) (296) 
The first two bases (294) of Flexin r (Pi ) have the advantage of consisting of 'atoms' (simple strings of inflected units Pi). The ingredients ri • r of the third basis are not atomic (it takes at least r + 1 strings to express them) but they make up for it by being alternal. Now, the above derivation rules ( 291), ( 292), ( 293) together with the two conversion rules ( 295), ( 296) make it easy 39 to expand the multiple prearibrackets of ( 284), ( 285) in each of the three bases (294). In the event we get three alternative expressions:

pil • = 1 • + s≥1 r 1 ,...,rs≥1 Mip r 1 ,...,rs mu(mi • r 1 , ..., mi • rs ) (297) pil • = 1 • + s≥1 r 1 ,...,rs≥1 Nip r 1 ,...,rs mu(ni • r 1 , ..., ni • rs ) (298) pil • = 1 • + s≥1 r 1 ,...,rs≥1
Rip r 1 ,...,rs mu(ri 

• , Nip • , Rip • . 39 since preari (A • , B • ) = arit(B • ).A • + mu(A • , B • )
Flex 2s (Pa) inductively defined by Lan w 1 ,...,w 2s ǫ 1 ,...,ǫs = Lan w 1 ,...,w 2s-2 ǫ 1 ,...,ǫ s-1 Pan w 1 ,...,w 2s Fixing s and letting each ǫ i range over {0, 1, 2}, except for the first ǫ 1 which is forbidden to be 0, we get a set of bimoulds Lan • ǫ 1 ,...,ǫs that (i) are linearly independent (ii) span the same subspace of Flex 2s (Pa) as the Paj 

• evv = 1 • + s≥1 ǫ 1 ,...,ǫs∈{0,1,2} Han ǫ 1 ,...,ǫs Lan • ǫ 1 ,...,ǫs s = 1 2 r(•) (305)
with a rational valued mould Han • belonging to none of the classical symmetry types but nonetheless calculable by a simple induction.

From pal • evv we easily go to pal • , through elementary mu-multiplication by the arch-elementary factor pal • odd , and from there we go to pil • through the equally elementary involution swap. Moreover, of all expansions currently at our disposal, this ultimate expansion (305) for pal • evv is clearly optimal, since it involves only 2.3 r/2-1 atomic summands, as compared with the 2 r summands in each of the three expansions ( 297), ( 298), (299) for pil • .

Remark: If in (304) we had prohibited for ǫ 1 the value 1 resp. 2 instead of 0, we would still have got two valid bases Lan • ǫ 1 ,...,ǫr and two expansions of the form (303), though with changed moulds H • . There exist yet other bases with the same indexation. These multiple choices, hardly relevant in the eupolar case, acquire real significance in the eutrigonometric case ( [E4]) and shall be discussed there.

6 Polar bisymmetrals: seven remarks.

. Remark 1. Nearly complete restoration of symmetry.

The first proof presented here (in §4) of the bisymmetrality of pal • /pil • is definitely shorter than the second one, which in turn is simpler than either of the two proofs sketched in [E3]. As we see it, it has two further merits: it respects the symmetry between the two swappees (unlike the earlier treatments, which gave precedence to pil • and relegated pal • to the subordinate status of a derivative object) and it does so in the most satisfactory way that could be dreamt of, by linking pal • and pil • separately to the only two completely elementary alternal series that exist in Flex (E), namely {le • r } and {re • r }.

The linkage between each swappee and its alternal series is provided by the notion of dilator, but the two dilators in question are rather different: one is geared to the uninflected mu-product, the other to the inflected gariproduct. The two alternal series {le • r } and {re • r } also differ, and in much the same way. We have here, we suggest, the whole essence of dimorphy in a nutshell: a symmetry that is nearly complete, yet stops just short of being thoroughly, dully, and barrenly complete. In fact the whole flexion structure -dimorphy's natural framework -is largely though not perfectly self-dual under swap. So is its core ARI//GARI. And so is the core's core, consisting of the two pairs pal • /pil • and tal • /til • . Experience shows that such mathematical structures are among the most fecund.

Remark 2. Pervasiveness of parity.

Considerations of parity are paramount in all branches of the theory, not just in the factorisation of the key bimoulds but also when it comes to constructing and describing their length-r components.

Regarding the factorisations, they come in all sorts and shapes. Thus, all three formulae (129), ( 130), ( 131) are logically independent, carry unrelated even factors, and involve two distinct group laws, mu and gari. Nor is the phenomenon restricted to the eupolar context; it extends to such objects as the important bimould Zag • , though with a nuance: unlike eupolar bimoulds, which are automatically invariant under pari • neg, general bimoulds such as Zag • react differently to pari and neg, leading to a more intricate factorisation pattern, with three factors Zag • I , Zag • II , Zag • III , the first of which again splits into three subfactors.

Regarding the mould components, the even/odd dichotomy makes itself felt in this way: whereas we have to work in order to find the even-length components of our bisymmetrals41 , their odd-length components immediately and effortlessly follow, and that too under any one of at least four distinct mechanisms. 42 The dichotomy also holds for the components of Zag • and those of each of its three factors. Thus, constructing the even-length components of Zag • I or Zag • II is hard work, while the odd-length components easily follow. With Zag • III , it is exactly the reverse. Ultimately, the dominance of parity in flexion theory can be traced back to one root cause: the essential parity of bialternals (see §7 infra). Germane considerations also explain the existence of a surperalgebra SUARI parallel to ARI (see [E1], §24, pp 456-459).

Remark 3. Native complexity of bisymmetrals

No bisymmetrality proof for pal • /pil • is entirely elementary, even though the first of the two proofs presented here (in §4-3) keeps complications down to a minimum. Bisymmetrality proofs for the trigonometric tal • /til • are even longer and harder.

This relative difficulty in proving what is after all the signature property of our two bimould pairs (their birthmark as it were and the one reason behind their ubiquity in multizeta theory) simply reflects the non-trivial nature of these objects -their native and irreducible complexity.

Remark 4. Nature picks exactly the right polar specialisations

Though the two structures Flex (Pi ) and Flex (Pa) are strictly isomorphic, the two polar specialisations, when applied to a given element of Flex (E), often lead to rational functions that differ widely in appearance, complexity, and (rational) degree.

Thus pal • /pil • is far simpler than par • /pir • . Unlike par • /pir • , it admits a trigonometric counterpart. And unlike par • /pir • , it spontaneously occurs in the double trifactorisation of Zag • /Zig • .

Similarly, the alternal series {re • r } is simpler when specialised to {ri • r } under E → Pi than when specialised to {ra

• r } under E → Pa. Conversely, the series {le • r }, {he • r }, {ke • 2r } are simpler in their incarnation as {la • r }, {ha • r }, {ka • 2r } than as {li • r }, {hi • r }, {ki • 2r }.
Lastly, as if to complete this picture of harmony, it so happens that it is precisely in their simpler form {ri • r } and {la • r }, {ha • r }, {ka • 2r } that the four alternals series occur in the dilators of pal • /pil • .

Remark 5. Direct vs inverse bisymmetrals.

In some ways (e.g. with regard to their separators and dilators) the 'secondary-to-primary' identity (4.85) in [E3].

gari-inverses of bisymmetrals are better-behaved than the originals. This fact, already noticeable with eupolars, becomes particularly striking in the eutrigonometric case: compare for example the transparent right-hand side of (4.88) in [E3] with that of (4.87), for which no simple closed formula exists.

But the main difference is one of 'universality': whereas pal • /pil • and par • /pir • and indeed all 'intermediate' bisymmetrals 43 have different geparseparators, the separators of the gari-inverses ripal • /ripil • and ripar • /ripir • (and of all other exceptional, non neg-invariant bisymmetrals) do coincide. 44 Lastly, we may note that in the applications to multizeta algebra it is the inverse polar bisymmetrals ripal • /ripil • and the direct trigonometric bisymmetrals tal • /til • that matter most. Remark 6. Coexistence of inflected and non-inflected opeations.

Quite often, when comparing flexion formulae, 45 one is struck by a recurrent anomaly: that of complex inflected operations like gari, expari etc inexplicably morphing into non-inflected ones like mu, expmu etc. While there is no neat, sweeping reason for this stealthy tendency towards 'desinflexion', but only case to case explanations, one may still point to the existence of a large ideal ARI intern of ARI and of a large normal subgroup GARI intern of GARI where ari and gari reduce to lu and mu (but with the order of the arguments reversed). See §1-11 supra.

Remark 7. The trigonometric bisymmetral tal • /til • .

The 'trigonometric specialisation'

(E, O) → (Qi c , Qa c ) with Qi w 1 c := c tan(c v 1 ) ; Qa w 1 c := c tan(c u 1 ) (306) 
is no proper specialisation, since Qi • c and Qa • c are only approximate units, due to the corrective terms ± c 2 in the identities (3.28) and (3.29) of [E3]. See also §17-12 infra. One should therefore be prepared for serious complications when going from pal • /pil • to the trigonometric equivalent tal • /til • , and in that respect the trigonometric bisymmetrals do not disappoint. A long monograph [E5] will be devoted to them and their natural environment, the structures Flex (Qi c ) and Flex (Qa c ), which are not isomorphic to the polar prototypes nor indeed to each other.

43 of type gari (pal • , expari (bal • )) with bal • any bialternal. 44 This is not always an asset: it is sometimes useful to have simple criteria that tell the canonical from the non-canonical bisymmetrals.

45 for example ( 247), ( 248), ( 249).

We shall be content here with a few hints, to highlight the key steps in the transition from eupolar to eutrigometric. The formula (113) linking pil • to its gari-dilator dipil • survives unchanged (as to its general form). The link between pal • to its mu-dilator dupal • also survives, especially regarding the even factors, though not exactly in the 'differential' form (119) but rather in the 'integral' form (300), with the auxiliary mould Paj • replaced, unsurprisingly, by a more complex Taj • . But the main change is this: while the polar dilators had their components dipil • r resp. dupal • r simply proportional to ri • r resp. la • r (or rather lan • r ), the trigonmetric dilator components ditil • r and dutal • r take their values in two δ(r)-dimensional spaces of alternals, with a fast (faster than polynomially) increasing δ(r). So now at each (even) step we have to determine not one, but δ(r) rational coefficients on both sides, and to understand the affine (or linear, modulo the 'earlier' coefficients) correspondance between the two sets. The alternal series {ha r } and {ka 2r } also survive (with single components morphing into linear spaces) and so does their connection with the even factors of the inverse bisymmetrals. Altogether, although almost every single statement of §3 has its counterpart in the new setting, we experience a steep increase in difficulty, resulting in an even more diverse and interesting situation.

Essential parity of bialternals.

This section is devoted to establishing the decomposition46 ARI al/al = ARI ȧl/ ȧl ⊕ ARI al/al (307)

of the space ARI al/al of all bialternals into: (i) a large, regular part ARI al/al , consisting of even bimoulds and stable under the ari-bracket.

(ii) a small, exceptional part ARI ȧl/ȧl := BIMU odd 1 , consisting of odd bimoulds of length one and endowed with a bilinear mapping oddari into ARI al/al .

Everything rests on the following statement.

Proposition 7.1 (Parity of bialternals). Any nonzero bialternal bimould A • purely of length r > 1 is neg-invariant or, if you prefer, an even function of its double index sequence: A w ≡ A -w .

Proof: Alternality implies invariance under mantar := -anti .pari . Bialternality, therefore, implies invariance under neg.push, with: neg.push := mantar.swap.mantar.swap = anti.swap.anti.swap

The push operator, we recall, is idempotent of order r + 1 when acting on BIMU r , i.e. on bimoulds of length r.

Let us assume that A w is odd in w, and show that this implies A w ≡ 0.

For an even length r, this follows at once from the neg.push-invariance:

A w = (neg.push) r+1 .A w = neg r+1 .push r+1 .A w = neg.A w = -A w (308)
For an odd length, the argument is more roundabout. Note first that for A w , which we assumed to be odd in w, invariance under neg.push amounts to invariance under -push. Here again, it turns out that the absence of non-trivial solution does not require the full bialternality of A • , but only its alternality and invariance under -push. So let us prove this stronger statement:

Lemma 7.1 (Alternality and push-invariance).

No nonzero bimould A • purely of length r > 1 can be simultaneously alternal and invariant under -push.

Proof: Here again, the statement is obvious for r even. So let us consider an odd length of the form r = 2 t+1 ≥ 3. Since we shall subject A w to two linear operators, pus and push, respectively of order r and r +1 when restricted to BIMU r , and since pus (resp. push) reduces to a circular permutation in the 'short' (resp 'long') bimould notation, we shall make use of both. Let us recall the conversion rule:

A [w * 0 ],w * 1 ,...,w * r (long) ←→ A w 1 ,...,wr (short) (309) 
with the dual conditions on upper and lower indices:

u * 0 = -(u 1 + . . . u r ) , u * i = u i ∀i ≥ 1 v * 0 arbitrary , v * i -v * 0 = v j ∀i ≥ 1
To show that A • = 0, we start with the elementary alternality relation:

0 = w∈sha(w ′ ,w ′′ )
A w with w ′ = (w 1 , . . . , w 2t ) and w ′′ = (w 2t+1 ) (310)

8 Standard factorisation of bisymmetrals.

This section is devoted to establishing the factorisation 48 : GARI as/as = gari GARI ȧs/ ȧs , GARI as/as (320)

of the set GARI as/as of all bisymmetrals into (i) a large, regular factor GARI as/as consisting of even bimoulds 49 and stable under the gari product (ii) a small, exceptional factor GARI ȧs/ȧs consisting of special bimoulds derived from so-called flexion units and with components that are alternately odd/even, i.e. invariant under pari.neg rather than neg.

The proof rests on the construction and properties of the special bisymmetrals ess • and oss • (see Proposition 3.1, supra) and on the following statement:

Proposition 8.1 (Factorisation of bisymmetrals). Any bisymmetral pair of swappees Sa • / /Si • simultaneously factor as

Sa • = gari(Sal • , Sar • ) = gira(Sal • , Sar • ) (321) Si • = gari(Sil • , Sir • ) = gira(Sil • , Sir • ) (322) (i) with Si • = swap.Sa • , Sil • = swap.Sal • , Sir • = swap.Sar • (ii)
with bisymmetral right factors that are at once neg-and gush-invariant 50 (iii) with bisymmetral left factors that are at once pari.neg-and pari.gushinvariant.

In other words:

Sar • , Sir • ∈ GARI as/as neg = GARI
as/as gush =: GARI as/as (323) Sal 

The above decompositions are not unique, but two of them stand out, namely the one in which

Sal • = ess • with - 1 2 E w 1 = Sal w 1 = 1 2 (Sa w 1 -Sa -w 1 ) (325) 
and the one in which

Sil • = oss • with - 1 2 O w 1 = Sil w 1 = 1 2 (Si w 1 -Si -w 1 ) ( 326 
)
48 See [E3], §2.8. 49 they are even functions of their multiindex w, but may possess non-vanishing components of any length, even or odd. 50 We recall that gush := neg.gantar .swap.gantar .swap with gantar := invmu.anti .pari .

which is precisely the symmetrical characterisation of a flexion unit. .

Remark 1:

On the face of it, the requirement that the length-1 component be a flexion unit is merely a necessary condition for the existence of a bisymmetral 'continuation' at all lengths. However, the theory of unit-generated bisymmetrals ess • shows this condition to be (miraculously) sufficient. 52 This is probably the best a posteriori justification for singling out this notion of flexion unit, though by no means the only one.

Remark 2: Had we assumed Sal • to be even, we would have found no constraints at all on the length-1 component -which was only to be expected, since the ari-exponential of that length-1 component is automatically in GARI as/as .

Remark 3: One should not be too exercised over the presence of the factor 4 in ( 330), but rather observe that it vanishes after the change Sal w 1 = -1 2 E w 1 which, as it happens, the construction of ess • quite naturally imposes.

Lemma 8.2 (General and even bisymmetrals).

Though not a group, the set GARI as/as of all bialternals is stable under both gari-and gira-postcomposition by the group GARI as/as of even bisymmetrals, and the identity holds:

gari(S • 1 , S • 2 ) ≡ gira(S • 1 , S • 2 ) ∈ as/as (∀S • 1 ∈ as/as , ∀S • 2 ∈ as/as) (331)
Proof: Here gira stands for the pull-back of gari under the basic involution swap. Both group laws are related as follows 53 :

gira(S • 1 , S • 2 ) = ganit(rash.S • 2 ).gari(S • 1 , ras.S • 2 ) (332) 
with non-linear operators ras, rash defined by:

ras.S • 2 = invgari.swap.invgari.swap.S • 2 (333) rash.S • 2 = mu(push.swap.invmu.swap.S • 2 , S • 2 ) (334) 
But since in Lemma 8.2 the right factor S • 2 is in GARI as/as and since gari and gira coincide on GARI as/as (even as ari and ira coincide on ARI al/al ), this implies:

ras.S • 2 = invgari.invgira.S • 2 = S • 2 ( 335 
)
52 See §3- §4 supra. 53 see §1-5 supra or [E3], §2.3. This universal identity holds for any factors S

• 1 , S • 2 .
This obviously holds for k = 1. If it holds for all k < r, then by Lemma 2.1 Sa k

• is also in GARI as/as , as the gari-product of a bimould of type as/as by a string of several bimoulds of type as/as. As for sar r

• , it is defined as the difference of length-r components of two bisymmetral bimoulds, Sa • r and Sal • , whose earlier components coincide. It is therefore not just of type al /al (bialternal) but also, by Lemma 7.1 in the preceding section, of type al /al (bialternal and even), and its ari-exponential is automatically as/as.

Summing up, we arrive at a factorisation of the announced type (321), with a left factor defined by (337) and a right factor defined by

Sar • = lim r→∞ gari expari(sar • r ), . . . , expari(sar • 1 ) (343) 
The swappee factorisations (322) immediately follow, again under (332).

9 Polar bialternals: first main source.

After our in-depth study of the central but exceptional (i.e. non neg-invariant) bisymmetrals, we can now turn to our first instance of regular (i.e. neginvariant) bisymmetrals, and thence to the corresponding (automatically regular) bialternals.

Applying the general results of Proposition 8.1 about the standard factorisation gari (Sal • , Sar • ) of bisymmetrals and bearing in mind that in the eupolar context the right factor Sar • , due to homogeneousness, is not only neg-but also pari-invariant, we arrive at the following picture:

öss • = gari(oss • , soös • ) = gari(oss • , expari(loöl • )) swap swap swap ess • = gari(ëss • , sëes • ) = gari(ëss • , expari(lëel • )) syap syap syap oss • = gari(öss • , söos • ) = gari(öss • , expari(löol • )) swap swap swap ëss • = gari(ess • , seës • ) = gari(ess • , expari(leël • ))
As second gari-factors we have here regular bisymmetrals seës • etc that are themselves exponentials of regular bialternals leël • etc. Both carry only even-length components, with a vanishing length-2 component. 54 Moreover, since the involution sap (product of swap and syap, in whichever order) turns seës • and soös • into their gari-inverses, we clearly have

sap.leël • = -leël • = lëel • = -sap.lëel • sap.loöl • = -loöl • = löol • = -sap.löol • 54 See Proposition 3.1.
In the polar specialisation, the picture becomes:

pal • = gari(par • , ral • ) = gari(par • , expari(liral • )) swap swap swap pil • = gari(pir • , ril • ) = gari(pir • , expari(liril • )) syap syap syap par • = gari(pal • , lar • ) = gari(pal • , expari(lilar • )) swap swap swap pir • = gari(pil • , lir • ) = gari(pil • , expari(lilir • )) with gari(lar • , ral • ) = gari(lir • , ril • ) = 1 • (344) 
and

lilar • = -liral • ; lilir • = -liril • (345) 
To construct our first series of bialternals, we now have the choice between the components of infinitesimal generators such as lilir • or those of dilators such as dilir • or diril • . Past experience suggests that the latter are to be preferred, and anyway the three systems {lilir • 2r }, {dilir • 2r }, {diril • 2r } generate exactly the same bialternal subalgebra of ARI.

So, forgetting about lilir • , let us look at the dilators dilir • and diril • to decide which is simpler. Starting from the factorisations

lir • = gari(ripil • , pir • ) ; ril • = gari(ripir • , pil • ) (346)
or the more economical factorisations

lir • = gari(ripil • ev , pir • ev ) ; ril • = gari(ripir • ev , pil • ev ) (347) 
and applying the rule (44) for dilator composition, we find respectively

dilir • = adari(ripir • ).(diripil • -diripir • ) (348) diril • = adari(ripil • ).(diripir • -diripil • ) (349) 
and

dilir • = adari(ripir • ev ).(diripil • ev -diripir • ev ) (350) diril • = adari(ripil • ev ).(diripir • ev -diripil • ev ) (351) 
The identities (348) and (349) are unnecessarily wasteful, since they draw on all components, even and odd, of the central bisymmetrals to calculate the components dilir • 2r and diril • 2r , all even, of the bialternals. And of the srink :57 slink.S

• := 1 2 neginvar . adari(pil • ) -1 . mut(pil • ). S • (367) = 1 2 pushinvar . mut(neg.pil • ) . garit(pil • ) . S • (368) srink.S • := 1 2 neginvar . adari(pir • ) -1 . mut(pir • ). S • (369) = 1 2 pushinvar . mut(neg.pir • ) . garit(pir • ) . S • (370) 
whose 'components' slink r and srink r turn arbitrary, entire-valued length-1 bimoulds into bialternal, singular-valued length-r bimoulds. This property makes slink r and srink r extremely useful in multizeta algebra, in the backand-forth known as singularisation-desingularisation. §10-3. The second series of bialternals.

Our aim here, however, is different: we want to produce eupolar bialternals, i.e. bialternal elements of Flex r (Pi ). Here, the 'singuland' (i.e. that on which the singulator acts) can only be Pi • , and so, in view of ( 353)-( 356), the 'singulate' (i.e. the bialternal fruit of the operation) can and in fact will be nonzero only in the situation (354). So we have no choice but to set visli • 2r := slink 2r .Pi • (371) visri • 2r := srink 2r .Pi • (372) §10-4. Relations between the two series of bialternals.

Like with the two equivalent systems {diril • 2r } and {dilir • 2r } of the preceding section, it is easy to show that the new systems {visli • 2r } and {visri • 2r } are also equivalent, in the sense of generating one and the same bialternal subalgebra of ARI. So we shall retain only {visli • 2r }, since it can be shown to be simpler than {visri • 2r }, much as {diril • 2r } was simpler than {dilir • 2r }. The only questions left are these: (i) how do the systems {diril • 2r } and {visli • 2r } compare? (ii) do they, together, generate all eupolar bialternals?

The answer to the second question is probably no, but this is no more than a hunch. The answer to the first question is not clear either: up to length ponents of these subspaces or subalgebras. All these dimensions have remarkable combinatorial interpretations, mostly in terms of special trees with r or r-1 nodes.

r | Flex r Flex sap r Flex pus r Flex push r Flex al r Flex al/push r Flex al/al r 1 | 1 1 0 0 1 0 0 2 | 2 1 1 0 1 0 0 3 | 5 3 3 0 2 0 0 4 | 14 7 9 2
• dim(Flex r (E)) = (2r)! r! (r+1)! . For two distinct interpretations and the corresponding bases, see Remark 1 below.

• dim(Flex sap r (E)) = 1 2 dim(Flex sap r ) resp. = 1 2 dim(Flex r )+dim(Flex (r-1)/2 ) if r is even resp. odd.

• dim(Flex pus r (E)) = 3 (2 r-2)! (r+1)! (r-2)! . The sequence occurs in the Online Encyclopedia of Integer Sequences under A000245 with a number of combinatorial interpretations.

• dim(Flex push r (E)) = 2 (2 r)! r! (r+1)! -1 2 r+2 d | r+1 φ(d) ((2 r+2)/d)! ((r+1)/d)! ((r+1)/d)!
. This formula is due to F. Chapoton, who used it to solve a different problem, but with a combinatorial interpretation easily translatable into ours. See [Ch] or item A106520 in the Online Encyclopedia of Integer Sequences.

• dim(Flex al r (E)) = number β(r) of non-ordered 60 rooted trees with r nodes. 61 For numerous alternative interpretations and formulae for inductive calculation, see A000081 in the Online Encyclopedia of Integer Sequences. Thus, the generating series B(x) := 0<r β(r) x r verifies Remark 2: Basis of Flex al r (E).

Let θ := {θ 1 , . . . , θ s } be the unordered rooted tree obtained by attaching s unordered rooted trees θ j to a common root. Then the inductive rule 68 :

err • θ := σ∈Ss → lu arit(err • θ σ(1) ).E • , err • θ σ(2) , . . . , err • θ σ(s) (373) 
produces, for each r, a system {err • θ ; nodes(θ) = r} consisting of bimoulds that are alternal of length r (obvious); have the right indexation and so too the right cardinality (obvious); are linearly independent (non obvious); and therefore constitute a basis of Flex al r (E). This is a rather unusual situation, given that most free Lie algebras 69 possess no privileged natural basis.

12 Interplay of the lu and ari structures.

(i) As lu-algebras, both Flex al (E) and Flex (E) are freely generated by a well-defined number of prime generators ge with only non-increasing (or non-decreasing, if one so prefers 70 ) integer sequences (r 1 , . . . , r s ).

68 As usual, we get the induction started by setting err • θ0 := E • for the one-node one-root tree θ 0 .

69 As a lu-algebra, Flex al (E) is free, and very nearly free as an ari-algebra. See §12. 70 Working out the conversion rules between the two systems (376) that correspond to non-increasing or non-decreasing sequences, and finding a compact expression for these rules, is a wholesome exercise on moulds.

usual sense corresponds to d = 1. We speak here of codegrees rather than degrees, because the notion is clearly dual to that of 'differential' degree. 72 The (strict) codegree behaves additively under 'products' such as mu or preari, but with a unit drop in the case of 'brackets' like lu or ari:

C • = mu(A • , B • ) =⇒ codeg al (C • ) = codeg al (A • ) + codeg al (B • ) C • = preari(A • , B • ) =⇒ codeg al (C • ) = codeg al (A • ) + codeg al (B • ) C • = lu(A • , B • ) =⇒ codeg al (C • ) ≤ codeg al (A • ) + codeg al (B • ) -1 C • = ari(A • , B • ) =⇒ codeg al (C • ) ≤ codeg al (A • ) + codeg al (B • ) -1 §13-2. Filtration of Flex r (E).
Consider the filtration

Flex r (E) = Flex (r) r (E) ⊃ Flex (r-1)
r (E) ⊃ . . . Flex [START_REF]Fii:=proc(p,q): proc(S): [seq(fii(p,q)(op(s,S)),s=1..nops(S))] end: end: Gii:=proc(p,q): proc(S): [seq(gii(p,q)(op(s,S)),s=1..nops(S))] end: end: Fee:=proc(p,q): proc(S): [seq(fee(p,q)(op(s,S)),s=1..nops(S))] end: end: Gee:=proc(p,q): proc(S): [seq(gee(p,q)(op(s,S)),s=1..nops(S))] end: end: Gluu:=proc(S1,S2,S3): seq(seq(op(s1,S1) * op(s2,S2) * S3, s1=1..nops(S1)),s2=1..nops(S2)) end: kaa:=proc(p,q): P(add(u k,k=1..p+q)) end[END_REF] r (E) ⊃ Flex [START_REF]elif r=1 then[END_REF] r (E) of Flex r (E) into subspaces Flex (d) r (E) consisting of all elements of (loose) alternal codegree d. The following (incomplete) table mentions, for each r, the dimensions al d r of the corresponding gradation: al 14 Bialternal codegrees and bialternality grids. §14-1. Bialternal codegree.

1 | 1 ± | 0 1 | 1 + | 0 0 | 1 -| 0 2 0 | 1 ± | 0 0 1 0 | 2 + | 0 0 1 0 | 2 -| 0 0 2 3 0 | 3 ± | 0 0 0 1 2 0 | 3 + | 0 0 0 1 1 0 | 3 -| 0 0 0 2 6 5 1 | 4 ± | 1 1 0 0 1 3 3 0 | 4 + | 0 1 0 0 1 3 2 1 | 4 -| 1 
The bialternality codegree (loose or strict) of a bimould is simply its alternality codegree paired with that of its swappee:

codeg bial (A • ) := codeg al (A • ) , codeg al (swap.A • ) (378)
Ordinary bialternality corresponds to codegree (1,1).

showing which aspects of the eupolar situation survive and which do not.

Our first prerequisite for the present survey of the polynomial case shall be a series of projectors altor r,j that sharpen the natural filtration by the (loose) alternality codegree j into a gradation by the (strict) alternality codegree; and our second prerequisite shall be an u/v exchanging involution srap capable of taking over some of the functions performed by the involution syap in the eupolar case. §15-1. Standard alternality projectors ('alternators').

For each j ∈ {1, ..., r} there exists a unique projector altor r,j that turns any M • ∈ BIMU r into a bimould of (strict) alternality codegree j and enjoys the property that for any symmetral S • ∈ BIMU r the identity holds:

altor r,j .S • ≡ 1 j! mu j (logmu.S • ) ≡ j≤n≤r (-1) n-j s 1 (n, j) mu n (S • ) (381)
with mu j (S • ) standing for the j th mu-power of S • and s 1 (n, j) denoting the (signless) Stirling numbers of the first kind:

x (x + 1) . . .

(x + n -1) ≡ 0≤j≤n s 1 (n, j) x j (382) 
Analytically, altor r,j is given as a superposition of permutators:

(altor r,j .M ) w 1 ,...,wr = σ∈Sr λ σ j M w σ(1) ,...,w σ(r) (383)

with coefficients λ σ j = λσ j /r! ( λσ j ∈ Z) that are easily calculated by (i) changing S • to M • in (381) (ii) collecting all products M w i on the right-most side of (381) (iii) formally subjecting these products to symmetral linearisation

M w 1 M w 2 . . . M w s → w ∈ sha(w 1 ,w 2 ,...,w s ) M w (384)
despite M • being an arbitrary (not necessarily symmetral) bimould. Although these projectors altor r,j are not the most 'economical' as far as the number of permutators involved is concerned74 , they have the advantage of being complementary 1≤j≤r altor r,j = id BIMU r ; altor r,i . altor r,j = 0 (∀i = j)

and the further advantage, crucial for the sequel, of commuting not only with anti and one another, but also with the natural 'projector' pushinvar r := 0≤k≤r push k of BIMU r onto the subspace of push-invariant bimoulds: 75 altor r,j . anti = anti . altor r,j = (-1) r+j altor r,j

altor r,j . pushinvar r = pushinvar r . altor r,j

We next tabulate the entire coefficients λσ j := r! λ σ j for the three cases required in the sequel, i.e. for r ∈ {3, 4, 5}. For r = 5, we mention only the table's first half, since the rest follows under anti: see (386) supra. 76 {σ(1)...σ(3)} λσ

1 λσ 2 λσ 3 {σ(1)...σ(3)} λσ 1 λσ 2 λσ 3 {1, 2, 3} 2 3 1 {2, 3, 1} -1 0 1 {1, 3, 2} -1 0 1 {3, 1, 2} -1 0 1 {2, 1, 3} -1 0 1 {3, 2, 1} 2 -3 1 {σ(1)...σ(4)} λσ 1 λσ 2 λσ 3 λσ 4 {σ(1)...σ(4)} λσ 1 λσ 2 λσ 3 λσ 4 {1, 2, 3, 4} 6 11 6 1 {3, 1, 2, 4} -2 -1 2 1 {1, 2, 4, 3} -2 -1 2 1 {3, 1, 4, 2} -2 -1 2 1 {1, 3, 2, 4} -2 -1 2 1 {3, 2, 1, 4} 2 -1 -2 1 {1, 3, 4, 2} -2 -1 -2 1 {3, 2, 4, 1} 2 -1 -2 1 {1, 4, 2, 3} -2 -1 2 1 {3, 4, 1, 2} -2 -1 2 1 {1, 4, 3, 2} 2 -1 -2 1 {3, 4, 2, 1} 2 -1 -2 1 {2, 1, 3, 4} -2 -1 2 1 {4, 1, 2, 3} -2 -1 2 1 {2, 1, 4, 3} 2 -1 -2 1 {4, 1, 3, 2} 2 -1 -2 1 {2, 3, 1, 4} -2 -1 2 1 {4, 2, 1, 3} 2 -1 -2 1 {2, 3, 4, 1} -2 -1 2 1 {4, 2, 3, 1} 2 -1 -2 1 {2, 4, 1, 3} 2 -1 -2 1 {4, 3, 1, 2} 2 -1 -2 1 {2, 4, 3, 1} 2 -1 -2 1 {4, 3, 2, 1} -6 11 -6 1 75
The true projector is of course 1 r pushinvar r but we dispense with the factor 1 r since it would complicate most formulae where pushinvar naturally occurs, like those in §10.2.

76 Note that, generally speaking, λ σ j and λ σ -1 j need not coincide. So the convention adopted for denoting the permutations matters.

combinatorial interpretations77 and is given by

τ (n) = 1 n 2 d|n φ(d) 2 n d ! d n/d (389)
with Euler's totient function φ. The first ten values of τ (r+1) are 1 , 2 , 3 , 8 , 24 , 108, 640, 4492, 36336, 329900.

Remark 2: In the preceding sections, when dealing with the alternality grids or chessboards for eupolars, we made no use of the alternators altor r,j for the simple reason that these projectors do not act internally on Flex r (E) as soon as r ≥ 4. §15-2. The involution srap.

As observed in §13 and §14, it is the existence of an u/v exchanging involution syap : Flex r (E) ↔ Flex r (O), respectful of the entire flexion structure and commuting with swap, that accounts for the harmony and symmetries that hold sway in the eupolar case. Unfortunately, syap does not extend beyond that setting78 . For general bimoulds, we must make do with a feebler tool -the involution srap, which does not respect much of the flexion structure and fails to commute with swap, but at least preserves push-invariance and the alternality codegrees. Its action, internal on each BIMU r , is given by the formulae: ∀A • ∈ BIMU r , srap.A w 1 ,...,wr = A w ′ 1 ,...,w ′ r with (390)

u ′ i := (r + 1) v i -(v 1 + • • • + v r ) (∀i ∈ {1, ..., r}) (391) v ′ i := u i + (u 1 + • • • + u r ) r + 1 (∀i ∈ {1, ..., r}) (392) 
The above rules for the change w i → w ′ i are, needless to say, relative to the short notation, but the remarkable thing is that they extend without modification to the long notation. Indeed, if we set u 0 := -u 1 ...u r , v 0 := 0 and retain for u ′ 0 , v ′ 0 the formal definition ( 391) and ( 392), we still find

u ′ 0 := -u ′ 1 ... -u ′ r , v ′ 0 := 0. Moreover:
srap . srap = id (393) srap . pushinvar = pushinvar . srap (394) srap . altor j = altor j . srap (∀j) (395)

These are easy identities to verify, but the main property -the preservation of push-invariance under srap -really results from the double validity of the relations (391) and ( 392) which, as noted, apply equally in the short notation and in the long one. The latter, we recall, is the natural framework for the push-transform, since it reduces push to a circular permutation of order r + 1. §15-3. General and push-invariant alternality grids.

Let Al

[j] r,d resp. Al [[j]]
r,d denote the dimension of the subspace of BIMU r resp. BIMU push r consisting of bimoulds79 (i) constant either in all v i or in all u i variables (ii) polynomial of total degree d in the remaining u i or v i variables (iii) of (loose) coalternality degree j Next, denote al

[j] r,d := Al [j] r,d -Al [j-1] r,d
and al

[[j]] r,d := Al [[j]] r,d -Al [[j-1]] r,d
the dimensions associated with the gradation induced by the alternators altor r,j .

Obviously, Al

[j] r,d and al

[j] r,d do not depend on which set of variables we choose to retain -whether the u i 's or the v i 's -since the constraints of jalternality are the same in both cases. On the other hand, since pushinvariance affects both sets of variables in quite different ways, we might expect Al

[[j]]
r,d and al

[[j]]
r,d to depend on which set we retain. This is not the case, however, since in view of the relations (393), ( 394), (395), the evolution srap exchanges the j-alternal, push-invariant, u-dependent bimoulds one-toone with the j-alternal, push-invariant, v-dependent sort. So our definitions make good sense, and we may consider the generating functions: ge

[j] r (t) := 0≤d al [j] r,d . t d (396) ge [[j]] r (t) := 0≤d al [[j]] r,d . t d (397) 
To understand the nature of these generating function, let BIMU r (u) be the space of all u-polynomial, v-constant bimoulds of length r, and consider: BIMU [j] r (u) := altor r,j . BIMU r (u) (398) BIMU [[j]] r (u) := pushinvar r . altor r,j . BIMU r (u) (399)

with the shape of the numerators and denominators dictated by the nature of the spaces NU and DU. Moreover, (402) implies ne [j] r (1) = ne [[j]] r (1) = s 1 (r, j) (s 1 as in (382 ) ) (408)

Let A be the associative algebra freely generated on Q by x 1 , x 2 and let A r,d be the subspace (clearly of dimension (r) . !/(r! d!)) consisting of all element of patial degrees (r, d) in (x 1 , x 2 ). The coefficients al

[j]
r,d of ge

[j] r (t) are easy to calculate since al [1] r,d (and more generally al r,d (with j > 1) and also for al

[[j]]
r,d . To sum up, in this new context of polynomial-valued bimoulds, knowing the "alternality grid" reduces to knowing the coefficients of the polynomials ne r (t). For illustration, we tabulate infra the cases r = 3, 4, 5 (the case r = 2 being trivial). Since the polynomial ne r (t) tend to display "higher than average" factorisability, we also give the corresponding factorisations on Z and N (the latter type being more relevant). Lastly, in the cases r = 3, 4 we also give simple systems of generators for NU [j] r (u) and NU [[j]] r (u), in the notations (403),( 404),(405).

Alternality grid for 3 variables:

j \ d : 0 1 2 3 4 5 | total 1 | 0 1 1 0 0 0 | 2 2 | 0 1 1 1 0 0 | 3 3 | 1 0 0 0 0 0 | 1 total | 1 2 2 1 0 0 | 6 (push) 1 | 0 0 1 0 1 0 | 2 (push) 2 | 0 0 0 1 1 1 | 3 (push) 3 | 1 0 0 0 0 0 | 1 total | 1 0 1 1 2 1 | 6 84
Alternality numerators for 3 variables: ne

[1] 3 (t) = t (1 + t) ne [2] 3 (t) = t (1 + t + t 2 ) ne [3] 3 (t) = 1 ne [123] 3 (t) = (1 + t) (1 + t + t 2 ) ne [[1]] 3 (t) = t 2 (1 + t 2 ) ne [[2]] 3 (t) = t 3 (1 + t + t 2 ) ne [[3]] 3 (t) = 1 ne [[123]] 3 (t) = 1 + t 2 + t 3 + 2t 4 + t 5 = (1 + t + t 2 ) (1-t + t 2 + t 3 )
Alternality generators for 3 variables:

d = 1 : Pa [1] 100 , Pa [2] 
100 . d = 2 : Pa 

(push) 1 | 0 0 0 1 1 2 1 1 0 0 0 | 6 (push) 2 | 0 0 1 1 2 2 2 1 1 0 1 | 11 (push) 3 | 0 0 0 1 1 2 1 1 0 0 0 | 6 (push) 4 | 1 0 0 0 0 0 0 0 0 0 0 | 1 total | 1 0 1 3 4 6 4 3 1 0 1 | 24 
Alternality grid for 5 variables: 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | total 1 | 0 1 2 3 4 4 4 3 2 1 0 0 0 0 0 | 2 | 0 1 3 6 8 10 9 7 4 2 0 0 0 0 0 | 3 | 0 1 3 4 6 6 6 4 3 1 1 0 0 0 0 | 4 | 0 1 1 2 2 2 1 Alternality numerators for 5 variables:

j \ d :
ne [1] 5 (t) = t (1 + t) (1 + t + t 2 + t 3 ) (1 + t 2 + t 4 ) ne [2] 5 (t) = t (1 + t 2 ) (1 + 2t + 2t 2 ) (1 + t + t 2 + t 3 + t 4 ) ne [3] 5 (t) = t (1 + t + t 2 + t 3 + t 4 ) (1 + 2t + t 2 + 2t 3 + t 5 ) ne [4] 5 (t) = t (1 + t 2 ) (1 + t + t 2 + t 3 + t 4 ) ne [5] 5 (t) = 1 ne [1..5] 5 (t) = (1 + t) (1 + t + t 2 ) (1 + t + t 2 + t 3 ) (1 + t + t 2 + t 3 + t 4 ) ne [[1]] 5 (t) = t 2 (1 + t 2 ) (1 + t + t 2 + 3t 4 + 2t 5 + t 6 + t 7 + 2t 8 ) ne [[2]] 5 (t) = t 3 (1 + t 2 ) (1 + t + t 2 + t 3 + t 4 ) (2 + t 2 + t 3 + t 4 ) ne [[3]] 5 (t) = t 2 (1 + t + t 2 + t 3 + t 4 ) (1 + 2t 2 + 2t 4 + t 6 + t 8 ) ne [[4]] 5 (t) = t 3 (1 + t 2 ) (1 + t + t 2 + t 3 + t 4 ) ne [[5]] 5 (t) = 1 ne [[1..5]] 5 (t) = (1+t 2 ) (1+t 2 +5t 3 +7t 4 +6t 5 +10t 6 +10t 7 +7t 8 +5t 9 +5t 10 +2t 11 +t ) = (1+t 2 ) (1 + t + t 2 + t 3 + t 4 ) (1-t + t 2 + 4t 3 + 2t 4 + 3t 6 + t 7 + t 8 ) §15-4.
Bialternality grid and bialternality chessboard.

Let Bial

[j 1 ,j 2 ] r,d resp. Bial [[j 1 ,j 2 ]] r,d
denote the dimension of the subspace

BIMU [j 1 ,j 2 ] r,d ⊂ BIMU r resp. BIMU [[j 1 ,j 2 ]] r,d
⊂ BIMU push r consisting of all bimoulds84 (i) constant in the v i variables (ii) polynomial of total degree d in the remaining u i variables (iii) of (loose) alternality codegree j 1 (iv) with a swappee of (loose) alternality codegree j 2 .

Next, denote bial

[j 1 ,j 2 ] r,d := Bial [j 1 ,j 2 ] r,d -Bial [j 1 -1,j 2 ] r,d -Bial [j 1 ,j 2 -1] r,d + Bial [j 1 -1,j 2 -1] r,d bial [j 1 ,j 2 ] r,d := Bial [[j 1 ,j 2 ]] r,d -Bial [[j 1 -1,j 2 ]] r,d -Bial [[j 1 ,j 2 -1]] r,d + Bial [[j 1 -1,j 2 -1]] r,d
The chessboard phenomenon.

Since the projectors altor r,j 1 and swap.altor r,j 2 .swap do not commute, there exists no corresponding gradation by the pairs [j 1 , j 2 ] or [[j 1 , j 2 ]]. In the push-invariant case, however, the filtration can be refined, leading to the vanishing of all dimensions bial

[j 1 ,j 2 ] r,d
when d+j 1 +j 2 is odd. Indeed, since push ≡ neg.anti .swap.anti .swap and since neg commutes with everything, the involutions anti and swap.anti .swap, which do not commute on BIMU , do so when restricted to the push-invariant subspace BIMU push , which thus splits into a direct sum of four subspaces

BIMU push = ǫ 1 ,ǫ 1 ∈ {±} P ǫ 1 ,ǫ 2 . BIMU push (410) 
with the projectors

P ǫ 1 ,ǫ 2 := 1 2 (id + ǫ 1 .anti ) . 1 2 (id + ǫ 1 .swap.anti .swap) (411) 
and with each of the four, (ǫ 1 , ǫ 2 )-indexed component spaces invariant under

ǫ 1 . anti , ǫ 2 . swap.anti.swap , ǫ 1 .ǫ 2 .neg (412) 
The decomposition (410) applies in particular to BIMU

[[j 1 ,j 2 ]] r,d
. But in view of (386), only the component space

P ǫ 1 ,ǫ 2 . BIMU [[j 1 ,j 2 ]] r,d
with ǫ 1 = (-1) 1+j 1 and ǫ 2 = (-1) 1+j 2 may contain elements of strict bialternality codegree (j 1 , j 2 ). Moreover, due to (412), that component space has to be invariant under ǫ 1 .ǫ 2 .neg and must therefore vanish unless d + j 1 + j 2 be even. As an immediate consequence, only the dimensions bial

[[j 1 ,j 2 ]] r,d
with d + j 1 + j 2 even may be nonzero. This is the so-called chessboard phenomenon, which we had already observed in §14, in the eupolar setting, where we had d ≡ -r due to of all entries al [j 1 ,j 2 ] r,d with j 1 + j 2 ≥ d + 3 (for each r and d large enough, i.e. d ≥ d * (r)) and, as already pointed out, the rationality of the generating functions gee

[j 1 ,j 2 ] r,d (t) 
.

Bialternality chessboards.

The bialternality chessboard for push-invariant bimoulds is elementary for r = 2 and symmetric under the exchange j 1 ↔ j 2 up to r = 4 but not beyond 87 , although the deviations from symmetry remain weak even then 88 , much weaker at any rate than with the general grid. Moreover, the rule of the "vanishing south-east triangle" (i.e. al

[[j 1 ,j 2 ] r,d ≡ 0 for j 1 + j 2 ≥ d + 2
and d even or j 1 + j 2 ≥ d + 3 and d odd ) now seems to be holding without exceptions and not jut asymptotically, as was the case with the general grid. Let us tabulate the simplest non-elementary cases, i.e. r = 3 and r = 4.

Bialternality chessboard for 3 variables:

gee

[[1,1]] 3 (t) = t 8 + t 10 -t 12 (1 -t 2 ) (1 -t 4 ) (1 -t 6 ) gee [[1,2]] 3 (t) = t 5 (1 -t 2 ) 2 (1 -t 6 ) gee [[1,3]] 3 (t) = t 2 + t 4 -t 8 -t 10 + t 12 (1 -t 2 ) (1 -t 4 ) (1 -t 6 ) gee [[2,2]] 3 (t) = t 4 (1 -t 2 ) 2 (1 -t 4 ) gee [[2,3]] 3 (t) = t 3 (1 -t 2 ) (1 -t 4 ) (1 -t 6 ) gee [[3,3]] 3 (t) = 1
87 This should not come as a great surprise, since the projectors altor r,j1 and swap.altor r,j1 .swap do not commute on BIMU push r any more than they do on BIMU r . Nor does the involution srap (unlike syap in the eupolar case) exchange the bialternality types [j 1 , j 2 ] and [j 2 , j 1 ] or [[j 1 , j 2 ]] and [[j 2 , j 1 ]].

88 They also appear to be limited to the case of odd degrees d.

mentary decompositions of type ( 400), (401). That does not make the situation totally hopeless, though, and fairly explicit bases for each type [j 1 , j 2 ] of [[j 1 , j 2 ]] may still be produced. For illustration, let us examine the simplest non-elementary case, i.e. the space of all bialternals for r = 3 (we recall that bialternals are automatically push-invariants, as shown in §7, so that the types [1, 1] and [ [1, 1]] coincide; we also recall that the situation for r = 2 is elementary since in that case the bialternality constraints are finitary, with an underlying group isomorphic with S 3 ).

We start the construction with the elementary bialternals ekma • d 1 for r = 1 and doma • d 2 ,d 6 for r = 2:

ekma w 1 d 1 := u d 1 1 ( d 1 |2 ) doma w 1 ,w 2 d 2 ,d 6 := fa(u 1 , u 2 ) ha(u 1 , u 2 ) d 2 ga(u 1 , u 2 ) d 6 ( d 2 |2 , d 6 |6 ) with 90 fa(u 1 , u 2 ) := u 1 u 2 (u 1 -u 2 ) (u 1 +u 2 ) (2 u 1 +u 2 ) (2 u 2 +u 1 ) ga(u 1 , u 2 ) := (u 1 +u 2 ) 2 u 2 1 u 2 2 ha(u 1 , u 2 ) := u 2 1 + u 1 u 2 + u 2 2
We then define length-3 bialternals toma • d 1 ,d 2 ,d 6 as simple ari-products:

toma • d 1 ,d 2 ,d 6 := ari(ekma • d 1 , doma • d 2 ,d 6 ) (d 1 |2 , d 2 |2 , d 6 |6) (415) 
These new bialternals are not linearly independent, since for a given total degree d = 6 + d 1 + d 2 + d 6 their number exceeds that of the dimension of all length-3 bialternals. To get a basis, we must of course do more than ensure the right cardinality. Let us first consider the systems

B 0 d , B + d , B - d : B 0 d := d 2 +d 6 ≡ 0 mod 4 toma • d 1 ,d 2 ,d 6 B + d := d2 ∈ {0} d 2 +d 6 ≡ 2 mod 4 toma • d 1 ,d 2 ,d 6 B - d := d2 ∈ {0,2} d 2 +d 6 ≡ 2 mod 4 toma • d 1 ,d 2 ,d 6
involves a set of linear transforms in the u 1 , v i variables which, though finite, does generate an infinite group (when expressed, via swap, relatively to the sole variables u i ). 90 note that the present (d 2 , d 6 ) indexation for the doma generators slightly differs for that of (7.5) in [E3], §7.2, p 120. its ideal of 'internals' and its quotient of 'externals' was investigated in [E3], §11.5 relative to a special basis, but there exist other useful bases.

In Flex (Qa), on the other hand, the most relevant alternals are those freely generated by Qa • and c I • under the uninflected lu-bracket. The corresponding algebra LU (Qa, c I ) belongs to the extension Flex (Qa, c I ) rather than Flex (Qa) but the subalgebra LU + (Qa, c I ) consisting of all alternals even in c is embedded in Flex (Qa) itself. §16.4. New landscape of bialternals and bisymmetrals.

In the eupolar case, the involution syap, when applied to the bisymmetral pair pal • / /pil • , directly produces another central bisymmetral pair par • / /pir • (in reverse order!) and indirectly leads to the regular (i.e. neg-invariant) bisymmetrals lar • / /lir • and ral • / /ril • that connect these two central pairs by gari-postcomposition. The regular bisymmetrals in turn generate a host of bialternals under logari. In the eutrigonometric setting, none of these objects survive and we are left with only one central pair tal • / /til (423) Sa • / /Si • and Za • / /Zi • ∈ GARI as/as (neg-and pari -invariant)(424) But here again, the parallelism is only approximate: there exists between the two groups of regular bisymmetrals Sa • / /Si • and Za • / /Zi • a striking disparity, which extends to the corresponding polar and trigonometric bialternals. In concrete terms: (i) The first polar (resp. trigonometric) bialternals appear at length r = 4 (resp. r = 8). (ii) As already noted, if we ban all poles of type (v iv j ) -1 with |i -j| > 1, we automatically ban all polar bialternals -which fact in turns leads to a neat characterisation of pal • / /pil • among all irregular bisymmetrals. On the other hand, ruling out all poles of the afore-mentioned type still leaves room for a host of trigonometric bialternals -a circumstance which makes it much harder to isolate the canonical tal • / /til • . (iii) Most (all?) polar bialternals seem to have no trigonometic counterpart. This applies in particular to the polar bialternals constructed in §9 ( type I) and §10 (type II). (iv) Conversely, most (all?) trigonometric bialternals seem to have no polar prototype. This applies in particular to the trigonometric bialternals of the form A w 1 ,...,w 2r + B w 1 ,. which, from 2r = 8 onwards, introduce pesky indeterminacies 95 in the construction of the even factors tal • ev and tal • evv , to be dealt with in the next paragraph. §16.5. New pattern of even-odd factorisations.

All three even/odd factorisations familiar from the polar case survive in the trigonometric setting, but with predictable complications: the odd factors become less elementary, while the even factors split into left and right subfactors, marked by indices lev/rev or levv/revv. Thus: Here, the alternals dutal • lev , dutal • levv are rough equivalents of the mu-dilators dupal • ev , dupal • evv familiar from the polar case, and the reverse passage (from the dilators to their sources) is via precomposition by the mould Taj • (formidentical with taj • , but viewed as a mould rather than a bimould). As for the alternals detal • rev , detal • revv , they have no polar antecedents and are just another, particularly elementary sort of dilators.97 §16.8. Practical calculations.

pil • = gari (pil
The simplest way to calculate tal • /til • and establish bisymmetrality is to adapt the approach of §4.3. But since (122) has no exact trigonometric equivalent, we must replace dupal • by the mu-dilators of tal • ev or tal • evv , and dapal • by the swappee of the gari-dilators of til • or til • ev . So we have four options before us, all of which are practicable but none of which can be as straightforward as the polar prototype (209), not least due to the appearance, in the trigonometric case, of left and right subfactors ("lev/rev"). This is the bad news. The good news is that the mere juxtaposition of the last two factorisations "Facto. II" and "Facto. III" of §16.5 already leads to a set of constraints that very nearly determine tal • /til • . This is hugely helpful, since the corresponding calculations essentially take place within the uninflected algebra LU (Qa, c.I ). The lengthy and in places very tedious details shall be set forth in [E4]. 17 Basic prerequisites. Among all seven pairs of substructures, only two respect dimorphy, namely ARI//GARI and ALI//GALI. Moreover, when restricted to dimorphic objects, they actually coincide: ARI al/al = ALI al/al with {al/al} = {alternal/alternal and even} GARI as/as = GALI as/as with {as/as} = {symmetral/symmetral and even} We shall henceforth work with the pair ARI//GARI, whose definition involves a simpler involution h (it dispenses with the sequence inversion anti : see above table). §17-8. The algebra ARI and its group GARI : basic anti-actions

The proper way to proceed is to define the anti-actions (on BIMU, with its uninflected product mu and bracket lu) first of the lateral pairs AMI//GAMI, +1/su(X) * add(Nip([seq(op(k,X),k=1..i-1)]) * Nij([seq(op(k,X),k=i..nops(X))]), i=1..nops(X)) +1/su(X) * add (add(add( Nip([seq(op(k,X),k=1..i-1),p,seq(op(k,X),k=j+1..nops(X))]) * Ni ([seq(op(k,X),k=i..j)])(p), p=1.. min(op(j,X),add(op(k,X),k=i..j)-1)), i=1..j),j=1..nops(X)) fi end: §18.A.9. Computation of the symmetral mould Rip • . Ri := proc(X): proc(p,q): if p+q<>add(op(k,X),k=1..nops(X)) then 0 elif nops(X)=1 and p<op(1,X) then p * a[q] elif nops(X)=2 and op(1,X)<= q and q < op(2,X) then +a[q] elif nops(X)=2 and op(2,X)<= q and q < op(1,X) then -a[q] else 0 fi end: end: Rip := proc(X) option remember; if nops(X)=1 and op(X)=1 then +a [1] elif nops(X)=1 and op(X)>1 then +1/su(X) * a[op(-1,X)] +1/su(X) * add(rep[p] * Ri(X)(p,op(X)-p),p=1..op(X)-1) elif nops(X)>1 and {op(X)} = {1} then 1/(nops(X))! * a [1]ˆ(nops(X)) elif nops(X)>1 and {op(X)}<>{1} then +1/su(X) * Rip([op(deb(X))]) * a[op(-1,X)] +1/su(X) * add(add(Rip([seq(op(k,X),k=1..i-1),p,seq(op(k,X),k=i+1..nops(X))]) * Ri([op(i,X)])(p,op(i,X)-p), p=1..op(i,X)-1),i=1..nops(X)) +1/su(X) * add(add(Rip([seq(op(k,X),k=1..i-1),p,seq(op(k,X),k=i+2..nops(X))]) * Rip ([op(i,X),op(i+1,X)])(p,op(i,X)+op(i+1,X)-p), p=1..op(i,X)+op(i+1,X)-1),i=1..nops(X)-1) fi end:

A toolkit for handling bisymmetrals and all flexion operations shall soon be posted on our Webpage. §18.B. GUIDE TO THE ANNEXED TABLES. About two dozen illustrative Tables have been posted on our Webpage, 101 in pdf format both for direct inspection and for easy copy-pasting. Each file begins with a Maple program capable of generating the file's contents (and much beyond) and then displays the results (usually up to length or r = 8 or 10 or sometimes 12) either for their illustrative value or to make them available to non-Maple users. §18.B.1. General tools.

The files a 1 , a 2 , a 3 give the standard bases of the monogenous algebras Flex (Pa), Flex (Pi ), Flex (E). The files a 4 , a 5 give the coefficients ("slant" and "stack") of the alternal series {he • r }, {ke • 2r } in the standard basis. §18.B.2. Recovering a general bimould from its gari-dilators.

Symmetral bimoulds S • whose gari-dilators diS • are in the "mock-differential algebra", i.e. of the form diS • = α r re • r , themselves belong to a subalgebra Flex in (E) much smaller than Flex (E) and can be expanded along three remarkable bases, smaller and more tractable than the standard basis: me • n 1 ,...,ns := mu(me This is the object of file e 1 , to be completed by other tables about the mould Han • occurring in the expansion 303.

1

  Prefatory remarks. Dilators and their uses. §1-1. Preamble.

0 - 1 .
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  Bernoulli coefficients α r as in Proposition 3.8 and with lan • r 36 being the specialisation of len • r under E → Pa. See §2. Quite explicitely:

  ), i.e. to set kasra • r := (exp P).ganit(nipac • ).sra • r = r≤r * kasra r,r * kasra r,r * ∈ BIMU r *

  which leads to Proj 1 .diripal • ev,2r * = 2 1-2r * (2r * -1)(2r * +1) which in turn yields the important normalisation property Proj 1 .ka • 2r * = 1

1 : 2 :

 12 = P(u 2s-1 ) P(u 1 + ... + u 2s ) Pan w 1 ,...,w 2s = P(u 2s ) P(u 1 + ... + u 2s )

72

  | . . . . . . . . . . . . . . . . . . . . . . . . Think of mould-comould contractions A w1,...,wr ∆ wr ...∆ w1 , with inputs ∆ wi freely generating a Lie algebra. Besides, as d increases, A • becomes 'less alternal', not more. So it would be jarring to speak of alternality degree here. 4 3 2 1 | r | 1 2 3 4 5 6 7 8 .... .... .... .... .... .... .... .... | | ... ... ... ... ... ... ... ...

  ) can be interpreted as the dimension of the space spanned by the Lie elements in A r,d (or more generally the elements of formal differential degree j). In particularal )/δ)! (r/δ)!((d/δ)! (µ = M öbius function) (409)Similar formulae apply for al[j] 

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  See (294) in §5. Each basis has its own advantages, and the files b 1 , b 2 , b 3 show how to expand S • in each of them, using only two ingredients: the coefficients α r of dilS • and the three universal moulds Mip • , Nip • , Rip • . §18.B.3. Recovering pil • , ripil • from their gari-dilators. The files c 1 , c 2 , c 3 and c 4 , c 5 , c 6 apply the above universal expansions to the standard bisymmetral pil • and its gari-inverse ripil • . The corresponding specialisations of Mip • , Nip • , Rip • (integer-indexed and rational-valued) possess interesting, Bernoulli-like arithmetical properties. §18.B.4. Recovering pil • ev , ripil • ev from their gari-dilators. The files d 1 , d 2 , d 3 and d 4 , d 5 , d 6 similarly expand the even factors pil • ev , ripil •ev , leading to more economical expansions of our bisymmetrals, while isolating their essential, even part. §18.B.5. Recovering pal • , pal • ev ,pal • evv from their mu-dilators .

  12 := m 1 +m 2 , n 12 := n 1 +n 2 and with the odd or double factorial 19 :

	through coefficients ke(t) = ke	m 1 n 1	m 2 n 2	that depend only on stack (t):
	ke	m 1 n 1	m 2 n 2	= (-2) m 12 -1 (m 12 -1)!	(n 12 -m 12 )!! (n 12 +m 12 -2)!!	det	m 1 1+n 1	m 2 1+n 2	(84)
	with the usual abbreviations m				
							•		
							2r *		
				ke • 2r * =		ke(t) e • t		(83)
					r(t)=2r * (even)		

  • ev , öss • ev , and öss • evv are highly non-elementary and "even", i.e. simultaneously invariant under neg and pari, which implies that they carries only non-vanishing components of even length. The bimoulds in the next triplet, ess • od , öss • od and öss • odd , are quite elementary, being given by:

  Third, while ess • /öss • are swap-related, ess • od /öss • od are syap-related and ess •

	of type mu(ess • odd , ess • evv ).	• evv , ess • odd ) or

  • evv stands side by side with daöss • ev and codaöss • ev ) is no misprint! This awkward jumble in notations is rooted in the nature of our objects and cannot be helped.28 The only bimould that would deserve the label daöss • evv would be the gira-dilator of öss • evv , characterised by the identity der.öss • evv = preira(öss • evv , daöss • evv ). That bimould very much exists, of course, but it is thoroughly uninteresting and we can forget about it.

	27 The generating functions for gepar(ess • ev ) and hepar(ess • ev ) are respectively	1 cosh(x/2) 2
	and -1 2	x tanh(x/2) .

28 

  • evv , ëss • evv , pal • evv , pir • evv } also possess simple mudilators but with coefficients admitting a rather distinct generating function:

	t e t/2 -e -t/2 -1 = -	1 24	t 2 +	7 5760	t 4 -	31 967680	t 6 +	127 15482880	t 8 + . . . (190)

  = neg.anti.swap.anti.swap.swap.invmu.swap.rapal • (213) = neg.anti.swap.anti.invmu.ripil • (214) = neg.anti.swap.anti.anti.pari.ripil •

	So we end up with	
	corapal	
		(215)
	= neg.anti.swap.pari.ripil •	(216)
	= anti.swap.neg.pari.ripil •	(217)
	= anti.swap.ripil •	(218)
	= anti.rapal •	(219)

• , being symmetral, is mu-invertible under pari.anti, we get successively: corapal •

  Mip • and Nip • are symmetrel while Rip • is symmetral. The procedure for expandind pil • ev is entirely similar: one need only retain the sole even terms τ 2r ri • 2r in (284). §5-2. General inductions for the moulds Mip

• r 1 , ..., ri • rs ) (299) with three rational-valued moulds Mip • , Nip • , Rip • defined by simple induction rules (see next paragraph) that dually reflect the rules (

288

), (

289

), (290). In accordance with the nature of the three bases (294),

  • • mu(lan • r 1 , ..., lan • rs ) (iii) permit to express these Paj • • mu(lan • r 1 , ..., lan • rs ) via a simple rule. So (302) may be rewritten more economically as pal

  • . pal • / /pil • and par • / /pir • tal • / /til • alone (421) This does not mean, though, that tal • / /til • stands completely isolated. Just like pal • / /pil • , it produces other irregular (i.e. neg.pari -invariant) bisymmetrals under postcomposition by regular (i.e. separately neg-and pariinvariant) bisymmetrals: 94 gari (pal • , Sa • )/ /gari (pil • , Si • ) gari(tal • , Za • )/ /gari(til • , Zi • ) with (422) pal • / /pil • and tal • / /til • ∈ GARI as/as (neg.pari -invariant)

  ..,w 2r Q(u 1 + ...u 2r ) (2r ≥ 8) (425) with A • ∈ LU + 2r (Q, c.I) ; B • ∈ LU - 2r (Q, c.I).c -1(426) 

  pal • = mu(pal • evv , pal • odd ) tal • = mu(tal • evv , tal • odd ) with tal • evv = mu(tal • levv , tal • revv ) (Facto. III )As in the polar case, this leads to a slight awkwardness (which cannot be helped) in the notations, since til• od ,til • ev ,til • lev ,til • rev stand in no simple relation to tal • od ,tal • ev ,tal • lev ,tal •rev and in particular are not their swappees. §16.6. Odd factors: less elementary.95 Which, fortunately, can be removed. Even if they could not, they would be automatically offset by corrective terms in the roma • factor of the classical multizeta decomposition Zag• := gari (Zag • I , Zag • II , Zag • III ) and Zag • I := gari (tal • , ripal • , roma • ).but the really interesting part is what happens to the second and third even factors, namely tal • ev and tal • evv . Surprisingly enough, both split in exactly the same way: left subfactors similarly related to alternals of LU ± (Qa, c.I): dutal • lev and dutal • levv ∈ LU -(Qa), c.I).c -1 detal • rev and detal • revv ∈ LU + (Qa), c.I)

	tal • lev	= Taj • • dutal • lev	;	der.tal • rev = mu(tal • rev , detal • rev )
	tal • levv = Taj • • dutal • levv	;	der.tal • revv = mu(tal • rev , detal • revv )
	with right/			
		• od , pil • ev )		
	til • = gari(til • od , til • ev )	with til • ev = mu(til • lev , til • rev )	(Facto. I )
	pal • = gari (pal • od , pal • ev )		
	tal • = gari(tal • od , tal • ev )	with tal • ev = mu(tal • lev , tal • rev )	(Facto. II )

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GARI invmu ↔ GIRA push.swap.invmu.swap GALI anti .pari ↔ GILA anti .pari .neg GALA anti .pari .neg u ↔ GALA anti .pari .neg u GILI anti .pari .neg v

						. . .
	ARI	minu		↔	IRA	minu.push
	ALI	anti .pari		↔	ILA	anti .pari .neg
	ALA anti .pari .neg u ↔	ALA anti .pari .neg u
	ILI	anti .pari .neg v	↔	ILI	anti .pari .neg v
	AWI	anti		↔	IWA	anti .neg
	AWA	anti .neg u		↔	AWA	anti .neg u
	IWI	anti .neg v		↔	IWI	anti .neg v
	group	h	swap group	h
	. . ↔	GILI	anti .pari .neg v
	GAWI	anti	↔	GIWA	anti .neg
	GAWA	anti .neg u	↔ GAWA	anti .neg u
	GIWI	anti .neg v	↔	GIWI	anti .neg

v §17-7. Dimorphic substructures.

  • n 1 , . . . , me • ns ) (484) ne • n 1 ,...,ns := mu(ne • n 1 , . . . , ne • ns ) (485) re • n 1 ,...,ns := mu(re • n 1 , . . . , re • ns )

meaning the structure generated under all flexion operations by a given flexion unit. Monogenous structures generated by an arbitrary element of BIMU 1 are of course more complex. For two equivalent characterisations of flexion units, in particular Pa and Pi , see §17.12 below. As for the (unary or binary) flexion operations allowed in the generative

The much simpler correspondance between GARI-elements and their various dilators, though extremely useful, does not respect double symmetries, but merely turns symmetrality into alternality.

3 and, of course, unlike the polynomial

bialternals! 4 like, for example, the existence of the exceptional, polynomial-valued bialternals carma • /carmi • .

See E1 and E2. 5 d 1 + d 2 > r suffices.

With many flexion operations, especially when working in algebras, it does not take much computational power to reach even length r = 20. With others, such as inflected group inversion, inflected exponentiation or, like in the present instance, when it comes to expressing that a bimould has a given bialternality codegree, difficulties arise much earlier.

at http://www.math.u-psud.fr/∼ecalle/flexion.html

i.e. neg-invariant

with the unusual mid-letter (pronounced sh ) suggesting generality.

Of course, on the right-hand side of (40), we must substitute for S • the expansion (39) and do likewise with T • .

i.e. ari (A • ).B • ≡ ari (A • , B • ).

which is a rigorous isomorphism for all flexion operations.

which respects few operations, but with an all-important exception: when acting on regular (i.e. neg-invariant) bialternals or bisymmetrals, swap commutes respectively with ari or gari.

ro • r := syap.re • r simply says that ro • r is constructed from O exactly as re • r was constructed from E.

This makes sense since the terms in the double factorials, namely n 12 +m 12 -2 and n 12 -m 12 , are always odd. The term m 12 -1 may be even or odd, but that is no problem, as it sits in a simple factorial.

apart of course from the obvious relation anti .ker • 2r * ≡ -ker • 2r * , which is necessary but far from sufficient for alternality.

that is, up to a rescaling f → f c with f c : x → c -1 f (c x). But the applications we have in mind, as well as intrinsic considerations, dictate that we take c = 1.

for i = 1, "P (v 1v 0 )" of course reduces to P (v 1 ).

so-called because, acting on elements S • of the group GARI re , they have the virtue of separating (or manifesting, if you prefer) the coefficients a r of the source mapping f : see the remarks immediately before Proposition 3.1 and also[E3] §4.1.

universal but by no means elementary : it involves square rooting, which in the case of identity-tangent mappings f generically produces divergence (of 'resurgent' type).

i.e. no factorisation with at least one elementary factor.

Before starting, the reader may have a look at the overall logical scheme as pictured at the end of the paragraph §4-4.

especially in the form(228). For details about the 'twisted symmetries' alternil/symmetril and alternul/symmetrul , see[E3], §3.5.

There exist alternative strategies, like applying ganit(nipac • ) to sra • r as (indirectly) defined by (231) and summing, not in i and then r as above, but rather in r and then i, but all these approaches seem to lead to calculations of roughly the same complexity and tediousness.

Note in passing that B is the gira-dilator of b, but that C has nothing to do with the gira-dilator of c

Thus we have (286) side by side with (287), all due to the many a priori relations between multiple pre-Lie brackets.

This applies for the eutriginometric tal • /til • even more than for the eupolar pal • /pil • .

we can use either the three identities (129), (130), (131) in section §3 or again the

See [E3] §2.7

See §9 infra or formula (4.63) in §4.2 of[E3].

In fact, diril • is not just simpler to calculate than dilir • ; it is also simpler in itself, in its coefficient structure, as can be seen from the extensive tables referred to in §18 and posted on our Webpage.

The (-1) r-1 in (366) is no misprint: the operator senk r (ess • ) involves various products of components ess • ri and for each such product the total length r i is r-1, not r.

In view of (365), subsituting pal • or par • for ess • in senk would produce nothing new. It would just yield (up to sign) the swap transforms of slink and srink.

The relative position of the various branches issueing from a given node is indifferent.

counting the root as a node.

recall that sha(w 1 , ..., w d+1 ) denotes the set of all w that result from shuffling the various w i .

Thus, the most economical projectors onto the subspace of alternals involve only 2 r-1 permutators.

the most relevant here being: the number of orbits in the set of circular permutations under cyclic permutations of the elements. See M.J.A Sloane and Simon Plouffe, A Handbook of Integer Sequences, Acad.Press, 1995.

 78 It does not even extend to the eutrigonmetric setting!

As usual, BIMU push r denotes the push-invariant subspace of BIMU r .

As usual, BIMU push r denotes the push-invariant subspace of BIMU r .

this means that the analytic expression of the constraints [j 1 , j 2 ] of [[j 1 , j 2 ]] necessarily

The first condition ensures the right degree, and the condition d 1 > 0 is natural, too, since toma • d1,d2,d6 ≡ 0 when d 1 = 0.

especially for constructing the canonical rational Drinfelt associator.

It would vanish under the specialisation E → Qi ± c I which, however, is not acceptable, since Qi w1 ± c I w1 is not odd in w 1 .

Although the swappees of gari (pal • , Sa • ) and gari (tal • , Za • ) are a priori gira(pil • , Si • ) and gira(til • , Zi • ), the latter gira-products actually coincide with gari-products since the second factors Sa • / /Si • and Za • / /Zi • are regular bisymmetrals.

Cf the definitions in §1-11. Note that the identity (427) (middle term = right term) looks much like the identity (55) but works for slighly different reasons, namely because til • lev is internal and til • rev is u-constant.

Instead of these, we might work with the slightly less simple alternals logmu(tal • rev ) and logmu(tal • revv ).

pus resp. push is a circular permutation in the short resp. long indexation of bimoulds. Indeed: (push.M ) [w0],w1,...,wr = M [wr],w0,...,wr-1 .

At <http://www.math.u-psud.fr/∼ecalle/publi.html> and <http://www.math.upsud.fr/∼ecalle/flexion.html>.

Alternality numerators for 4 variables: ne

The first induction goes like this:

Mi n 1 ,...,nr * := (-1) 1+r n r α |n|

Mi n 1 ,...,nr n 0 := (-1) 1+r n r α |n|-n 0 if 0 < n 0 ≤ n 1 ( := 0 otherwise)

The second induction is essentially the same under the left-right exchange: The third induction involves less terms and is faster to run on a computer (see §18.A infra), the reason being that here the bulk of the complexity is absorbed by the 'molecular' ri • r 's that replace the 'atomic' mi • r 's or ni • r 's of the earlier inductions:

S5-3. Explicit expansions for pal • , pal • ev and pal • evv .

We start from the mu-dilators dupal • , dupal • ev , dupal • evv as described in §3. Applying the rule (39) we immediately derive these three expansions: The last two expansions must be preferred to the first, since they involve only even terms. Of these two even expansions, (302) is again preferrable to (301), since the passage from pal • evv to pal • (mu-multiplication) is so much simpler than the passage from pal • ev to pal • (gari-multiplication). But there is still room for improvement. Indeed, (302) is blighted by some redundancy since the summands on the right-hand side are not linearly independent. 40 . To get a true basis, we must introduce bimoulds Lan • ǫ 1 ,...,ǫs ∈ 40 The products mu(lan • r1 , ..., lan • rs ) are of course linearly independent, but cease to be so when 'precomposed' by Paj • as in (300), (301), (302).

which reads:

A w 1 ,...,w j-1 ,w 2t+1 ,w j ,...,w 2t (311)

Due to the invariance of A • under -push, this may be rewritten as:

(-1) j (push j .A) w 1 ,...,w j-1 ,w 2t+1 ,w j ,...,w 2t (312)

In the 'long' notation (of greater relevance here) this becomes:

(-1) j (push j .A) [w 0 ],w 1 ,...,w j-1 ,w 2t+1 ,w j ,...,w 2t (313) = 1≤j≤2 t+1

(-1) j A [w 2t+1 ],w j ,...,w 2t ,w 0 ,w 1 ,...,w j-1 (314)

Under the exchange w 0 ↔ w 2t+1 , the last identity becomes:

(-1) j A [w 0 ],w j ,...,w 2t ,w 2t+1 ,w 1 ,...,w j-1 = 1≤j≤2 t+1

(-1) j A [w 0 ],w j ,...,w 2t+1 ,w 1 ,...,w j-1

Or again, reverting to the short notation:

(-1) j A w j ,...,w 2t+1 ,w 1 ,...,w j-1 (315)

On the other hand, alternality implies pus-neutrality 47 pus j A • ≡ 0, which reads: 0 = 1≤j≤2 t+1

A w j ,...,w 2t+1 ,w 1 ,...,w j-1 (316)

From ( 315) and (316) we get by addition: 0 = 0≤k≤t A w 2k+1 ,...,w 2t+1 ,w 1 ,...,w 2k (317)

and by subtraction:

Under the change (w 2 , w 3 , . . . , w 2t+1 , w 1 ) → (w 1 , w 2 , . . . , w 2t+1 ), (318) becomes: 0 = 1≤k≤t A w 2k+1 ,...,w 2t+1 ,w 1 ,...,w 2k (319) Subtracting ( 319) from (317), we end up with A w 1 ,..,wr ≡ 0. . Proof: It rests on the Proposition 7.1 of the preceding section, in conjunction with the two following lemmas.

Lemma 8.1 (First components of bisymmetrals).

If the length-one component Sal w 1 of a bisymmetral bimould Sal • is an even function of w 1 = ( u 1 v 1 ), it may be anything, but if it is an odd function, it is necessarily a flexion unit.

Proof: Let u 0 , u 1 , u 2 be constrained by u 0 + u 1 + u 2 = 0 and let v 0 , v 1 , v 2 be defined up to a common additive constant. At length 2, the unique symmetrality relation for Sal • may be written thus:

Due to Sal w 1 being odd, this yields:

Likewise, the unique symmetrality relation for Sal • may be written as:

Sil

) + Sil

) Sil

In the u i -variables, this translates into:

or again, due to imparity and to u i = 0 :

) ≡ -Sal

Let E 1 be the identity obtained by adding the three circular permutations of ( 327) and (328), and E 2 the identity obtained by adding the six permutations, circular or anticircular, of (329). The left-hand sides of E 1 and E 2 clearly coincide, while their right-hand sides coincide only up to the sign. Equating these right-hand sides, we find: 4 Sal

Likewise, any bimould of as/as type is automatically gush-invariant (even as any bimould of al/al type is automatically push-invariant). See [E3], §2.4. This in turn implies: rash.S ). This is less surprising than may appear at first sight, since the gari and gira products are linear in the left factor and violently non-linear in the right factor.

We can now return to the proof of Proposition 8.1. To define our left factor Sal • we set:

By the general theory of §3- §4 supra, this left factor is not just bisymmetral, but also invariant under pari.neg. Let us now address the construction of the right factor Sar • . For each r, we can construct bimould pairs (Sa • r , sar • r ) by the following induction. For r = 1 we set:

and for r > 1 we set:

Clearly:

Let us now check that (i) each Sa k

• is in GARI as/as ; (ii) each sar k

• is in ARI as/as ; (iii) and therefore each expar (± sar • k ) is in GARI as/as . two remaining identities, (351) is better than (350) since it involves, via the adari action, the bimould ripil • ev , which is much simpler than ripir • ev . 55 We have thus got hold of our first series of bialternals {diril • 2r ; r ≥ 2} along with a probably optimal algorithm for their calculation. Indeed, using formula (42) and the key results ( 153) and ( 154) of §3, we can make the terms on the right-hand side of (351) wholly explicit. For the bimould part we get an expansion in terms of elementary alternals:

and for the operator part we have an equally simple expansion:

adari(ripil 10 Polar bialternals: second main source. §10-1. Abstract singulators.

To begin with we must recall the construction of the 'abstract' singulator senk that to any bisymmetral ess • associates (non-linearly) a linear operator senk(ess

whose 'components' senk r (ess • ) have the astonishing property of turning any length-1 bimould into a bialternal bimould of length r. That, however, comes at a price: every second time the bialternal so produced is identically 0. More precisely:

Before constructing senk, let us recall the definition of mut (anti-action of BIMU on itself ) and adari (action of GARI on ARI):

We also require elementary operators that render any bimould neg-or pushinvariant:

neginvar := id + neg (360) pushinvar := 0≤r (id + push + push 2 + ... + push r ).leng r (361)

We can now enunciate the two equivalent definitions of senk :

The 'components' senk r (ess 11 Polar algebra and subalgebras.

Warning: from here on the exposition becomes less systematic and the paper takes a more exploratory turn. It mixes proof-backed statements, conjectures, and mere 'observed facts', while making clear in each case which is which.

The six main subspaces of Flex (E) are: 58

Flex sap (E) , consisting of all sap-invariant bimoulds. Flex pus (E)

, consisting of all pus-variant bimoulds. Flex push (E)

, consisting of all push-invariant bimoulds.

, consisting of all alternal bimoulds. Flex al/push (E) , consisting of all alternal and push-invariant bimoulds.

, consisting of all bialternal bimoulds.

All these subspaces except the first (sap-invariants) are stable under ari and define as many subalgebras. On the other hand, only the fourth (alternals) is stable under lu. This again shows how much more flexible, versatile and interesting the flexion operations are. Remarkably, neither the pusinvariant subspace Flex pus r nor the push-variant subspace Flex push r are stable under ari, let alone lu. 59 Here is a table with the dimensions, up to r = 14, of the length-r com-58 Recall that sap := swap.syap = syap.swap and that a bimould A • in BIMU r is said to be pus-variant iff (id + pus + pus 2 + ...pus r -1 ). A • = 0.

59 This underscores the 'complementarity' between pus (a circular permutation of order r in the short notation) and push (a circular permutation of order r in the long notation).

B(x)

For a combinatorial interpretation directly related to our problem, see Remark 2 below.

• dim(Flex al/push r (E)). Though there is no known closed formula, this again appears to coincide with a sequence investigated by F. Chapoton (see A098091 in the Online Encyclopedia of Integer Sequences) but with a combinatorial interpretation 62 that doesn't make the connection obvious.

• dim(Flex al/al r (E)) = unknown at the moment for r ≥ 16. See §10.4.

As is well known, the Catalan numbers dim(Flex r (E)) = (2r)! r! (r+1)! are capable of two main tree-theoretic interpretations: (i) as counting the binary trees with r-nodes (ii) as counting the ordered trees 63 with r-nodes. 64 There exists a basis {e • t } naturally indexed by the binary trees t: see §1-6. There also exists two bases {em • t } and {en • t } indexed by the ordered trees of the second interpretation. Indeed, let t be a s-rooted tree consisting of an ordered system of s one-rooted trees t j ; and let t * be the one-rooted tree that results from attaching each t j to a common root. 65 The inductive definition then reads:

for the one-node, one-root tree t 0 . The two systems {em • t ; nodes(t) = r} and {en • t ; nodes(t) = r} are each a basis 66 of Flex r (E). However, the system {er • t ; nodes(t) = r} similarly constructed but with arit in place of amit or anit defines no basis. 67 Worse still, Flex (E) cannot be generated from E • under repeated use of the sole operations lu and arit (much less under lu and ari).

62 According to F. Chapotion, these are the graded dimensions of the spaces of invariant bilinear forms on the free pre-Lie algebra on one generator.

63 Several branches may issue from one and the same node, and their planar disposition, from left to right, matters.

64 Several roots are allowed in these "trees". Some speak of bushes or forests instead.

65 distinct from the original roots of each t j . 66 Note that the systems {em • t } and {en • t } are quite distinct from the similar-looking systems in (??). The latter span much smaller subspaces.

67 There appear linear dependence relations between the er • t as soon as r = 5.

The following table carries for each length-r component of Flex al free (E) resp. Flex free (E): (i) the total dimension δ r resp. d r (ii) the number δ * r resp. d * r of primary generators (iii) the number δ * * r resp. d * * r of all generators (primary and secondary) 13 Alternal codegrees and alternality grids. §13-1. Loose and strict alternality codegrees.

holds for all systems {w 1 , . . . , w d+1 }, and it is said to have strict alternality codegree d if the identity does not always hold for d-1. Alternality in the

We cannot expect the bialternality codegree (or rather its second component) to behave in anything like a predictable manner under mu and lu nor indeed under preari and ari, but there an important exception, namely on the subalgebra of push-invariant elements 73 , where swap commutes with preari and ari. So for push-invariant bimoulds we have:

Here again we have a filtration of Flex r (E) into increasing subspaces

r (E) with the corresponding dimensions

and the even more relevant differences

which serve as entries of the so-called bialternality grid.

In fact, we have two such grids: one for the whole of Flex r (E) and one for the push-invariant subalgebra Flex push r (E). The second grid, also called bialternality chessboard, is the more important of the two, but in this 'monogenous' or 'eupolar' context both are equally interesting. In particular, both are symmetrical with respect to the main diagonal. This is due to the existence of a second involution syap, specific to this case.

But when we leave the 'eupolar' context and move on for example to the important case of polynomial-valued bimoulds, we still have (highly interesting) bialternality grids and chessboards but there is no syap anymore and so the property of diagonal symmetry disappears, though traces of it remain. §14-2. The bialternality grid for general eupolars.

Here are the cases that proved amenable to computation:

73 which, remember, contains all bialternals! 75 5 | 1 0 0 0 0 4 | 1 0 0 0 4 | 4 0 0 0 0 3 | 2 1 0 0 3 | 1 10 1 0 0 2 | 0 5 1 0 2 | 3 3 10 0 0 1 | 1 0 2 1 1 | 0 3 1 4 1 1 2 3 4 1 2 3 Two features stand out here: strict diagonal symmetry as well as the vanishing of all entries in the north-west triangles. Both are eupolar-specific phenomena, although as tendencies both extend, in a much weakened form, to the case of polynomial-valued bimoulds. §14-3. The bialternality chessboard for push-invariant eupolars.

For r < 4 all entries are 0. For 4 ≤ r ≤ 8, we get: 5 | 0 0 0 0 0 4 | 0 0 0 0 4 | 0 0 0 0 0 3 | 0 0 0 0 3 | 0 1 0 0 0 2 | 0 1 0 0 2 | 1 0 1 0 0 1 | 1 0 0 0 1 | 0 1 0 0 0 1 2 3 We observe the vanishing of all entries on the diagonals of equation d 1d 2r = odd or, what amounts to the same, on the anti-diagonals rd 1d 2 = odd . The phenomenon, this time, is not eupolar-specific but quite general and a direct consequence of push-invariance. The reasons behind it are explained in the next section, which is devoted to the case of polynomialvalued bimoulds.

15 Introduction to the polynomial chessboard.

The next two section venture beyond the eupolar into the polynomial and eutrigonometric domains, but unsystematically so, mainly with a view to {σ(1) . . . σ(5)} λσ that commute with the 'projector' pushinvar r is of course much larger than the number r of alternality projectors altor r,j . That dimension admits several Now, the analytical constraints expressing j-alternality -alone or in conjunction with push-invarisance -are finitary: the underlying transforms in the u-variables generate a finite group. 80 This circumstance makes it easy to unravel the structure of our two spaces ( 398) and (399) as finitely generated modules. Explicitely:

where (i) DU [r] (u) denotes the ring 81 of symmetric polynomials in u 1 , . . . u r .

(ii) DU [[r]] (u) denotes the ring 82 of symmetric polynomials in u 1 , . . . u r and u 0 := -(u 1 +. . .+u r ). We may take the elementary symmetric functions of degree 2, 3,..., r+1 as independent generators of DU [[r]] (u).

(iii) NU [j] r (u) and NU [[j]] r (u) denote finite-dimensional vector spaces 83 of upolynomials, with equal dimensions: dim NU [j] r (u) = dim NU [[j]] r (u) = s 1 (r, j) (with s 1 as in ( 382) ) (402) but with distinct sets of generators. These may be taken of the form Pa 

It follows at once that our generating functions must be of the form ge

ge

80 in the sense of [E3], §2.4, p51.

81 to make DU [r ] (u) unitary, we add the constant polynomial 1 to its elements. 82 Here again, we add 1 to DU [[r ]] (u). 83 The spaces NU [j] r (u) and NU [[j]] r (u) are defined only modulo multiplication by 'invertible' elements of DU [r] (u) and DU [[r]] (u) respectively, in all possible ways that leave the products (400) and (401) unchanged.

homogeneity.

Generating functions.

As in §15-3, we may still form the generating series:

but new difficulties arise, since the bialternality constraints are no longer finitary. One such difficulty is that the decompositions ( 400) and ( 401) have no equivalent here. Nonetheless, it would seem that the new generating series are still rational functions:

with denominators dee

r (t) that may still 85 be taken as products of elementary monomials (1t k ) resp. (1t 2k ). The numerators nee [j 1 ,j 2 ] r (t) and nee [[j 1 ,j 2 ]] r (t) are still polynomial in t, but with fairly high degrees 86 and with a hopeless mixture of positive and negative (integer) coefficients. Moreover, in the push-invariant case, due to the chessboard phenomenon, nee

(t) is even resp. odd in t exactly when j 1 + j 2 is even resp. odd.

We must stress that in all generality, i.e. for all values of the length r, the above statements are still conjectural, unlike the corresponding results of §15.3 relative to the alternality grids. Another difference worth noting is the absence of bases such as ( 403) and ( 404) for the [j 1 , j 2 ]-or [[j 1 , j 2 ]]-alternal subspaces, although the basis to be constructed in §15-5 infra may be regarded as a passable substitute.

Bialternality grids.

The ordinary polynomial bialternality grids (i.e. the ones we get without imposing push-invariance) do not display the chessboard effect, nor are they symmetric under the exchange j 1 ↔ j 2 , and that too from r = 3 onwards. Their most outstanding (still unproven) features are the vanishing 85 provided we don't insist on reducing the rational fonctions gee [j1,j2] r (t) and gee [[j1,j2]] r (t). 86 much higher in any case than those of the earlier ne 

Bialternality chessboard for 4 variables:

gee

t 4 +3t 6 +6t 8 +11t 10 +14t 12 +17t 14 +17t 16 +15t 18 +11t 20 +7t 22 +4t 24 +t 26 +t 28 +t 32 (1

gee [[3,4]] 4

(t) = 0 gee [[4,4]] 4

(t) = 1

Bialternality chessboard for 5 variables:

The first (mild) deviation from symmetry occurs for degree d = 9. Here are the corresponding entries al

, which duly vanish on a south-east triangle: 0 8 0 14 0 7 0 31 0 6 0 30 0 1 0 15 0 0 0 0 0 6 0 0 0 §15-5. Example of bialternality basis.

The main hurdle in the investigation of the bialternality grid and chessboard as soon as r ≥ 3 is of course the non-finitary nature of the underlying constraints 89 which precludes the existence of simple projectors and of ele-with, in all three cases the common, natural conditions 91

Then the system B defined by

has for each d the right cardinality, is linearly independent, and can be shown to constitute a basis for the space of all length-3 bialternals. One way of proving this is to construct similar bases for all the other bialternality types [j 1 , j 2 ], [[j 1 , j 2 ]] and then produce explicit, complementary projectors onto the subspaces spanned by these bases. But we are still far away from a general theory, valid for all values of r.

16 From polar to trigonometric bisymmetrals.

Replacing P (t) := 1/t by Q(t) := c/ tan(c t) changes the exact flexion units Pa w 1 := P (u 1 ) and Pi w 1 := P (v 1 ) into the approximate units Qa w 1 := Q(u 1 ) and Qi w 1 := Q(v 1 ), and turns the pair of isomorphic eupolar structures Flex (Pa) and Flex (Pi ) into the non-isomorphic eutrigonometric structures Flex (Qa) and Flex (Qi ), which remain non-isomorphic even after the (natural) extension to Flex (Qa, c.I ) and Flex (Qi , c.I ). These eutrigonometric structures being central to multizeta algebra 92 we propose to deal with them at length in a special monograph [E4], but here is a sneak preview, mainly to show which features of the eupolar case carry over and which do not. §16.1. Disappearance of syap and consequences.

The involution slap disappears, or rather, if we keep the formal definition of slap, loses its quality of being a full flexion isomorphism. The reason is that when we substitute Qa resp. Qi for E in the classical three-term sum +E

we get two constant valued elements of BIMU 2 :

instead of getting 0, as with strict flexion units. The complication here has less to do with the sign alternation ±c 2 than with the fact that Qaa • aricommutes with all elements of its parent structure Flex (Qa), whereas Qii • does not ari-commute with Flex (Qi ). For instance, if we ari-bracket E • with the length-2 bimould defined by the three-term sum (416), we get the following expression +E

) -E

which vanishes under the specialisation E → Qa but not under E → Qi . 93 §16.2. Appearance of a corrective 'central' factor.

Let us now systematically contrapose the main formulae for polar bialternals and bisymmetrals to their trigonometric equivalents.

The central-exceptional bisymmetrals tal • / /til • (invariant under neg.pari but neither neg nor pari ) are still echanged by the involution swap, but only modulo gari-multiplication by an element mana • ∈ Centre(GARI ): In the eupolar case, Flex r (Pi ) contains (for each r and up to scalar multiplication) exactly one alternal without poles of the form (v iv j ) -1 with |i -j| > 1. By contrast, even with this restriction on the poles, Flex r (Qi ) contains a much richer set of alternals. The corresponding ari-structure, with Let paj • , pij • denote the elementary polar bimoulds defined in [E3] §4.3 and let taj • , tij • denote their (still reasonably elementary) trigonometric counterparts: see [E3] §4.3, §4.5.

Further, for any t ∈ Q and any bimould S • ∈ GARI , let gari t (S • ) denote the gari-iterate of order t of S • :

The first polar-to-trigonometric transpostion involves some complication:

The inequality on the second line arises from the fact that, unlike in the polar case where we had an exact identity logari (pij • ) = Pi • , in the trigonometric case we only have logari(tij • ) = Qi • mod c 2 . Nonetheless, both tij • and gari -1 2 (tij • ) possess remarkable gari-dilators whose components (barring the first one) belong to the internal ideal ARI intern .

The second transpostion is more straightforward:

the reason being that in both cases, polar and trigonometric, we now have exact identities:

No such simplification occurs in the third transposition The first even factor splits into a product (in both GARI and MU) of internal and external subfactors:

In addition to ordinary, non-commutative mould multiplication mu (or ×):

and its inverse invmu:

the bimoulds 98 A • in BIMU = ⊕ 0≤r BIMU r can be subjected to a host of specific operations, all constructed from four elementary flexions ⌊, ⌉, ⌈, ⌋ that are always defined relative to a given factorisation of the total sequence w.

The way these flexions act is apparent from the following examples:

with the usual short-hand: u i,...,j := u i +...+u j and v i:j := v i -v j . Here and throughout the sequel, we use boldface (with upper indexation) to denote sequences (w, w i , w j etc), and ordinary fonts (with lower indexation) to denote single sequence elements (w i , w j etc), or sometimes sequences of length r(w) = 1. Of course, the 'product' w 1 .w 2 denotes the concatenation of the two factor sequences. §17-2. Short and long indexations on bimoulds.

For bimoulds M • ∈ BIMU r it is sometimes convenient to switch from the usual short indexation (with r indices w i 's) to a more homogeneous long indexation (with a redundant initial w 0 that gets bracketed for distinctiveness). The correspondence goes like this:

98 BIMU r of course regroups all bimoulds whose components of length other than r vanish. These are often dubbed "length-r bimoulds" for short.

with the dual conditions on upper and lower indices:

The following linear transformations on BIMU are of constant use:

..,wr = -A w 1 ,...,wr (432) B • = pari.A • ⇒ B w 1 ,...,wr = (-1) r A -w 1 ,...,-wr (433) B • = anti.A • ⇒ B w 1 ,...,wr = A wr,...,w 1 (434) B • = mantar.A • ⇒ B w 1 ,...,wr = (-1) r-1 A wr,...,w 1 (435) B • = neg.A • ⇒ B w 1 ,...,wr = A -w 1 ,...,-wr (436)

All are involutions, save for pus and push, whose restrictions to each BIMU r reduce to circular permutations of order r resp. r+1: 99 push = neg.anti.swap.anti.swap (440) leng r = push r+1 .leng r = pus r .leng r (441) §17-4. Inflected derivations and automorphisms of BIMU.

Let BIMU * resp. BIMU * denote the subset of all bimoulds M • such that

whose action on BIMU is given by: 100

and verifies the identities:

The BIMU-derivations axit are stable under the Lie bracket for operators. More precisely, the identity holds:

relative to a Lie law axi on BIMU * × BIMU * given by:

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

Let AXI denote the Lie algebra consisting of all pairs A • ∈ BIMU * × BIMU * under this law axi.

Likewise, the BIMU-automorphisms gaxit are stable under operator composition. More precisely:

relative to a law gaxi on BIMU * × BIMU * given by:

Let GAXI denote the Lie group consisting of all pairs A • ∈ BIMU * ×BIMU * under this law gaxi. 100 The sum 1 resp. 

When one of the two arguments (A • , B • ) vanishes, the definitions reduce to:

Moreover, when amnit operates on a length-1 bimould M • ∈ BIMU 1 (such as a flexion units E • , see §17-2 infra), its action drastically simplifies :

A a⌋ M ⌈w i ⌉ B ⌊b (458) §17-6. Unary substructures.

We have two obvious subalgebras//subgroups of ARI//GARI, answering to the conditions:

but we are more interested in the mixed unary substructures, consisting of elements of the form:

with everything expressible in terms of the left element A • L of the pair A • . There exist, up to isomorphism, exactly seven such mixed unary substruc-ANI//GANI and then of the mixed pair ARI//GARI:

with sums 1 (resp.

2 ) ranging over all sequence factorisations w = abc

with A • * := invmu(A • ) and with sums 1 , 2 , 3 ranging respectively over all sequence factorisations of the form :

More precisely, in 3 two inner neigbour factors c i and a i+1 may vanish separately but not simultaneously, whereas the outer factors a 1 and c s may of course vanish separately or even simultaneously. §17-9. The algebra ARI and its group GARI : Lie brackets and group laws.

We can now concisely express the Lie brackets ami, ani, ari and the group products gami, gani, gari :

(471) §17-10. The algebra ARI and its group GARI : pre-Lie brackets.

Parallel with the three Lie brackets, we have three pre-Lie brackets:

with the usual relations:

with assopreari denoting the associator of the pre-Lie bracket preari. The same holds of course for ami and ani. §17-11. Exponentiation from ARI to GARI.

Provided we properly define the multiple pre-Lie brackets, i.e. from left to right:

we have a simple expression for the exponential mapping from a Lie algebra to its group. Thus, the exponential expari : ARI → GARI can be expressed as a series of pre-brackets:

A flexion unit E is an element of BIMU 1 that verifies identically

The above identities may be rewritten as

for r = 1 and 2, but they actually imply ( 481) for all values of r.

The present paper deals mainly with the polar units Pa, Pi :

and occasionally with the approximate trigonometric units Qa, Qi :

Qa

for which the expression on the right side of (480), instead of vanishing, becomes ± c 2 .

For a more substantive exposition of the flexion structure, we refer to [E1] and [E3].

18 Tables and Maple programs. faa :=proc(p,q): proc(X): subs( seq(u (q+1-k)=u (q+1-k+p),k=1..q), X) end: end: fii:=proc(p,q): proc(X): subs(seq(v (q+1-k)=v (q+1-k+p),k=1..q), seq(v k=v k-v p,k=p+1..p+q), X) end: end: fee:=proc(p,q): proc(X): fii(p,q)(faa(p,q)(X)) end: end: gaa:=proc(p,q): proc(X): X end: end: gii:=proc(p,q): proc(X): subs(seq(v k=v k-v p,k=1..p-1),X) end: end: gee:=gii:

Faa:=proc(p,q): proc(S): [seq(faa(p,q)(op(s,S)),s=1..nops(S))] end: end: Gaa:=proc(p,q): proc(S): [seq(gaa(p,q)(op(s,S)),s=1..nops(S))] end: end: Mip := proc(X) option remember; if X=[ ] then 1 elif nops(X)=1 and op(X)=1 then +a [1] elif nops(X)=1 and op(X)>1 then+1/su(X) * Mij(X)+1/su(X) * add( Mip([p]) * Mi(X)(p), p=1..op(X)-1) elif nops(X)>1 then +1/su(X) * add(Mip([seq(op(k,X),k=1..i-1)]) * Mij([seq(op(k,X), k=i..nops(X))]), i=1..nops(X)) +1/su(X) * add(add(add( Mip([seq(op(k,X),k=1..i-1),p,seq(op(k,X),k=j+1..nops(X))]) * Mi([seq(op(k,X),k=i..j)])(p), p=1.. min(op(i,X),add(op(k,X),k=i..j)-1)), i=1..j),j=1..nops(X)) fi end: §18.A.8. Computation of the symmetrel mould Nip • .

Ni := proc(X): proc(p): if p=0 or p>op(-1,X) then 0 else (-1)ˆ(1+nops(X)+su(X)-p) * op(+1,X) * a[su(X)-p] fi end: end: Nij := proc(X): (-1)ˆ(nops(X)+su(X)) * op(+1,X) * a[su(X)] end:

Nip := proc(X) option remember; if X=[ ] then 1 elif nops(X)=1 and op(X)=1 then +a [1] elif nops(X)=1 and op(X)>1 then +1/su(X) * Nij(X)+1/su(X) * add(Nip([p]) * Ni(X)(p),p=1..op(X)-1) elif nops(X)>1 then §18.B.6. Regular bisymmetrals and associated bialternals.

The file f 1 deals with the regular bialternals lar • and ral • (which by gari-postcomposition link pal • and par • to one another: see §9) and gives their expansions along the standard basis (since for them no simpler basis is available). The file f 2 provides similar expansions for the dilators dilar • and diral • (bialternals of the "first kind": see §9) and file f 3 does the same for the singulator-related bimoulds visla • and visra • (bialternals of the "second kind": see §10). §18.B.7. Construction of tal • and its even/odd factors.

The file g 1 deals with the factorisations tal • = gari(tal od , tal ev ) and tal • ev = mu(tal lev , tal rev ) and the file g 2 deals with the factorisations tal • = mu(tal evv , tal odd ) and tal • evv = mu(tal levv , tal revv )

The non-trivial factors are given via their dilators, which in turn are defined through their coefficients in one the two natural bases of LU (Qa, c I ), namely the one that is spanned by the alternals Qa • n 1 ,...,ns so defined: When comparing the expansions of our trigonometric dilators in these two bases, curious -though limited and still poorly understood -duality phenomena become noticeable.
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