
HAL Id: hal-00995689
https://hal.science/hal-00995689v1

Submitted on 27 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict resolution when axioms are materialized in
semantic-based smart environments.

Christophe Gravier, Julien Subercaze, Antoine Zimmermann

To cite this version:
Christophe Gravier, Julien Subercaze, Antoine Zimmermann. Conflict resolution when axioms are
materialized in semantic-based smart environments.. JAISE - Journal of Ambient Intelligence and
Smart Environments, 2015, 7 (2), pp.187-199. �10.3233/AIS-150307�. �hal-00995689�

https://hal.science/hal-00995689v1
https://hal.archives-ouvertes.fr

Journal of Ambient Intelligence and Smart Environments 1 (2009) 1–5 1
IOS Press

Conflict resolution when axioms are
materialized in semantic-based smart
environments.

Christophe Gravier a,∗, Julien Subercaze a and Antoine Zimmermann b

a Université de Saint-Étienne, Télécom Saint-Étienne, 23 rue du Dr. Rémy Annino, F-42023 Saint-Etienne, France
E-mail: {christophe.gravier, julien.subercaze}@univ-st-etienne.fr
b École Nationale Supérieure des Mines, FAYOL-ENSMSE, LSTI, F-42023 Saint-Étienne, France
E-mail: {antoine.zimmermann}@emse.fr

Abstract. In Semantic Web applications, reasoning engines that are data intensive commonly materialise inferences to
speed up processing at query time. However, in evolving systems, such as smart environments, semantic-based con-
text aware systems (SCAS) [6] or social software with user-generated data, knowledge does not grow monotonically:
newer facts may contradict older ones, knowledge may be deprecated, discarded or updated such that knowledge
must sometimes be retracted. We are describing a technique to retract explicit and inferred statements, when some
information becomes obsolete, as well as retracting any statement that would lead to get back the removed explicit
statements. This technique is based on OWL justifications and is triggered whenever a knowledge base becomes
inconsistent, such that the system stays in a consistent state all the time, in spite of uncontrolled evolution. We prove
termination and correctness of the algorithm, and describe the implementation and evaluation of the proposal.

Keywords: Ontologies, Reasoning, Explanations, Agents, Ambient Intelligence, Smart Environments

Introduction

For a long time, semantic web technologies
were only providing standards and tools for static,
monolithic knowledge bases (hereafter abbrevi-
ated KB). Only recently the ability to update RDF
stores 1, to process RDF streams have been tack-
led, but a final standard only appeared very re-
cently 2 In a situation where appending, modify-
ing or deleting can be performed, reasoning has

*Corresponding author. E-mail: christophe.gravier@univ-st-
etienne.fr

1In this paper, we assume a minimal familiarity with seman-
tic web standards, especially RDF (the Resource Description
Framework [9]), OWL (the Web Ontology Language [33]) and
SPARQL (the query language for RDF [17])

2SPARQL 1.1 Update [12] became a recommendation in
March 2013.

to be carried on in a fairly different manner. RDF
databases, also called triple stores, with high capac-
ities are often able to perform reasoning at large
scale with good response time to queries due to
a pre-processing mechanism called inference ma-
terialisation. This process computes the deductive
closure of a KB and simply writes it back on disk
or in memory. As a result, queries against the
dataset only requires a simple look up, instead
of complex inferences at query time. Materialisa-
tion is extremely powerful on static KBs because
it only requires a costly phase once and for all,
after which the system can sustain a heavy load of
requests. If the KB changes sporadically, the clo-
sure can be recomputed entirely and the system
can still perform well.

If the KB only changes monotonically, that
is, nothing already known is ever removed or

1876-1364/09/$17.00 c© 2009 – IOS Press and the authors. All rights reserved

2 C. Gravier et al. / Consistent evolution of materialised axioms. . .

modified but new knowledge may be added,
materialisation is also doable incrementally and
can be efficient as well. Materialisation becomes
costly whenever existing knowledge must be ei-
ther modified or removed. In this paper, we are
interested in a hybrid case, where new knowledge
is simply added and materialisation enfolds, up
until a conflict (that is, an inconsistency) occurs,
which enforces the KB to be revised. This means to
sort out obsolete assertions that were supported
by the assertion that became obsolete.

Our contribution is a revision mechanism that
is in line with the generic principles of belief re-
vision [26,1], but offers a concrete instantiation
that works for languages of the Semantic Web,
namely OWL [33] and SWRL [11]. 3 Our approach
is also constrained by certain requirements that
come from an analysis of real use cases: (1) there is
a fixed ontology that cannot be modified, however
conflicting it may be with incoming knowledge;
(2) the inferences made on the KB are materialised
using a rule engine; (3) contextual knowledge are
assertions of facts, in the description logic sense
of the term, as opposed to terminological state-
ments that are made in the fixed ontology; (4) we
assume that the fixed ontology is consistent, so
that consistency of the whole KB can always be
guaranteed.

This paper is organised as follows. Section 1
describes the motivations that brought us to this
specific problem that stems from smart environ-
ments. Section 5 provides related work with in-
troductory definitions regarding knowledge re-
vision. In Section 3.3, we present a justification-
based update algorithm for conflicting OWL indi-
vidual updates. Section 4 deals with experimen-
tations and discussions of the proposal. Finally,
Section 6 concludes.

1. Motivations

Conflicts are common place when knowledge
comes from different context sources, provided by
ad hoc services. Contextual data encompass net-
work monitoring, user profiling, content descrip-
tors and metadata, user-generated data, etc. [5]. In
a situation where these contextual data are inte-

3Although SWRL is not a standard as OWL is, it is supported
by several implementations and used in various applications.

grated, it is not possible to determine in advance
which information should be simply added, and
which trigger updates, that is, a modification of
existing data. A system that collects such kind of
information is what we call a context-aware sys-
tem (CAS) because it often harvests raw data from
sensors, such as the user’s location, role, activity,
device, connection, etc., in order to customise the
user’s digital experience or notify different soft-
ware agents [10].

We are especially interested in applications
based on Semantic Web technologies, as these are
gaining momentum in this field, and thus we con-
sider semantic context aware systems (SCAS) to be
the target of our contribution. At an abstract level,
it means that we focus on formalisms like Descrip-
tion Logics and rule-based logics, which underly
Semantic Web standards. At the concrete level, it
means that we rely on a KB in OWL [25] and an
associated reasoner [7], also combined here with
rules in SWRL [11]. Using rules together with De-
scription Logic ontologies is an effective technique
for finding anomalies in ontologies [4], and espe-
cially in SCAS, where we want to notice undesired
information and possibly correct them automati-
cally.

We support the case when new assertions about
the state of affairs are made and added to the
system regularly, but sufficiently slow that it is
possible to materialise inferences efficiently. We
assume moreover, that incoming assertions are
mostly providing more knowledge without con-
tradicting existing facts, except occasionally such
that inconsistencies can be handled sufficiently
fast in average to avoid contradictions piling up.
Note that the acceptable rate at which inconsis-
tencies occur would strongly depend on the ex-
pressiveness of the ontologies and rules used. As
we will see, our use case has a relatively com-
plex ontology and rules, although we have a small
number of terms.

The situation can be visualised in Figure 1. The
picture shows that the SCAS is implemented in a
software agent or a service [32]. The agent is main-
taining a KB where the terminological knowledge
is placed in a fixed ontology containing Descrip-
tion Logic axioms and rules. The fixed axioms can
be seen as the physics of the KB, and nothing
can supersede their truth. In addition to this, the
agent has a dynamic set of assertions (the so-called
A−Box in Description Logics) that is updated in

C. Gravier et al. / Consistent evolution of materialised axioms. . . 3

Fig. 1. Sematic context-aware service implemented in a agent or a service.

accordance with new assertions provided by the

environment or other agents. A reasoner ensures

that at all time, the A−Box contains the deduc-

tive closure, or at least relevant inferences are ma-

terialised. The query engine is at the service of

the users and does not need carrying on reason-

ing at query time, because of the materialisation

process. Therefore it can achieve a good level of

reactiveness.

Repeatedly, the SCAS receives incoming asser-

tions that complement its KB. In most cases, the

assertions are simply added to the KB and the rea-

soner enfolds inferences. However, the assertions

are accompanied with a context marker that will

help the agent to revise knowledge appropriately

in case of conflict. In particular, information such

as who provided the new assertion (provenance),

when the update occurred (timestamp), why it oc-

curred (justification), etc. are all usable indicators

for the revision strategy.

In this paper we investigate methods to retract

the subset of materialised axioms that become ob-

solete as a result of the revision operations. This

is crucial as removing a conflicting assertion may

not be sufficient to cancel inconsistencies.

2. Reference scenario

In order to illustrate our work, we propose a
reference scenario intended to be simple enough
to serve as an illustration throughout the article,
but having a certain degree of complexity to show
that the approach is not limited to simplistic situ-
ations. The KB and the ontology that we consider
covers an important DL fragment of OWL, in ad-
dition to including rules. We study the complexity
and scalability of our proposal in Section 4.

Alice is reading at home in her room. We
want to provide her a context-aware application
that opens the windows of her room when the
in-house temperature raises over 25.0◦C. Mean-
while, would the temperature drop under a 15.0◦C
threshold, the system should close the windows.

The associated Semantic Context Aware System
(SCAS) at her home held the following ontology
O, which can be expressed in description logics,
with the usage of XML datatype built-in (boolean
and float) for readability purpose, in Figure 2.

This ontology can be expressed in OWL 4.

4The associated OWL file can be browsed at
http://satin-ppl.telecom-st-etienne.fr/cgravier/

jaise/cagc-test-jaise.owl

4 C. Gravier et al. / Consistent evolution of materialised axioms. . .

T−Box:

Window ≡ ≤1 isOpened ⊓ ∀isOpened.boolean
Room ≡ ∃hasWindow ⊓ ∀hasWindow.Window
CoolRoom ≡ Room ⊓ =1 hasTemp ⊓ hasTemp.float[≤ 15.0]
HotRoom ≡ Room ⊓ =1 hasTemp ⊓ hasTemp.float[≥ 25.0]
CoolRoom ⊑ ¬HotRoom

A−Box:

Room(AliceRoom)
Window(AliceRoomWindow)
hasWindow(AliceRoom, AliceRoomWindow)

Rules:

(R1) CoolRoom(?r) ∧ Window(?w) ∧ hasWindow(?r, ?w)→ isOpened(?w, false)
(R2) HotRoom(?r) ∧ Window(?w) ∧ hasWindow(?r, ?w)→ isOpened(?w, true)

Fig. 2. Description of the ontology and rules used in our scenario.

Furthermore, Alice’s room is equipped with
a temperature sensor, whose samples lead to
create the OWL assertions HotRoom(AliceRoom)
or CoolRoom(AliceRoom), depending if the sen-
sor value reached any of the lower or upper
thresholds for classification of the individuals as
CoolRoom or HotRoom.

In order to provide this awareness mechanisms
in a SCAS, thresholds are usually designed using
rules. In our illustrative scenario, rules (R1) and
(R2) can be serialised in SWRL [27,20].

Since context is volatile, OWL context individu-
als can radically change with time. For instance, let
Alice’s temperature sensor samples a new value
equals to 25.0◦C. The following assertion is in-
serted in the A−Box: hasTemp(AliceRoom,25.0 f).
As a result, the assertion HotRoom(AliceRoom)
is inferred by the reasoner, and in our case,
materialised in the KB. Having AliceRoom be-
ing classified as a HotRoom by the reasoner has
its consequences for the synchronised rule en-
gine. It triggers the rule (R2), so that the as-
sertion isOpened(AliceRoomWindow,true) is pro-
duced and is also added as an OWL assertion
to the KB. This avoids to run again a poten-
tially long classification, and helps in setting up a
caching strategies to decreasing computation time
for queries on the agent’s KBs.

Later on, the same sensor issues a new value
indicating that the temperature in Alice’s room

dropped to 14◦C (it was hot inside, but opening
the window cooled Alice’s room). The assertion
hasTemp(AliceRoom,14.0 f) is added to the KB.

Obviously, the ontology O would fail a con-
sistency check because there are two materi-
alised values for the functional property hasTemp.
In this case, we must remove the assertion
hasTemp(AliceRoom,25.0 f) from the ontology. The
two assertions inferred from the old value of
the temperature that are no longer supported
must also be removed: HotRoom(AliceRoom),
isOpened(AliceRoomWindow, true).

The inconsistency is occurring because of a vio-
lation of a functional property axiom and because
of the violation of a disjointness axiom. There are
other situations that can lead to unsatisfiability,
such as:

– the same keys (as in hasKeys axioms in OWL)
being used for different individuals;

– a cardinality restriction violation (a general-
isation of the violation of a functional prop-
erty restriction);

– an individual relating to itself via a property
that must be irreflexive;

– an asymmetric property used to relate indi-
viduals in both directions;

Other issues are raised due the shift of tem-
perature. Not only should the oldest assertion
about temperature be removed, but also all ax-

C. Gravier et al. / Consistent evolution of materialised axioms. . . 5

ioms that were materialized in previous infer-
ence because of this temperature, and that are
only holding because of this now obsolete tem-
perature. This includes in this example the asser-
tion that Alice’s room is classified as Hot (Hot-
Room(AliceRoom)) and that Alice’s window should
be open (isOpened(AliceRoom, true)).

A reasoner that embeds a justification mecha-
nism can provide the precise reason why an incon-
sistency occurs, and we wish to exploit this fea-
ture in our revision process. We especially want
to track down not only the assertion that is made
directly obsolete by the new one, but also all the
assertions that are made indirectly obsolete due to
the new assertion. Otherwise, the ontology stays
inconsistent.

3. Justifications-based resolution of conflicts on
OWL Individuals updates

We present our approach by first defining some
key concepts, then providing the actual algorithm
for knowledge update.

3.1. Representation of context information

Since we expect that new coming information
to be brought from the outside of the application
(e.g., a user update in a social platform or a sen-
sor reading), and that it may be in conflict with
already present knowledge, there must a revision
strategy in place that crucially depends on the
context of information. Most importantly, a SCAS
must deal with possibly outdated knowledge be-
ing replaced by more recent one. Typically a sen-
sor samples a new value that should update the
assertion(s) associated with this context element
(e.g., the temperature in our reference scenario,
speaking of the hasTemp functional property). In
this reference scenario, the addition of such a new
axiom leads to a clash due to consistency checking
failure as illustrated at Section 1.

To keep our approach generic, we also envision
the case when information is associated with a
provenance, or with a confidence measure, or with
credentials, and so on. Therefore, we need to rep-
resent contextual information in an abstract way,
as an element of a set C, where C is explicitly given
on a per-application basis. In any case, there must
exist a total ordering of C. Given two elements of

C, our approach assume that it is always possible
to identify the one that supersede (3.3) the other.
For the purpose of our scenario, we assume C to
be the set of timestamps. In a SCAS, all assertions
are accompanied with an element of C, serving as
an indicator of the context of the assertion.

Definition 1 (Contextual assertion). A contextual
assertion is composed of a logical assertion α and a
context element c ∈ C, noted αc. For the sake of reason-
ing and semantics, a contextual assertion has the same
meaning as the logical assertion that it contains.

A contextual assertion αc can also be read as “an
occurrence of α in context c”. In this work, a con-
textual assertions are either class assertion C(a) or
property assertion R(a, b) or data property asser-
tion P(a, x) where C, R and P must be atomic. In
our scenario, assertions are provided as OWL DL
A−Box statements, and the context elements are
time stamps, such as:

hasTemp(AliceRoom, 25.0 f)2012-12-12T12:12:12.12Z

The context element in a contextual assertion is
momentous to the revision process, but it requires
one additional constraint, namely that the set C be
partially ordered. This is crucial in order to guide
the strategy in identifying contextual assertions
that are preferred over others. In our reference sce-
nario, the ordering is given by chronology. Intu-
itively, this means that if t is a later instant than
t′, then αt is supposedly “preferred” over α′t′ . This
reflects the fact that the most recent information is
more reliable than older ones, in absence of other
indicators. We will simply use the symbol ‘<’ for
the order relation, such that in our scenario, t < t′

means that t is an earlier time point than t′.
Other application scenarios can define it other-

wise, but the overall approach and the algorithm
we propose remain the same across all forms of
contexts. Contextual assertions may be combined
with terminological axioms or other assertions to
draw new inferences. In this case, the inferences
are not contextualised. Although it would be pos-
sible to provide a contextual reasoning framework
(as in, e.g., [34]), it is not our goal to exploit con-
text for reasoning. We simply use it to guide the
revision process, and as we will see later, it is im-
portant that we have a distinction between what
is inferred and what is given as an assertion.

6 C. Gravier et al. / Consistent evolution of materialised axioms. . .

3.2. Justifications in OWL and conflicting OWL
individuals updates

Our approach maintains a perpetually consis-
tent KB. Consequently, if the reasoner associated
with the system detects an inconsistency in a KB
K, it means that it is the union of a new coming
contextual assertion αc with a consistent internal
KB K. Formally:

K ∪ {αc} |= ⊤ ⊑ ⊥

The simplest approach for preserving consis-
tency would be to simply reject αc. However, in
conformance with the postulates of belief revision
(see Section 5), we consider that a new coming
assertion is deemed true, or at least more reliable
than earlier statements. As a result, it is required
that the revision technique fetch one or several
assertions from K in order to recover consistency.
Again, to conform to the general belief revision
postulates, we expect a minimal contraction of the
ontology axioms.

In this work, we choose to base our approach
on justifications, as proposed by [21,18]. A justifi-
cation of an axiom for a KB is a minimal subset of
the KB that entails the axiom. Formally:

Definition 2 (Justification). Let η be an axiom and K
a KB. A justification of η with respect to K is a subset
J of K such that J |= η and for all J′ ⊆ K, J′ ⊂ K ⇒
J′ 6|= η. We note JK(η) the set of all justifications of η
with respect to K.

Note that if K 6|= η, the set of justificationsJK(η)
is empty, otherwise it contains one or more justifi-
cations. As we explained in the motivation, we as-
sume that the KB contains a fixed OWL ontology
and the updates are always assertions relative to
individuals, i.e., A−Box assertions.

We are therefore interested in computing the
justification of an inconsistency that arises from
augmenting the current KB with such assertions.
Assuming the current KB is K and the incom-
ing assertion is α, inconsistencies occur when
K∪{α} |= ⊤ ⊑ ⊥. In order to restore consistency, as
in belief revision, we want to explore the justifica-
tions of the inconsistent axiom, while preserving
the incoming assertion. Intuitively, it appears to be
obvious that computing the setJK∪{α}(⊤ ⊑ ⊥) and
removing an axiom or assertion from each justi-
fication would suffice as it guarantees recovering

consistency. However, in the use cases we want to
support, reasoning is performed by inference ma-
terialisations. This means that removing an axiom
that previously produced materialised inferences
should trigger the removal of said inferences.

As an example, let us assume that in our refer-
ence scenario the following contextual assertions
are coming to the system, one after the other:

hasTemp(AliceRoom, 28.0 f)2012-12-12T12:00:00Z
hasTemp(AliceRoom, 13.0 f)2012-12-12T12:30:00Z

That is, the room was very hot at noon, and the
window was opened, but the temperature drop
fast, such that half an hour later, the room was
pretty cold. This situation triggers an inconsis-
tency in the KB, for which we have the following
justifications:

hasTemp(AliceRoom, 28.0 f)2012-12-12T12:00:00Z
hasTemp(AliceRoom, 13.0 f)2012-12-12T12:30:00Z
CoolRoom ≡ Room ⊓ =1 hasTemp ⊓
hasTemp.float[≤ 15.0]
HotRoom ≡ Room ⊓ =1 hasTemp ⊓
hasTemp.float[≥ 25.0]
CoolRoom ⊑ ¬HotRoom

There is a clear distinction between three groups
of assertions and axioms that we rely on in our
approach: the fixed terminological axioms (the T-
Box axioms) denoted as A, the contextual asser-
tions C and the inferred statements I, such that
K = A ∪ C ∪ I. Our algorithm is doing two main
operations:

– First, it selects assertions that should be dis-
carded because they are sources of inconsis-
tencies. This is done by considering all the
justifications of the axiom⊤ ⊑ ⊥ in T∪C∪{α}.
Note that all such justifications necessarily
contain α, as we assume that we start from
a consistent K, and we exclude the inferred
statements because the ones that could pro-
voke an inconsistency are removed by the
second phase. The choice of the assertion
for each justification is based on the context
marker associated with all assertions. More
precisely, for a justification J, we choose an
assertion ηcmin

∈ J such that cmin = min (κ ∈
C | ∃βκ ∈ J). βκ is an occurrence of β in context

C. Gravier et al. / Consistent evolution of materialised axioms. . . 7

κ ∈ C (just like αc was an occurence of α in
context c earlier in this paper).

– Meanwhile, the assertions that are marked
for deletion could have produced other as-
sertions by way of inference materialisation.
Since the deleted assertions are obsolete, so
must be all the inferences drawn from them.
Consequently, all assertions supported by as-
sertions marked for deletion must also be
marked for deletion. In this phase, only the
inferred statements of I can be affected.

3.3. Algorithm

In order to keep track of what assertion sup-
ports an inferred one, we rely again on justifica-
tions. Note, too, that min is the minimal value ac-
cording to the order on C as defined in Section 3.1.
If the order is not

total, there may be several minimal elements, in
which case we do not specify how to choose cmin .
Nonetheless, we identified three possible strate-
gies:

– choose randomly one minimal element to dis-
card;

– discard all minimal elements;
– use extra metadata to make the choice of cmin

deterministic.

In any case, our reference scenario uses tempo-
ral instants that are totally ordered chronologi-
cally. Moreover, we also assumed in our motiva-
tions that the terminological axioms are fixed and
should not be removed. This can be reflected by
having a special context marker attached to T-Box
axioms that is a top element of C.

In order to make concrete the algorithm infor-
mally presented in the previous section, we heav-
ily rely on justifications. In fact, for all axioms and
assertions in the KB, we compute their sets of jus-
tifications, keeping and exploiting only those that
have a contextual assertion. This way, it is always
possible to know the axioms and assertions that
support a given statement, and the axioms and
assertions that are supported by it.

To keep this section self-contained, we remind
that the KB K has three distinct subsets A, C
and I (fixed terminological axioms, contextual as-
sertions and inferred statements), such that K =
A ∪ C ∪ I and A ∪ C |= I. For ease of notations, we

provide the following definition that we use later
on:

Definition 3 (Supersede). Given an incoming as-
sertion α and a justification J of the inconsistency of
A ∪ C ∪ {α}, we say that α supersede an assertion ηc

with context marker c if and only if c = min (κ ∈ C |
∃βκ ∈ J). As a corollary, an obsolete axiom ηc marked
with context marker c as an axiom being superseded by
α, α ∈ A ∪ C.

Note that in the scenario we are considering,
the concept marker is a time instant, so the super-
seded assertion is the one with the oldest time in-
stant among the assertions justifying an inconsis-
tency. We can nonetheless consider that the con-
text marker ordering function can be user-defined,
without modifying the genericity of our approach.
For instance, other context marker include accu-
racy, trustworthiness, and other information of
provenance information or correlation with other
context information. The only requirement is to
provide a totally ordered function for all context
markers. In a nutshell, the algorithm can be pre-
sented as follows:

1. Add the new (contextual) assertion α to C.
2. Compute the sets of justifications for incon-

sistency of A ∪ C, noted J⊥.
3. Build the sets of justifications J̃η of η with

respect to A ∪ C for each assertion η.
4. Start with an empty set of visited assertions.
5. For each justification J ∈ J⊥ do:

(a) for each assertion η ∈ J that α super-
sedes:

– mark η as obsolete;
– for all assertions κ that have justifica-

tions containing η do:

∗ if all justifications inJκ contain an ob-
solete assertion, mark κ as obsolete.

(b) mark η as visited by the update algo-
rithm.

6. Remove the obsolete assertions from K that
were discovered by the update algorithm.

More formally this approach is provided as
pseudo-code at Algorithm 1.

We explain the condition at Line 10: a fact β
in the KB can only become obsolete if all of its
justifications J ∈ Jβ contain an obsolete fact γ.

8 C. Gravier et al. / Consistent evolution of materialised axioms. . .

input : A KB K and an incoming assertion
αc with context marker c

output: A revised consistent KB K+

including αc if possible, K
otherwise.

1 begin
2 K+ ← K ∪ {αc}

3 Obsolete← ∅
4 Visited← ∅
5 J⊥ = {J ⊆ K+ | J |= ⊤ ⊑ ⊥ ∧ ∀J′ ⊂ J, J 6|=

⊤ ⊑ ⊥}

6 for J ∈ J⊥ do
7 for ηd ∈ J and ηd < Visited and αc

supersedes ηd do
8 Obsolete← Obsolete ∪ {ηd}

9 for β ∈ K+ and β < Obsolete do
10 if ∀J ∈ Jβ,∃γ ∈ Jβ, γ ∈

Obsolete then
11 Obsolete← Obsolete ∪ {β}
12 end

13 end

14 end
15 Visited← Visited ∪ {ηd}

16 end
17 return K+ \Obsolete
18 end

Algorithm 1: Revision, a justification-
based A−Box update algorithm. The algo-
rithm returns K+, the minimally revised
and consistent knowledge based after con-
sidering a new assertion αc.

Otherwise, it means that the fact is also supported
by other information that are not obsolete, and
therefore the fact should remain.

3.4. Claims and proofs about the update algorithm

In this section, we show that the algorithm is
returning, as expected, a consistent ontology. We
also show that, if some simple constraints are ful-
filled, the algorithm behave as a belief revision
algorithm. That is, given these constraints, an in-
coming assertion will be systematically included
in the revised KB.

Theorem 1 (Total Correctness). Algorithm 1 termi-
nates and returns a consistent KB.

Proof. The termination of the algorithm is triv-
ial since it iterates over finite sets. In the worst
case, all assertions and axioms are visited, but the
search eventually ends. The consistency of the re-
turned KB is based on the fact that, if we remove
one assertion or axiom from each justification, the
resulting KB is necessarily consistent. The only is-
sue that we have is that we do not allow our algo-
rithm to remove axioms of the fixed ontology. So,
for each justification, there must exist an assertion
ηd that the incoming assertion αc supersedes. For
this to be possible, there must exist d ≤ c in the
context markers of the assertions in the justifica-
tion. But we have assumed that the KB K, prior
to the insertion of αc, is consistent. So in any case,
the justifications of inconsistency always contain
the assertion αc. Therefore, if no other assertion
exist in the justification, then at least αc itself can
be chosen as the superseded assertion. �

The possibility that an incoming assertion be
rejected distinguishes our algorithm from a true
belief revision mechanism. This can happen ei-
ther if the context marker of the incoming asser-
tion is lower than all the markers of other asser-
tions involved in the inconsistency justification;
or it can happen if the assertion is contradicting
some of the ontology axioms. In the latter case, the
new assertion is contradicting the internal model
of the system and therefore should be eliminated.
An example of such case happens with the asser-
tion ex:x owl:differentFrom ex:x, which is in
itself a contradiction and should be rejected. How-
ever, the following theorem shows that in rela-
tively common situations, the algorithm behaves
as expected.

Theorem 2. If the following hold:

1. the fixed ontology A is a Description Logic ontol-
ogy;

2. A only contains TBox axioms (by definitions);
3. the axioms in A do not contain nominals 5 or

literal values (like integers, strings, etc.)”;
4. all classes and properties are satisfiable 6;

5A nominal is a class that is completely defined by its list of
instances. It is usually written {a1, . . . , an} in description logics
syntax and means “the class that only contains the elements
a1, . . . , an.

6A class is satisfiable if it can have at least an instance (i.e., it
is not necessarily empty). A property is satisfiable is there can
be two elements in relationship with this property.

C. Gravier et al. / Consistent evolution of materialised axioms. . . 9

5. the context marker of the incoming assertion is
higher (with respect to the order on contexts) than
all the markers in the current KB;

then Algorithm 1 returns a KB that contains the in-
coming assertion.

Proof. Let us consider the case where the assertion
is of the form C(a), and that the ontology is ful-
filling the constraints given above. Since C(a) has
the highest context marker, it can only be rejected
from the KB if it is the only assertion in a justifi-
cation. Therefore, it would mean that C(a) contra-
dicts a subset of the ontology. But we have indi-
cated that the ontology does not use nominals, so
the symbol a never appears in the ontology. For
this reason, from a logical perspective, the symbol
a could be replaced by any symbol not occurring
in the ontology without significantly changing the
meaning of the statement. As a result, the instance
a in the incoming assertion is in fact playing the
same role as an existentially quantified variable
that would have been skolemised, i.e., it indicates
that, in the justification, there exists some instance
of class C. But by Item 4, this existence is guaran-
teed in all cases. Therefore, the assertion cannot
contradict the ontology. �

Note that the constraint in Item 3 could be re-
laxed by saying that the instances appearing in the
ontology are disjoint from the ones involved in
the incoming assertions. Other sets of constraints
could be devised for specific settings that would
allow the same property to hold.

4. Evaluation

We shortly present our experimental setting be-
fore showing the results of our performance anal-
ysis and discuss about it.

4.1. Implementation

We have implemented this algorithm using
the ontology of the reference scenario exposed
in Section 2. In the implementation of the ref-
erence use case of this paper, context changes
are synthetised by producing A−Box assertions
that conform to the ontology we have intro-
duced. Initially, Alice’s room has a tempera-
ture of 26.0◦C, corresponding to the assertion

hasTemp(AliceRoom, 26.0 f). The reasoner classi-
fies AliceRoom as a HotRoom, and its windows are
opened. The two following assertions are there-
fore materialised: HotRoom(AliceRoom) and the as-
sertion isOpened(AliceRoomWindow, true). Then
a new assertion is added to the KB simulating
that the temperature of Alice’s room dropped
to 14◦C at the next context sampling (there-
fore hasTemp(AliceRoom,14.0 f) is added). At that
stage, the reasoner’s KB does not pass the con-
sistency check. Our algorithm automatically trig-
gers and revises both the obsolete context asser-
tions and inferred knowledge from these, so that
the reasoner’s KB is updated to reach a consis-
tent state. This leads the machine to remove the
following assertions:

– HotRoom(AliceRoom)
– hasTemp(AliceRoom, 14.0 f)
– isOpened(AliceRoom, true)

The revised ontology proved to be consistent
against Pellet reasoner consistency checking.

4.2. How to reproduce the experiment

The ontology can be retrieved online 7, along
with the source code of our reference scenario run-
ning the algorithm 8. It is written in Java, using
OWL API version 3.1.0 and the Pellet Reasoner
from Clark & Parsia 9, in version 2.2.2.

4.3. Performance analysis

From Section 3.3, two major operations are sub-
ject of performance analysis:

– The computation of inconsistency (as pro-
vided by [18])

– The update of OWL assertions to preserve
consistency (including consistency check-
ing). We split this into two sub algorithms:

∗ the main algorithm of our OWL assertions
update process as described at Algorithm 1

7http://satin-ppl.telecom-st-etienne.fr/cgravier/

jaise/cagc-test-jaise.owl
8http://satin-ppl.telecom-st-etienne.fr/cgravier/

jaise/CACGExample.java
9http://clarkparsia.com/

10 C. Gravier et al. / Consistent evolution of materialised axioms. . .

∗ the subroutine that recursively finds all ob-
solete OWL individuals because they are
directly or indirectly supported by the new
assertion that causes a clash.

We ran all our experiments on a laptop equipped
with a 2.4 GHz Intel Core 2 Duo processor and
4 Gb of DDR2 SDRAM.

The use case provided in Section 4.1 took 907 ms
(in average over 50 runs) to execute the entire pro-
cess: loading the ontology in memory, perform-
ing a consistency check, adding a new assertion
that provokes a clash, checking consistency again,
which fails, and up to the update and recursive
algorithm provided in this paper, and the final
consistency check of the revised ontology that is
successful.

The distribution among the algorithms is as fol-
lows: the computation of inconsistency took 5 ms
(0.5 % of total execution time), the update algo-
rithm took 831 ms (91.6 %).

In order to get a proper idea of each of the three
major algorithms performance and time of execu-
tion depending on the number of assertions in the
ontology, we decided to set a performance anal-
ysis based on the number of OWL assertions in
both A−Box and T−Box. We implemented a gen-
erator that expands the OWL ontology provided
by the use case supporting this paper. The gener-
ator increase the number of elements in the A-Box
(”Individuals” axix in Figure 3) and on the T-Box
(”Concept” axis on the 3). For each possible num-
ber of elements in A-Box and T-Box between 0
and 200, we ran our experiment when provoking
a conflict (hence 4,000 runs). For these numbers,
the algorithm exhibits an interesting linear com-
plexity. We have not tested for higher values as we
want to address lightweight ontologies, especially
when embeded within agents (Figure 1).

4.4. Discussion and further improvement

The higher expressiveness that OWL offers over
RDFS allows one to express much richer represen-
tations of situations, environments and contexts,
both digital and physical [30]. However, it comes
at a computational cost that calls for trade-offs
when using OWL in pervasive computing or un-
der other dynamic conditions. While the current
trend in Semantic Web ontology engineering is to
keep ontologies as simple as possible [28], there

Fig. 3. Computation time for different A−Box and T−Box size

are circumstances under which it is necessarily—
or at least desirable—to have soundness, com-
pleteness and expressiveness at the same time.

Such an approach is not meant to support large
scale ontologies 10. Instead, it fits smaller KBs, as
in a multi-agent distributed environments, where
each agent holds a reasonable KB size. The com-
mon approach is to build peer-to-peer infras-
tructure enriched with simple distributed ontolo-
gies in order to guarantee good computational
properties (as in [29,3]). Moreover, would real-
time justification-based updates be unaccessible
for now for medium to large ontologies, it is still
able to address such cases asynchronously as the
algorithm terminates (cf. Proof 3.4).

Furthermore, while we assume the fixed on-
tology to be rather small, it can still generate a
large amount of assertional facts, as a result of
materialisation. Therefore, strategies based on re-
evaluation from scratch may not be as powerful
in practice, as it breaks the whole purpose of pre-
computing inferences for quick responses.

Our algorithm does not specify how to compute
the justifications and we simply reused an exist-
ing implementation for OWL DL ontologies. This
means that consistency has to be checked each
time a new assertion is made, in additional to all
the reasoning for materialisation. We could cou-
ple consistency checking with inference material-
isation to significantly speed up the process.

10Yet recent research show that given some theoretical guar-
antees on the characteristics of ontologies, it may be possible
to offer both scalability and expressiveness [19]

C. Gravier et al. / Consistent evolution of materialised axioms. . . 11

We also notice that we do not yet have a min-
imal contraction of the knowledge base. This is
due to the strategy we apply for choosing which
assertion to remove. As we iterate through the jus-
tifications for inconsistencies, we may mark for
deletion an assertion that also appear in a different
justification. In the latter justification, a different
assertion could be marked for deletion, because
there can be an older context attached to it. This
happened very little in our experiments, but we
will investigate solutions to this issue.

5. Related Works

Our proposed solution is guided by pragmatic
requirements that bring together many research
fields, in particular belief revision and paraconsis-
tent reasoning, Semantic Web data store and rea-
soner implementation, inference justifications. To
the best of our knowledge, no existing proposal
addresses the problem as described at Section .
Nonetheless, similar problems were addressed in
different fields. These fields are belief revision, Se-
mantic Web query Languages, triplestore imple-
mentations, and defeasible reasoning. In this Sec-
tion we discuss what were these propositions, and
how they fall short in completely addressing our
problem.

First of all, our approach implements a mech-
anism that is strongly based on the general prin-
ciples of belief revision in [26,1]. We nonetheless
diverge a bit from the original postulates of belief
revision, as we will describe in Section 3. The pos-
tulates of a revision operation + are the follow-
ing: 11

Closure K + φ = Cn(K + φ)
Success φ ∈ K + φ
Inclusion K + φ ⊆ K ∪ {φ}
Vacuity if ¬φ < K, then K + φ = K ∪ {φ}
Consistency K + φ is consistent if φ is consistent
Extensionality if φ⇔ ψ, then K + φ = K + ψ

In the foundational definition of [1], K is as-
sumed to be a closed belief set, but this assump-
tion has been criticised from a conceptual and
technical point of view. In this paper, we are more

11In the postulates, K identifies a belief set, i.e., a set of closed
logical formulas, φ and ψ are formulas, and Cn is the closure
operation.

interested in belief base revision rather than belief
set revision. Belief bases are finite sets of formu-
las and therefore, the first postulate of belief revi-
sion does not hold for belief bases. Vacuity has to
be changed to “if K 6|= ¬φ, thenK + φ = K ∪ {φ}”.
In our paper, we are using a weaker notion of
the success postulate, that [16] call relative success,
namely, “φ ∈ K + φ or K + φ = K”.

In [22], it has been shown that belief revision
can be reduced to the notion of circumscription,
introduced in [24]. This way, they prove that algo-
rithm for circumscription can be used to achieve
belief revision. Circumscription is formalising the
fact that “everything should be as expected unless
stated otherwise”. In that sense, it defines a for-
malism similar to default logic. Previous attempts
to introduce the notion of circumscription in OWL
[13] were made but there is no support for this
kind of formalism in today’s state of the art OWL
engines.

Adding statements and maintaining consis-
tency by retracting other statements may be done
using the standard Semantic Web query language
SPARQL with its update feature [12]. However,
this standard alone can only ensure that specif-
ically chosen statements are removed from the
database, which does not guarantee by itself that
other inferred statements do not generate incon-
sistencies. Even with SPARQL Update, it is still
necessary to keep track of the statements that must
be retracted.

Existing triple store implementations do not
have built-in features for maintaining consistency.
The only triple stores that match our motivat-
ing scenario are those that materialise inferred
triples from given ones, like AllegroGraph 12 or
OWLIM 13. In these stores, inferred statements are
separated from other statements, such that if a
modification occurs, especially with a DELETE
query, the inferred statements can be recom-
puted from the explicit statements. However,
those triple stores are simply regenerating all the
inferences from the new dataset, while they could
only remove the statements that are not any-
more supported by the deleted statements. Un-
der the non-monotonicity paradigm, different ap-
proaches tried to address the update of knowl-

12http://www.franz.com/agraph/allegrograph/
13http://www.ontotext.com/owlim

12 C. Gravier et al. / Consistent evolution of materialised axioms. . .

edge in DLs (defeasible reasoning). Among the ex-
isting works in this field, we have come to classify
them into two classes. The first category promote
a strategy where some knowledge has the priority
over other, such that to avoid inconsistencies. The
second class of approaches tracks changes inside
the reasoner to maintain its state.

The first class includes defeasible rules and
defeasible reasoning, such as in [2,14]. Espe-
cially, [14] introduces an annotation approach for
prioritising rules, in order to prevent contradic-
tion clashes. All these approaches are based on
the strategy to prioritise some selected knowledge
over other pieces of knowledge, either by order-
ing the statements by introducing an overriding
mechanism for rules. Another kind of similar ap-
proach is paraconsistent reasoning, which aims at
reasoning in presence of inconsistency [23].

A globally different strategy was employed by
algorithms that maintain the internal state of DL
reasoners. The commonly implemented strategy
is to keep trace in a graph of the precedence
(and succedence) relationships between axioms
for each incremental inference. Upon update, the
graph is pruned starting from the node repre-
senting the axiom that became obsolete [26,15].
These works follow the associated proposals in
DLs from [31] (dependency direct backtracking),
and [8] (data dependency network management).
Unfortunately, the few implementations in a OWL
DL reasoner do not cope with inconsistency that
may occur when expanding or contracting the
KB [15]. Moreover, all these works serve the pur-
pose of maintaining the in-memory model of the
reasoner, rather than keeping the consistency of a
queryable knowledge base.

Finally, we mention the work on justification as
it is part of the core of our proposed algorithm. A
justification of a logical formula with respect to a
KB is a minimal subset of the KB that entails the
formula. Justifications have been studied and im-
plemented for Semantic Web languages, and are
mainly used to debug ontologies (e.g., in the Pro-
tégé 4 ontology editor). However, justificactions
can have various other applications as we show
in Section 3.

6. Conclusion

The dynamics of semantic web applications or
semantic-web-based systems, together with the

need for reactivity, offer a challenge to SCASs that
are based on ontologies and rules. With our pro-
posed approach, we expect to address the dynam-
ics with an update and revision mechanism that
takes care of inconsistencies, while keeping a fair
level of reactivity with a materialisation process.
We assume that an open environment with unpre-
dictable inputs such as a sensor network or social
platform needs a system that tolerates any gen-
erated facts that do not contradict foundational
knowledge and common rules. Yet, it must be able
to provoke inconsistencies by setting precise and
expressive rules and axioms in a well defined on-
tology.

This goes against a more traditional approach
where a specific business logic is applied in or-
der to programme what can be updated and how
it can be updated. The drawbacks of those ap-
proaches are the lack of flexibility, durability and
the difficulty to interoperate in a distributed, open
environment.

In this paper, we presented an automatic ap-
proach to deal with conflicting OWL individu-
als updates. These operations are transparent for
the context-aware system developer. We used jus-
tifications of a consistency check clash in order
to automatise the process of minimising the KB
contraction that occur due to the need to main-
tain its consistency. The proposed algorithm may
go as far as revising the context KB in order to
maintain its consistency. This approach had been
implemented using Pellet reasoner and the OWL
API.

Still issues arise, such as the optimisation of the
algorithm, its distribution over several software
agents and how to merge provenance models and
update justifications in order to customise OWL
individual updates strategies developed by dif-
ferent semantic-empowered software agents.

Acknowledgments

This work was supported by Conseil Général
de la Loire and by the project OpenCloudware
(http://opencloudware.org), which is funded
by the French Fonds national pour la Société
Numérique (FSN), and is supported by Pôles Mi-
nalogic, Systematic and SCS. The authors also
want to thank the reviewers for their careful read-
ing of the paper and their helpful comments.

C. Gravier et al. / Consistent evolution of materialised axioms. . . 13

References

[1] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the
logic of theory change: Partial meet contraction and revi-
sion functions. Journal of symbolic logic, 50:510—530, Jan
1985.

[2] G. Antoniou and A. Bikakis. DR-Prolog: A system for
defeasible reasoning with rules and ontologies on the se-
mantic web. IEEE Transactions on Knowledge and Data En-
gineering, 19(2):233–245, Jan 2006.

[3] F. Baader, C. Lutz, and A.-Y. Turhan. Small is again
beautiful in description logics. KI-Künstliche Intelligenz,
24(1):25–33, Jan 2010.

[4] J. Baumeister and D. Seipel. Anomalies in ontologies with
rules. Web Semantics: Science, Services and Agents on the
World Wide Web, 8(1):55–68, 2010.

[5] Y.-G. Billet, C. Gravier, and J. Fayolle. Context-awareness
for Next-Generation Applications Servers. MRC, CON-
TEXT’11, 26th-30th September, Karlsruhe, Germany, 2011.

[6] Y.-G. Billet, C. Gravier, and J. Fayolle. Swrl-based context
awareness for application servers hosting digital services.
In Rule-Based Modeling and Computing on the Semantic Web,
pages 222–229. Springer Berlin Heidelberg, 2011.

[7] Y.-G. Billet, C. Gravier, and J. Fayolle. SWRL-based con-
text awareness for application servers hosting digital ser-
vices. RuleML 2011-America, 3rd-5th November 2011, Fort
Lauderdale, Florida, USA, 2011.

[8] E. Charniak, C. Riesbeck, D. McDermott, and J. Mee-
han. Artificial intelligence programming. Hillsdale NJ:
Lawrence Erlbaum Associates, Jan 1980.

[9] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Con-
cepts and Abstract Syntax, W3C Recommendation 25
February 2014. W3C Recommendation, Feb. 25 2014.

[10] S. Dourlens, A. Ramdane-Cherif, and E. Monacelli. Tan-
gible ambient intelligence with semantic agents in daily
activities. Journal of Ambient Intelligence and Smart Envi-
ronments, 5(4):351–368, 2013.

[11] I. H. et al. SWRL: A Semantic Web Rule Language - Com-
bining OWL and RuleML. W3C member submission,
May 21 2004.

[12] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Up-
date - W3C Working Draft. W3C Working Draft, Jan. 5
2012.

[13] S. Grimm and P. Hitzler. Defeasible Inference with Cir-
cumscribed OWL Ontologies. Workshop on Advancing Rea-
soning on the Web: Scalability and Commonsense, 2008.

[14] B. Grosof, M. Dean, and M. Kife. The SILK System:
Scalable Higher-Order Defeasible Rules. RuleML, LNCS,
Springer, Heidelberg, 5858, Jan 2009.

[15] C. Halashek-Wiener, B. Parsia, and E. Sirin. Descrip-
tion logic reasoning with syntactic updates. 5th Int’l
Conf. on Ontologies, Databases, and Applications of Semantics
(ODBASE 2006), LNCS, Berlin, Heidelberg: Springer-Verlag,
4275(722-737), Jan 2006.

[16] S. O. Hansson, E. L. Fermé, J. Cantwell, and M. A. Falappa.
Credibility limited revision. J. Symb. Log., 66(4):1581–
1596, 2001.

[17] S. Harris and A. Seaborne. SPARQL 1.1 Query Language,
W3C Recommendation 21 March 2013. W3C Recommen-
dation, Mar. 21 2013.

[18] M. Horridge, B. Parsia, and U. Sattler. Laconic and pre-
cise justifications in OWL. ISWC 2008, LNCS, Springer,
5318:323–338, Jan 2008.

[19] I. Horrocks. Semantics ⊓ scalability |= ⊥? Journal of Zhe-
jiang University - Science C, 13(4):241–244, 2012.

[20] I. Horrocks, P. F. Patel-Schneider, and S. Bechhofer. OWL
rules: A proposal and prototype implementation. Web
Semantics: Science and Services and Agents on the World Wide
Web, Elsevier Ed., 3(1):23—40, Jan 2005.

[21] A. Kalyanpur, B. Parsia, and E. Sirin. Debugging unsatis-
fiable classes in OWL ontologies. Web Semantics: Science
and Services and Agents on the World Wide Web, Elsevier Ed.,
3(4):268–293, Jan 2005.

[22] P. Liberatore and M. Schaerf. Reducing belief revision
to circumscription (and vice versa). Artificial intelligence,
93:261—296, Jan 1997.

[23] Y. Ma, H. Hitzler, and L. Zuoquan. Paraconsistent Rea-
soning for Expressive and Tractable Description Logics.
Franz Baader, Carsten Lutz, Boris Motik, Proceedings of the
21st International Workshop on Description Logics, DL2008,
Dresden, Germany, May 2008. CEUR Workshop, 353, 2008.

[24] J. McCarthy. Circumscription–a form of non-monotonic
reasoning. Artificial intelligence, 13:27—39, Jan 1980.

[25] D. L. McGuinness and F. van Harmelen. OWL Web On-
tology Language Overview W3C Recommendation 10
February 2004. W3C Recommendation, Feb. 10 2004.

[26] B. Nebel. Reasoning and revision in hybrid representation
systems. LNAI, Springer-Verlag, Heidelberg, 422(1-6), Jan
1990.

[27] M. J. O’Connor, H. Knublauch, S. Tu, B. Grosof, M. Dean,
W. Grosso, and M. Musen. Supporting rule system inter-
operability on the semantic web with SWRL. ISWC’05,
LNCS, Springer, 3729:974–986, Jan 2005.

[28] D. Preuveneers and P. Novais. A survey of software en-
gineering best practices for the development of smart ap-
plications in ambient intelligence. Journal of Ambient Intel-
ligence and Smart Environments, 4(3):149–162, Aug. 2012.

[29] M.-C. Rousset. Small can be beautiful in the semantic
web. ISWC 2004, Jan 2004.

[30] T. Springer and A.-Y. Turhan. Employing description log-
ics in ambient intelligence for modeling and reasoning
about complex situations. Journal of Ambient Intelligence
and Smart Environments, 1(3):235–259, Aug. 2009.

[31] R. M. Stallman and G. J. Sussman. Forward reason-
ing and dependency-directed backtracking in a system
for computer-aided circuit analysis. Artificial intelligence,
pages 135—196, Jan 1977.

[32] H. J. ter Horst and A. Sinitsyn. Structuring reasoning for
interpretation of sensor data in home-based health and
well-being monitoring applications. Journal of Ambient
Intelligence and Smart Environments, 4(5):461–476, 2012.

[33] W3C OWL Working Group. OWL 2 Web Ontology Lan-
guage Document Overview (Second Edition), W3C Rec-
ommendation 11 December 2012. W3C Recommenda-
tion, Dec. 11 2012.

[34] A. Zimmermann, N. Lopes, A. Polleres, and U. Strac-
cia. A general framework for representing, reasoning and
querying with annotated Semantic Web data. Web Seman-
tics: Science, Services and Agents on the World Wide Web,
11:72–95, 2012.

