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Abstract

In this article is studied the identifiability of the age-dependent mortality rate of the

Von Foerster-Mc Kendrick model, from the observation of a given age group of the popula-

tion. In the case where there is no renewal for the population, translated by an additional

homogeneous boundary condition to the Von Foerster equation, we give a necessary and

sufficient condition on the initial density that ensures the mortality rate identifiability. In

the inhomogeneous case, modeled by a non local boundary condition, we make explicit

a sufficicent condition for the identifiability property, and give a condition for which the

identifiability problem is ill-posed. We illustrate this latter case with numercial simula-

tions.
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1 Introduction

When studying a mathematical problem that is modeling realistic and observed phenomena,

an important issue is to check if the model satisfies a parameter identifiability property, i.e.

whether the unknown parameters involving in the model can be uniquely determined from the

observation and sometimes from the initial condition and an input of the model. This property,

called parameter identifiability problem, is an inverse problem that consists to check if the pa-

rameter to output map of the model is into, initial condition and input being known. The main

goal of this article is to study a parameter identifiability problem in the context of a classical

age-structured population dynamics model, the McKendrick-Von Foerster model. This latter

describes the evolution in time of a population structured according to the age of the individ-

uals, leading to a problem formulated by a linear partial differential equation of transport type

with a non local boundary condition. This model is classically used to describe population

dynamics [13] or also in epidemiology, where the age variable represents the age of infection

[4]. In this article, we wonder whether the observation of an age group of the population may

recover the uniqueness of a fundamental population dynamics parameter, the mortality rate.
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To our knowledge, the identifiability analysis of the mortality rate in such a model has never

been considered before. The main difficulties here are inherent of the age-dependence of the

mortality rate and of the boundary condition stated by a non local loopback on the state of the

system.

There is a well-established theory for the parameter identifiability of controlled and uncon-

trolled dynamical systems described by ordinary differential equations [2, 23, 24]. Three main

approaches have been used: (i) the state isomorphism method [3, 22]; (ii) the Taylor series

expansion method [18]; (iii) the algebro-differential elimination method [11, 12, 20, 19], aim-

ing at obtaining and exploiting algebro-differential relations between the input and output of

the system. In infinite dimension, identifiability results exist for fairly general classes of linear

problems. Results concerning convolutive systems, which include the delay-differential equa-

tions, can be found in [1, 15, 26]. Identifiability results derived from the use of spectral theory

are given in [14] for the 1-D heat and wave equations with boundary observations as well as for

abstract homogeneous evolution equations with whole state observation. Results on various

classes of linear models with pointwise observation where obtained using Carleman estimates,

for instance for a non-stationary particle transport equation (see [10] and references therein).

In the nonlinear case there are only few results dealing with transport equations using algebro-

differential approach in inifite dimension [16] or parabolic equations using either Carleman

estimates [5, 8, 9] or when the observation is the state of the system [6].

This article is structured as follows. Section 2 is dedicated to the statements of the parame-

ter identifiability problem, where an abstract formulation is performed in the linear case. Then

we illustrate throughout the Malthus model how the nature of the observation may affect the

identifiability problem. Section 3 contains the mortality rate identifiability analysis of the Von

Foerster-McKendrick model. We introduce in section 3.1 this age-structured population model

and formulate the parameter identifiability problem in Section 3.2. The identifiability analysis

is split into two cases, the homogeneous case, with a null boundary condition, and the inho-

mogeneous case, with a non local boundary condition. Finally, we conclude with perspectives

in Section 4.

2 Statement of the identifiability problem

2.1 Theoretical framework

Throughout this paper, we use the following notations,

R+ = [0,+∞);

X ,Y are Banach spaces;

I dZ is the identity element of the set Z ;

L (X ,Y ), resp. L (X ), the space of linear operators with domain X and range in Y , resp.

X ;
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Consider the following first order linear dynamical system on X ,











du(t )

d t
= Au(t ),

u(0) = u0 ∈ X ,
(1)

where A : D(A) ⊂ X → X is a differential operator. Given a set P , an unknown parameter p ∈ P

involving in system (1) and an observation linked to the state u(t ) of the system, we consider

the model system Sp , reflecting the p-dependence in system (1), defined by

Sp :























du(t ; p)

d t
= Ap u(t ; p),

u(0) = u0 ∈ X ,

yp (t ) = Bu(t ; p),

(2)

where B ∈L (X ,Y ) is called the observation operator and function yp is the system output. In

all that follows, we suppose the following assumptions on model system Sp :

(i) The initial condition u0 is known.

(ii) The operator B is known.

(iii) The parameter p is unknown.

(iv) The operator Ap generates a strongly continuous semigroup of operators {Tp (t )}t≥0 of

L (X ).

Remark 1. From assumption (iv), it follows that system Sp has a unique solution in X given

by

u(t ) = Tp (t )u0, t ≥ 0,

and consequently the observation in Sp is given by yp (t ) = B Tp (t )u0 for every t ≥ 0. If the

context is clear, the p-dependence of the solution u(t ; p) of system Sp will be omitted.

From the given system (2), consider the system Sp̄ obtained by replacing p by p̄ in Sp with

p̄ satisfying assumption (iii) and Ap̄ satisfying assumption (iv). For J ⊂R+, the difference

ǫ(t ; (p, p̄)) = yp (t )− yp̄ (t ), t ∈ J , (3)

is called the output error linked to Sp and Sp̄ on J .

We now define the parameter identifiability problem.

Definition 2.1. The system Sp is said P-identifiable on J if for every p, p̄ ∈ P the condition

p = p̄ follows from the zero output error,

ǫ(t ; (p, p̄)) = 0 in Y , t ∈ J . (4)



A. Perasso, U. Razafison 4

When the equality (4) fails, we say that the parameter identifiability problem is ill-posed on

(P, J ), or simply ill-posed on J if the set P is certain.

The parameter identifiability problem as stated above consists in studying if the parameter

to output map of the problem is into. This study induces two equalities to work with, in one

hand an equality between parameters and in other hand between the system outputs. These

latter equalities require to determine the suitable functional spaces in which they are satisfied.

In particular, one can check that equality (4) is satisfied in the Banach space Y which is linked

to the space X through the relation y = Bu. As a consequence, performing a mathematical

analysis of the well posedness of the abstract Cauchy problem is a prerequisite in the study of

the parameter identifiability problem.

2.2 A short example: mortality rate identifiability in the Malthus model

In this section is studied an identifiability problem related to the mortality rate in the classical

population dynamics model of Malthus. We recall that this model is given by the following ODE

system,






du

d t
(t ) =βu(t )−µu(t ),

u(0) = u0 ∈R+,

(5)

where the quantity u(t ) denotes the population at time t ≥ 0, µ ≥ 0 is the mortality rate and

β≥ 0 the birth rate. We refer to [13] for the historic and a description of this model. The iden-

tifiability problem we are interested in consists in the determination of the uniqueness of pa-

rameters β and µ together from the observation either of the whole population or of the death

flow.

To achieve that goal, one can check that the notations of Section 2 rewrite the Banach space

X =R, the unknown parameter p =

(

β

µ

)

∈ P = (R∗
+)2 and the differential operator with domain

R as Ap = (β−µ)I dR. Finally, the model system Sp is linked to (5) with a given output yp and

an observation operator B ∈L (R) that are described below.

It is clear that the identifiability of the model system Sp depends on the nature of the ob-

servation. A biological intuition should make us believe that the observation of the whole pop-

ulation u(t ) at any time gives a lot of information on the parametrization of the model. The

following proposition shows the opposite.

Theorem 2.2. Suppose that the operator B : R→R is given by

1. B =µ.I dR, then the model system Sp is P-identifiable on every J ⊂R+.

2. B = I dR, then the parameter identifiability problem is ill-posed on R+;

Proof. To prove the point 2 of the theorem, we have to exhibit (at least) two different parameters

p, p̄ ∈ P such that ǫ(t ; (p, p̄)) is zero for every t ≥ 0. The integration of System (5) implies that

the operator (Ap ,R) is generator of the semigroup {Tp (t )}t≥0 on R defined by

Tp (t ) = e(β−µ)t , t ≥ 0. (6)
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Then for fixed (β,µ) ∈ P , the family of parameters {pλ} given by

pλ =

(

λβ

(λ−1)β+µ

)

,

satisfies for every λ,λ2 > max
(

0,
β−µ
β

)

,

pλ ∈ P,

ǫ(t ; (pλ, pλ2
)) = 0, t ≥ 0.

As a consequence, the parameter identifiability problem is ill-posed on R+.

We now prove the point 1 of Theorem 2.2. A direct consequence of the assumption (i) about

the initial data combined with the zero output error valued at t = 0 implies that µ = µ̄. Then

the semigroup expression given in (6) implies the identifiability on every observation period

J ⊂R+.

For the observation operator B = I dR, the output is the density u(t ) meaning that the ob-

servation consists of the total population whereas for B = µI dR, the observation is the death

flow. It is clear that one could either observe the birth flow, given by B =βI dR, and the result of

Theorem 2.2.1 would still hold. Theorem 2.2 states that the knowledge of the whole population

at any time is not a sufficient contribution to recover the uniqueness of parameters µ and β.

On the contrary, the observation of the death flow, respectively of the birth flow, is sufficient.

To conclude, Theorem 2.2 shows that the observation of a part of the population can be more

useful to determine some parameters than the observation of the entirety.

Remark 2. One can check that the knowledge of u0, stated by assumption (i) in Section 2, is

necessary to conclude the identifiability result. In other word, the model system is identifiable

under the condition that the state of the system has to be known for at least one time, what will

be supposed in all that follows.

3 Mortality rate identifiability in an age-structured population dy-

namics model

We start with several notations of functional spaces that will be used in all that follows.

L1(R+) is the set of Lebesgue integrable functions on R+;

L1
l oc

(R+) is the set of locally Lebesgue integrable functions on R+;

L∞(R+) is the set of Lebesgue measurable functions onR+ which are essentially bounded;

W 1,1(R+) = {ϕ ∈ L1(R+), ϕ′ ∈ L1(R+)};

and for any functional space Z of real valued functions, the subset Z+ ⊂ Z will denote the cone

of non negative functions of Z .
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3.1 An age structured population dynamics model

We consider a population density u(t , a) at time t ≥ 0 and age a ∈ [0, a†) where a† ∈ (0,+∞] is

the upper bound of lifespan. Such a population is described by the following classical problem

called Von Foerster-Mck Kendrick problem [13, 17],






























∂u(t , a)

∂t
+
∂u(t , a)

∂a
=−µ(a)u(t , a),

u(t ,0) =

∫a†

0
b(a)u(t , a) d a,

u(0) = u0,

(7)

with the assumptions

• µ ∈ L1
loc,+

(0, a†) and

∫a†

0
µ(a)d a =+∞;

• b ∈ L∞
+ (0, a†);

• u0 ∈W 1,1
+ (0, a†).

In this model, the total number of individuals at time t with age a between a1 and a2 is
∫a2

a1

u(t , a) d a.

Function µ represents an age-dependent mortality rate of the population. Assumptions made

on µ mean that mortality may occur at any age and all the individuals leave the population

before a finite age. As a consequence, the following quantity

π(a) = exp

(

−

∫a

0
µ(s)d s

)

, (8)

which satisfies π(0) = 1 and π(a†) = 0, represents the probability for an individual to survive at

age a ≥ 0. Since µ ∈ L1
loc

(0, a†), the probablity π is clearly a continuous function on [0, a†).

The non local boundary condition in (7), called renewal of the population, induces the birth

rate b which gives the repartition of birth for individuals with age a ∈ (0, a†). When b is zero

in L∞(0, a†), there is no renewal of the population. For more details concerning the biological

significance of the assumptions of the model, we refer to [7, 25].

We now make clear the functional framework to study the abstract Cauchy problem linked

to (7). To this goal, let us denote in all that follows X = L1(0, a†) and for b ∈ L∞
+ (0, a†) let Ab :

D(Ab) ⊂ X → X be the differential operator defined by

D(Ab) =

{

ϕ ∈W 1,1(0, a†), ϕ(0) =

∫a†

0
b(a)ϕ(a)d a

}

,

Ab : ϕ 7→ −ϕ′
−µϕ.

The abstract Cauchy Problem related to (7) is then










du(t )

d t
= Abu(t ),

u(0) = u0 ∈W 1,1(0, a†).
(9)

The following theorem is a classical result, see for instance [21, 25],
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Theorem 3.1. (Ab ,D(Ab)) is an infinitesimal generator of a strongly continuous semigroup

{T b(t )}t≥0 on X .

Theorem 3.1 has several consequences in the study of the Cauchy Problem (9), such as

existence and uniqueness of a non negative mild solution u ∈ C (R+, X ) of the problem, such

that (t , a) 7→ u(t , a) is continuous outside the maniflod a − t = 0. Moreover, this solution is

defined in a strong sense in case where u0 ∈ D(Ab).

3.2 The mortality rate identifiability problem

In this section is stated an identifiability problem related to system (9). For convenience, we

suppose that a† =+∞. It is easy (but tedious) to prove that all the identifiability results of Sub-

section 3.3 and 3.4 can be extended for a finite value of a†.

The parameter identifiability problem is the following: one wonders whether the observation

of an age group of the population helps to recover the uniqueness of the mortality rate µ on the

age domain R+, or at least on some subsets of the age domain. To study this parameter identifi-

ability problem, we make explicit the notations of Section 2 in the context of the age-structured

model (7), then we perform an abstract formulation of the identifiability problem.

In all that follows we denote, according to notations of Section 2, the set of unknown parame-

ters

P = L1
l oc,+(R+)

the observation operator B ∈L (X ) defined for 0 ≤ a⋆ < a⋆ ≤+∞ by

B : X → X , ϕ 7→ϕχ(a⋆,a⋆)

and the observation period

J = [0,T ], T > 0.

As stated by the notations above, the aim of the identifiability problem is to recover the unique-

ness of the mortality rate µ ∈ P from the observation of the population density of the age group

(a⋆, a⋆) ⊂ R+. Given µ, µ̄ ∈ P the dependence on parameter µ of any variable Φ is denoted Φµ,

and the output error related to µ, µ̄ is denoted ǫ(t ; (µ, µ̄)), accordingly to Section 2. Finally, Sµ is

the model system reflecting the dependence on the unknown parameter µ, as sated in equation

(2).

Remark 3.

1. The observation operator is defined from X to X . This is a particular case where the

functional space of the output is Y = X .

2. We can check that the divergence of the integral
∫+∞

0 µ=+∞ is not included in the def-

inition of the set of parameters P . Indeed, this assumption has to be considered for its

biological convenience more than as a technical need to the identifiability results.

Even if the identifiability problem is ill-posed on a time interval J , meaning the non unique-

ness of parameter µ in X , it may be possible to recover the uniqueness of an unknown param-

eter on some subsets of the age domain R+. To take this case under consideration, we now
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extend the definition of the parameter identifiability.

Let K ⊂ R+ be a compact subset such that |K | > 0 where | · | denotes the Lebesgue measure.

Then the application ‖ · ‖L1(K ) defines a semi-norm on L1
loc

(R+). Consider now the quotient

projection

θK : L1
loc (R+) → L1

loc (R+)/ker‖ ·‖L1(K )

This projection has the following sense: for a function f ∈ L1
loc

(R+), the equivalence class is

given by θK ( f ) = {g ∈ L1
l oc

(R+), f (a) = g (a) f.a.e a ∈ K }. From here, we have the following defi-

nition,

Definition 3.2. Let K ⊂ R+ a compact set. The model system Sµ is P/K -identifiable on J if for

every µ, µ̄ ∈ P the equality θK (µ) = θK (µ̄) follows from the zero output error

ǫ(t ; (µ, µ̄)) = 0, t ∈ J .

The latter definition, which allows to recover the uniqueness of the restriction of the un-

known parameter µ on some compact subsets of R+, will be frequently used in the sequel.

Taking into account Problem (7) we consider in all that follows the notations

A = {a ∈R+, u0(a) > 0}, a = infA ,

K ⋆
= [0, a⋆] and K⋆ = [0, a⋆],

A
⋆
=A ∩K ⋆ and A⋆ =A ∩K⋆.

The study of the mortality rate identifiability problem is split into two cases, the homogeneous

case, that describes a population without renewal, and the inhomogeneous case, that is a pop-

ulation subject to renewal.

3.3 Identifiability results in the homogeneous case

We suppose in this case that the population is not subject to renewal, meaning that the bound-

ary condition in (7) is homogeneous, translated by b = 0 in L∞(R+). In that case, a necessary

and sufficient condition on the initial density is given to ensure the uniqueness of the mortality

rate µ on K ⋆, the largest reachable compact subset of the age domain R+.

Lemma 3.3. Let T > a⋆ be arbitrary but fixed and K =A ⋆∪ [a⋆, a⋆]. If a = 0, then the model

system Sµ is P/K -identifiable on [0,T ].

Proof. Using the characteristics of the transport equation in (7), we check that the expression

of the semigroup {T 0
µ(t )}t≥0 generated by (A0,D(A0)) is given for every ϕ ∈ L1(R+) by

T 0
µ(t )ϕ(a) =

{

π(a)(π(a − t ))−1ϕ(a − t ) for t ≤ a,

0 for 0 ≤ a ≤ t .
(10)

A consequence is the following alternative expression for the output,

yµ(t ) = B T 0
µ(t )u0
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inducing that the output in model system Sp satisfies for (t , a) ∈ [0,T ]×R+

yµ(t , a + t ) = u0(a)π(a + t )(π(a))−1χ(a⋆,a⋆)(a + t ). (11)

Consider now two parameters µ, µ̄ ∈ P such that for t ∈ [0,T ] the following equality holds in

L1(R+),

ǫ(t ; (µ, µ̄)) = 0.

Using the expression (11) of the output we then have for every (t , a) ∈ [0,T ]×R+,

u0(a)
(

π(a + t )(π(a))−1
− π̄(a + t )(π̄(a))−1

)

χ(a⋆,a⋆)(a + t ) = 0, (12)

where π, resp. π̄, is a notation used for convenience instead of πµ, resp. πµ̄.

Performing the change of variables (t , a) 7→ (a + t , a) = (ξ, a) in the latter equation yields on

{(ξ, a) ∈ (a⋆, a⋆)×A , max(0,ξ−T ) ≤ a ≤ ξ},

π(a)(π̄(a))−1
=π(ξ)(π̄(ξ))−1. (13)

Since T > a⋆ and π, π̄ are continuous functions, equation (13) implies that there exists a con-

stant c(a) independent of a and ξ such that

π(a)(π̄(a))−1
= c(a), ∀a ∈A ⋆,

π(ξ)(π̄(ξ))−1
= c(a), ∀ξ ∈ [a⋆, a⋆].

If a = 0, then necessarily c(0) = 1 since π, π̄ are probabilities, which implies

π(a) = π̄(a), ∀a ∈ K ,

and consequently the model system Sµ is P/K -identifiable on [0,T ].

Theorem 3.4. Let T > a⋆ be arbitrary but fixed. Then the model system Sµ is P/K ⋆-identifiable

on [0,T ] if and only if A⋆ is a dense subset of K⋆.

Proof. If A⋆ is a dense subset of K⋆, then a = 0 and A ⋆∪ [a⋆, a⋆] = K ⋆, so the sufficient con-

dition is a direct consequence of Proposition 3.3.

We now aim at proving that the condition is necessary. To achieve that goal, we build two dif-

ferent parameters µ, µ̄ ∈ P/K ⋆ such that the zero output error stands in Y . If A⋆ is not dense in

K⋆, there exists a non empty interval U = (a−, a+) ⊂ K⋆\A⋆. Let us consider µ and µ̄ ∈ P such

that

(i) ‖µ− µ̄‖L1(U ) > 0,

(ii) π(a) = π̄(a), ∀a ∈R+\U .

where π, resp. π̄, is the probability to survive defined in (8) and linked to µ, resp. to µ̄. One can

check that condition (i) clearly implies that µ and µ̄ are two different parameters of P/K ⋆. In

order to reconstruct the outputs yµ(t ) and yµ̄(t ) over time, the difference yielded by (i) is offset

in (ii) by imposing that the probabilities to survive π and π̄ are the same outside U . One can

check that this also implies that µ(a) = µ̄(a) f.a.e. a ∈R+\U .
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For a fixed t ≥ 0, we now reconstruct the outputs yµ(t ) and yµ̄(t ) on some subsets of the age

domain R+, in order to prove that the output error is 0 in X . Due to (10), it is obvious to check

that

ǫ(t ; (µ, µ̄))χ(0,t ) = 0 in X .

We now prove that the zero value of the outpu is satisfied for a ∈ (t ,+∞). Suppose that a ≥ t ,

and consider the three following cases.

Case a ∈ [t +a+,+∞)

Then a− t ≥ a+ and a ≥ a+ so (ii) implies that π(a− t ) = π̄(a− t ) and π(a) = π̄(a). Equation (10)

then yields

u(t , a;µ) = u(t , a; µ̄). (14)

Case a ∈ [t +a−, t +a+]

Then a − t ∈U ⊂ K⋆\A⋆ so u0(a − t ) = 0 and (14) still holds.

Case a ∈ [a+, t +a−]

This latter case holds when t ≥ a+−a−. Then a − t ≤ a− and assumption (ii) implies that π(a −

t ) = π̄(a − t ). Moreover, since a ≥ a+ we also have π(a) = π̄(a). So equality (14) is satisfied.

To conclude the several cases, equality (14) is satisfied for a ∈ [t ,+∞)∩[min(a+, t+a−),+∞).

Finally, since U ⊂ K⋆, then either the observed age period satisfies (a⋆, a⋆)∩[t ,+∞) ⊂ [min(a+, t+

a−),+∞) or (a⋆, a⋆)∩ [t ,+∞) =; so one gets

ǫ(t ; (µ, µ̄))χ(t ,+∞) = 0 in X ,

which ends the proof.

Remark 4.

1. The result of Theorem 3.4 can be easily extended to the case where a⋆ = +∞, meaning

that every individual of the population with age larger than a⋆ is observed. In this par-

ticular case of observation, the model system is P-identifiable on [0,T ] if and only if A is

dense in R+.

2. In order to get the mortality rate identifiability, one could believe that it is necessary to

observe the population on an horizon time T larger than a⋆ the maximum age of obser-

vation. Theorem 3.4 shows that T > a⋆ is sufficient.

3.4 Identifiability results in the inhomogeneous case

We now suppose that the population is subject to reproduction, implying an inhomogeneous

boundary condition in (7) since b is not zero in L∞(R+). This section shows that the boundary

condition yields a fundamental perturbation in the study of the mortality rate identifiability

problem. Indeed, whereas the sufficient condition on the initial density u0 stated in Theorem

3.4 still holds to prove the identifiability result, a necessary condition on the initial density and

on the boundary condition via the birth function b is stated in Theorem 3.5. Moreover, to prove

that this necessary condition is not a sufficient one, we exhibit a subclass of parameters of P

that satisfy an identifiability property whereas u0 and b are such that the necessary condition

does not hold. This is done in Proposition 3.6.
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Extension of Theorem 3.4 in the inhomogeneous case

Theorem 3.5.

1. Let T > a⋆ be arbitrary but fixed. If A⋆ is dense in K⋆ then the model system Sµ is P/K ⋆-

identifiable on [0,T ].

2. If there exists an open set U ⊂ K⋆\A⋆ such that b(a) = 0 f.a.e a ∈ U , then the parameter

identifiability problem is ill-posed on [0,T ] for any T ≥ 0.

Proof. Contrary to homogeneous boundary condition case, where equation (10) gives an ex-

plicit expression of the semigroup {T 0(t )}t≥0, it is not possible to make explicit such an expres-

sion for {T b(t )}t≥0 when b is not zero in L∞(R+), which is due to the non local loopback bound-

ary condition in (7). However, a change of variables using the characteristics of the transport

equation proves that the state of the system u(t , a) satisfies the following implicit formulation

u(t , a) =

{

π(a)(π(a − t ))−1 u0(a − t ) for t ≤ a,

π(a)u(t −a,0) for 0 ≤ a ≤ t ,
(15)

that will be used in the following. From this expression, one can check that the proof of the

point 1. of Theorem 3.5 holds by the same arguments that ones developed to prove the suffi-

cient condition in Theorem 3.4.

So we now focus on the proof of the point 2 of the theorem. Without lack of generality, one can

suppose that U = (a−, a+) an open interval and consider two parameters µ, µ̄ ∈ P that satisfy

the assumptions (i)-(ii) as in the proof of Theorem 3.4. To prove that the output error is zero,

the main difficulty is to get the zero value for a ∈ (0, t ). Indeed, (15) implies that it is necessary

to reconstruct the boundary conditions u(t ,0;µ) and u(t ,0; µ̄) to reach that goal.

Equation (15) obviously implies, as in the proof of Theorem 3.4, the following zero value of

the output error,

ǫ(t ; (µ, µ̄))χ(t ,+∞) = 0 in X . (16)

Moreover, equation (15) implies that the difference between boundary conditions in (7) rewrites

for every t ≥ 0,

u(t ,0;µ)−u(t ,0, µ̄) =

∫t

0
b(a)

(

u(t −a,0;µ)π(a)−u(t −a,0; µ̄
)

π̄(a)) d a

+

∫+∞

t
b(a)

(

u(t , a,µ)−u(t , a; µ̄)
)

d a.

Let us prove that the latter integral in the equation above is zero. To achieve that goal, one can

check that equality (14) can be extended on [t ,+∞)∩ [0, a−]. Indeed, in case where a ∈ [0, a−]

one gets a − t ≤ a ≤ a− and assumption (ii) implies π(a − t ) = π̄(a − t ) and π(a) = π̄(a), so we

finally get

u(t , a;µ) = u(t , a; µ̄), ∀a ∈ [t ,+∞)∩Et , (17)

where Et = [0, a−]∪ [min(a+, t +a−),+∞). Then (17) yields

∫+∞

t
b(a)

(

u(t , a,µ)−u(t , a; µ̄)
)

χEt
(a) d a = 0, ∀t ≥ 0.
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Moreover, from the definition of Et one deduces that
⋃

t≥0

(R+\Et ) ⊂U , and since b(a) = 0 f.a.e. a ∈

U , one gets
∫+∞

t
b(a)

(

u(t , a,µ)−u(t , a; µ̄)
)

χR+\Et
(a) d a = 0, ∀t ≥ 0.

Consequently, the difference between boundary conditions satisfies

u(t ,0;µ)−u(t ,0, µ̄) =

∫t

0
b(a)

(

u(t −a,0;µ)π(a)−u(t −a,0; µ̄
)

π̄(a)) d a.

From here, since b(a) = 0 f.a.e. a ∈ U and π(a) = π̄(a) for every a ∈ R+\U consequently to

assumption (ii), a change of variables implies that the difference f (t ) = u(t ,0;µ)−u(t ,0, µ̄) is a

solution of the following Volterra integral equation

f (t ) =

∫t

0
b(t −a)π(t −a) f (a) d a, ∀t ≥ 0.

Since b ∈ L∞(R+) and π is a probability, such a function f satisfies

| f (t )| ≤ ‖b‖L∞

∫t

0
f (a) d a, ∀t ≥ 0,

and a standard Gronwall argument implies

| f (t )| ≤ f (0)e t‖b‖L∞ , ∀t ≥ 0. (18)

Moreover, the assumption (i) stated in Section 2 on the initial condition yields

f (0) =

∫+∞

0
b(a)

(

u0(a;µ)−u0(a; µ̄)
)

d a = 0,

and (18) finally gives

u(t ,0;µ)−u(t ,0, µ̄) = 0, ∀t ≥ 0. (19)

From here, since U ⊂ K⋆ the infimum a⋆ of the age range of observation satisfies a⋆ ≥ a+ and

one gets from assumption (ii) (proof of Th.3.4), π(a) = π̄(a) for a ∈ [a⋆, a⋆], so (19) combined

with (15) imply

ǫ(t ; (µ, µ̄))χ(0,t ) = 0 in X . (20)

Equations (16) and (20) together end the proof.

Illustration of the ill-posed case A consequence of Theorem 3.5.2 is that for a population

that is composed of juveniles and adults that is described by the age-structured model (7), it is

necessary to start the observation when birth occur to get the identifiability of mortality rate µ.

Let us illustrate that case by considering a population with the following characteristics:

(i) Population Density: u(t , a) with t ≥ 0 and a ∈ [0,1) ;

(ii) Population with juveniles: ∃a⋆ ∈ (0,1) such that b(a) = 0 f.a.e. a ∈ (0, a⋆) ;
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Figure 1: Mortality rate µ and perturbations µ̄αi
for i ∈ {1,2,3}.

(iii) Observation of adults: output yµ = u(t , ·)χ(a⋆,1) ;

(iv) No birth at the begining of the observation: there exists ǫ ∈ (0, a⋆] such that u0(a) = 0 for

every a ∈ [0,ǫ].

Hypotheses of Theorem 3.5.2 are satisfied with K := K⋆ = K ⋆ = [0, a⋆], A⋆ =; and U = (0, a⋆) ⊂

K \A⋆. This latter theorem then states that there exists different mortality rates of P that lead

to the same observations, or in other words that it is possible to find µ, µ̄ ∈ P such that θK (µ) 6=

θK (µ̄) but yµ = yµ̄. We therefore aim at building such different mortality rates leading to the

same observation.

Consider the mortality rate µ ∈ P given by

µ(x) = c

(

x

a⋆

χ[0,a⋆] +
1−a⋆

1−x
χ[a⋆,1)

)

, c > 0

To illustrate the ill-posed case, we build a parameter µ̄ ∈ P by performing some perturbations

of µ on K = [0, a⋆] such that θK (µ) 6= θK (µ̄) while yµ(t , a) = yµ̄(t , a) . In other word, we seek to

maximize µ̄ ∈ P 7→ ‖µ− µ̄‖L1(K ) under the constraint {π(a⋆) = π̄(a⋆)}. To reach that goal, let us

choose mortality rates as an affine perturbation on K of µ given for any α ∈ (0, a⋆

2
] by

µ̄α(x) =
cx

2α
χ[0,α] +

c

2
χ[α,a⋆−α] + c

( x −a⋆

2α
+1

)

χ[a⋆−α,a⋆] +µ(x)χ[a⋆,1). (21)

One can easily check that θK (µ̄α) = θK (µ) when α=
a⋆

2
and θK (µ̄α) 6= θK (µ) else. Figure 1 shows

the mortality rate µ and some perturbations µ̄α, where the numerical values are given below.

The simulations are made using an upwind scheme based on finite volume method with

the following numerical values:

• T = 3, a⋆ = 0.4, ǫ= 0.4, c = 4, αi =
a⋆

3i , i ∈N
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Figure 2: Distance Dui = ‖u(t ;µ)−u(t ; µ̄αi
)‖L1(0,1) for i ∈ {1,2,3}.

• u0(a) = (1−χ[0,a⋆])+100(a −a⋆)χ[a⋆,a⋆+0.1] +10χ[a⋆+0.1,1]

• b(a) = (1−χ[0,a⋆])+200(−a2 + (1+a⋆)x −a⋆)

As we could expect, these simulations illustrate well the ill-posed case. Indeed, whereas

Figure 2 shows that the L1-norms between u and ui are different, Figure 3 shows that, at final

time t = T , the ouptuts are superposed and consequently nondifferentiable at any age that is

observed, even if the densities u and ui are different before the age of observation a⋆ = 0.4.

Finally, Figure 4 shows that the superposition of the curves for ages upper a⋆ holds for any

time t ≤ T .

The sufficient condition in Theorem 3.5 is not necessary Contrary to Theorem 3.4 that states

in the homogeneous case a necessary and sufficient condition dealing with the initial density

to get identifiability, we can see in Theorem 3.5 that the loopback boundary condition yields

a fundamental perturbation in the study of the parameter identifiability problem. Indeed, the

following result shows that when dealing with a non homogeneous boundary condition, the

density of A⋆ in K⋆ is not a necessary condition to get identifiability on P .

Let us suppose that there exists an open interval (a−, a+) ⊂ K ⋆ such that

(a1) u0(a) = 0 and b(a) > 0 f.a.e. a ∈ (a−, a+)

(a2) u0(a) > 0 and b(a) = 0 f.a.e. a ∈R+\(a−, a+)

(a3) a+ ≤ 2a−

It is easy to check that such initial density u0 and birth rate b do not satisfy the assumption

of Theorem 3.5 since they do not vanish simultaneously.
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Figure 3: Age-structured densities u = u(T ;µ) and ui = u(T ; µ̄αi
), i ∈ {1,2,3}, at final time t = T .

Proposition 3.6. Suppose that there exists an open interval (a−, a+) such that (a1)-(a3) hold

and let T > a⋆+ a− be arbitrary but fixed. Then the model system Sµ is P/K ⋆-identifiable on

[0,T ].

Proof. Let T > a⋆+a− and consider µ, µ̄ ∈ P such that ǫ(t ; (µ, µ̄)) = 0 in X for t ∈ [0,T ].

To prove the identifiablity result, we aim at proving that the probabilities to survive satisfy

π(a) = π̄(a), ∀a ∈ [0, a⋆].

We recall that the population density u(t , a) satisfies the equality (15). Then for a ∈ (a⋆, a⋆) and

t ≤ a the zero value of the output error implies

u0(t )
(

π(a)(π(t ))−1
− π̄(a)(π̄(t ))−1

)

= 0.

From here, assumption (a2) givesπ(a)(π(t ))−1 = π̄(a)(π̄(t ))−1 on {(t , a) ∈ [0,T ]\(a−, a+)×(a⋆, a⋆), a ≥

t }, which is non empty since T > a−. A direct consequence of the continuity of the probability

functions π, π̄ is then

π(a) = π̄(a), ∀a ∈ [0, a−]∪ [min(a⋆, a+), a⋆]. (22)

If a⋆ ≤ a− then π= π̄ on K ⋆. Suppose now that a⋆ > a− and let us prove that π= π̄ on [a−, a+].

To prove this result, one can firstly check that the boundary conditions linked to µ and µ̄ are

identically on the horizon time [0,T −min(a⋆, a+)]. Indeed the zero value of the output error

and the characteristic expression (15) imply that for a ∈ (a⋆, a⋆) and t ≥ a,

π(a)u(t −a,0;µ) = π̄(a)u(t −a,0; µ̄),

and (22) then gives

u(t ,0;µ) = u(t ,0; µ̄), ∀t ∈ [0,T −min(a⋆, a+)].
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From the definition of the boundary condition in Problem (7) and assumption (a2) on b, the

latter equation yields

∫a+

a−

b(a)(u(t , a;µ)−u(t , a; µ̄)) d a = 0, ∀t ∈ [0,T −min(a⋆, a+)]. (23)

Since T −min(a⋆, a+) ≥ a− one can consider (23) for t ∈ [0, a−]. Then using the expression on

characteristics (15), equation (22) and assumption (a1) on u0 one gets the equality

∫min(t+a−,a+)

a−

b(a)u0(a − t )

π(a − t )
(π(a)− π̄(a)) d a = 0, ∀t ∈ [0, a−]. (24)

Consider now the set E = {a ∈ [a−, a+], π(x) = π̄(x) ∀x ≤ a}. The set E is clearly non empty

since a− ∈ E so one can consider a0 = maxE . Suppose by contradiction that a0 < a+. Then

there exists 0 < δ≤ a+−a0 such that π(a)− π̄(a) 6= 0 for every a ∈ (a0, a0 +δ).

Consider a fixed t ∈ (a0−a−,δ+a0−a−). Then we have t+a− ≤ a+. Moreover, from assumption

(a3) we have δ+a0 −a− ≤ a− and so t < a−. Consequently equation (24) rewrites for t ∈ (a0 −

a−,δ+a0 −a−) as
∫t+a−

a0

b(a)u0(a − t )

π(a − t )
(π(a)− π̄(a)) d a = 0.

The latter equality implies a contradiction since in one hand
b(a)u0(a−t )

π(a−t )
> 0 f.a.e. a ∈ (a0, t +a−)

and in other hand π(a)− π̄(a) 6= 0 for every a ∈ (a0, t +a−) ⊂ (a0, a0 +δ).

So a+ = maxE and π = π̄ on [a−, a+]. Finally, the equation (22) then implies that µ(a) = µ̄(a)

f.a.e a ∈ K ⋆ which proves that the model system Sµ is P/K ⋆-identifiable on [0,T ].
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4 Perspectives

The present work, dealing with the mortality rate identifiability in an age-structured model,

shows how the non local loopback boundary condition affects the study of the uniqueness of

the parameter. The inverse problem is studied from the expression of the semigroup generated

by the differential operator. One think that the present results could be adpated to the identifi-

ability of functional parameters, such as growth function, in the case of size-structured models.

Indeed, the latter models are described by transport equations with non constant velocities in

the transport term, that may derive a semigroup formulation as in age-structured models.
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