Activation of a (cyclooctadiene) rhodium(i) complex supported by a chiral ferrocenyl phosphine thioether ligand for hydrogenation catalysis: a combined parahydrogen NMR and DFT study

Ekaterina Kozinets, M. Fekete, O. A. Filippov, N. V. Belkova, E. S. Shubina, Rinaldo Poli, S. B. Duckett, E. Manoury

To cite this version:

HAL Id: hal-00995633
https://hal.science/hal-00995633
Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Activation of a (cyclooctadiene)rhodium(I) complex supported by a chiral ferrocenyl phosphine thioether ligand for hydrogenation catalysis: a combined parahydrogen NMR and DFT study.

Ekaterina M. Kozinets, Marianna Fekete, Oleg A. Filippov, Natalia V. Belkova, Elena S. Shubina, Rinaldo Poli, Simon B. Duckett, and Eric Manoury

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

The reaction of [RhCl(P,S,Bu)(COD)] (1) or [Rh(P,S,Bu)(COD)]BF₄ (2) where (P,S,Bu) is CpFe[η²-1,2-C₃H₄(PPh₂)(CH₂S'Bu)] with H₂ in MeOH gives rise to COD hydrogenation and formation of a solvent-stabilized product. The formation of hydride species cannot be observed in view of a very rapid H/D exchange between H₂ and the solvent. Introduction of pyridine or acetonitrile slows down this exchange process and allows observation of diastereometric dihydride complexes, [Rh(P,S,Bu)(H₂)₂(L)₂]⁺, the stereochemistry of which was fully elucidated. The hydride site exchange rates have been derived from EXSY NMR experiments and used, with assistance from DFT calculation, to elucidate the isomerization and site exchange mechanisms.

Introduction

Square planar d⁷ complexes of Rh I and Ir I are commonly employed as catalysts in a variety of hydrogenation processes. The most popular examples include the so-called “Wilkinson’s catalyst”, [RhCl(PPH₃)]²⁻, and the cation [Ir(COD)(L)₂]⁺ (L = PPh₃, PMePh₂, py), the latter of which displays high activities even with relatively hindered C-C double bonds.² Complexes of type [ML(diene)]²⁻ or [M(diene)]⁺ [M = Rh or Ir], and particularly those of iridium, have also proven suitable as precatalysts for the ionic hydrogenation of polar substrates such as ketones and imines in the presence of appropriate ligands, mostly diphosphines.³–¹⁰ A notable example of this is provided by Ir I-catalyzed imine hydrogenation as used in the multi-ton scale industrial production of the herbicide metolachlor.¹¹,¹²

In one of our laboratories, chiral ferrocenyl-based phosphine thioether ligands (P,S,R) in Scheme 1 has been developed and shown to be particularly efficient in terms of both activity and enantioselectivity for the hydrogenation of aromatic ketones when combined with [IrCl(COD)]²⁻.¹³ The Ir I coordination chemistry of these ligands has also been described.¹⁴ Since the initial studies that were aimed at generating and characterizing the catalytically active species met with difficulty, our attention has more recently turned to the analogous (P,S,R)-based rhodium complexes, inspired by reports of the isolation and characterization of related diphosphine-based complexes at the pre-catalyst activation stage.¹⁷–²⁰ We have thus synthesized and characterized complexes of type [RhCl(P,S,R)(diene)] and [Rh(P,S,R)(diene)]²⁺BF₄⁻ (diene = cyclooctadiene, COD; norbornadiene, NBD),¹¹ as shown in Scheme 1. These complexes have been demonstrated to act as both structural and functional mimics of the analogous Ir systems, although they show lower catalytic activity and selectivity.²² We considered it of interest to investigate the phenomenon of precatalyst activation by use of parahydrogen NMR.

The parahydrogen method has been used extensively to probe reaction mechanisms by enabling the detection of low concentration species such as intermediates in catalysis,²³,²⁴ It was first successfully employed by Weitekamp,²⁵ and later Eisenberg and Bargon,²⁶ but is now being employed much more widely as a consequence of the potential that hyperpolarization methods offer to magnetic resonance imaging and hence healthcare.²⁷ When this approach is used in conjunction with DFT the synergy of the two methods becomes readily apparent as hitherto unseen species are not only predicted but firmly characterized in solution. Such studies have already been used to rationalize a series of reactions involving ruthenium clusters,²⁸–³⁰ where they can play a key role by helping with chemical shift and coupling assignments. Furthermore they have established a definitive opportunity to examine the role of electronic states in the oxidative addition of H₂ to a series of 16 electron ruthenium complexes,³¹,³² and aided in the understanding of hydrogenation catalysis by a range of palladium complexes,³³,³⁴ and even to detect unexpected CH bond activation products in conjunction with the well-known complex W(N₂)₂(dppe)₂.³⁵

In this contribution, we address the stoichiometric reactivity of two representative compounds containing the same (P,S,Bu) ligand, [RhCl(P,S,Bu)(COD)] (1) and [Rh(P,S,Bu)(COD)]²⁺BF₄⁻ (2), towards H₂ through the eyes of parahydrogen NMR, complemented by DFT calculations.

Experimental Section

General

All the reactions described here and the complex purifications were carried out under argon using high vacuum line or Schlenk
line techniques. The Rh complexes [RhCl(P,S Bu)(COD)] (1) and [Rh(P,S Bu)(COD)]BF₄ (2) were synthesized from 2-diphenylphosphino-(t-butylthiomethyl)ferrocene (P,S Bu) and [RhCl(COD)]BF₄ or [Rh(COD)₂]BF₄ according to the published procedure.²¹

NMR experiments
NMR measurements were made using NMR tubes that were fitted with J. Young’s valves and solutions were degassed on a high vacuum line prior to H₂ addition. The samples were prepared in a glovebox by addition of the specified deuterated solvents to the solid complex in the NMR tube. For the p-H₂ induced polarization (PHIP) experiments, hydrogen enriched in the para spin state was prepared by cooling H₂ to 36 K over the paramagnetic catalyst Fe₃O₄ which was doped on silica.²³, ²⁴, ³⁶ All the resulting NMR studies were then carried out with sample concentrations of approximately 4.6 mM and all spectra were recorded on a Bruker Avance III 400 NMR spectrometer. ¹H NMR chemical shifts are reported in ppm relative to the residual ¹H signal of the solvent which for CHD₂OD is δ 3.31 and for CDHC₁₂ is δ 5.37. Further details can be found in the supplementary information.

Computational details
Calculations were performed with the Gaussian09 package,³⁷ using the B3LYP³⁸, ³⁹ and M06⁴⁰ functionals under the DFT approach. All carbon and hydrogen atoms were described with the 6-31G(d,p) basis set, whereas the 6-31+G(d,p) basis set was applied to the atoms of ligands involved in the bonding with Rh (P, S atoms, hydride ligands, OH group of methanol and N atoms of pyridine and acetonitrile). Effective core potentials (ECP) and its associated SDD basis set⁴¹-⁴⁴ supplemented with f-polarization functions (SDD(f)) were applied for the Rh and Fe atoms. Geometry optimizations were performed without any ligand simplification for the cationic [Rh(P,S Bu)L₂]⁺ and [Rh(P,S Bu)(H)₂L]²⁺ complexes (L = pyridine, CH₂OH, CH₂(CN)). Frequency calculations were performed for all optimized complexes in the gas phase and reported without use of scaling factors. The nature of all the stationary points on the potential energy surfaces was confirmed by a vibrational analysis.⁴⁶

Transition state (TS) structures showed only one negative eigenvalue in their diagonalized force constant matrices, and their associated eigenvectors were confirmed to correspond to the motion along the reaction coordinate under consideration using the Intrinsic Reaction Coordinate (IRC) method.⁴⁷

Results and Discussion
(a) NMR experiments
In CD₃OD without additives
The addition of p-H₂ to de-methanol solutions of either [RhCl(P,S Bu)(COD)] (1) or [Rh(P,S Bu)(COD)]BF₄ (2), over the temperature range 233 – 298 K, failed to result in the observation of any detectable hydride containing species. There was, however, evidence for a common slow reaction (ca. 18% conversion in 20 minutes at 243 K) which transformed the η²–η²-COD ligand into a κ²(σ:π) cyclooctene-4-yl ligand and generated the new proton loss complex, 3, (Scheme 2) in very small amounts. The κ²-ligand in this complex is characterized by features at δ 4.62, 1.54 and 2.15, see Figures S1 and S2. This suggests that while slow H₂ addition to the Rh centre occurs, rapid reaction transforms the resulting dihydride into 3. This process is followed by reprotonation to form the corresponding alkene after hydride migration as shown in Scheme 2. The liberation of either HCl or HBF₄ is proposed to give 3. Sola et al. have reported a related H₂ addition to the complex [Ir(COD)](NCCH₃)BF₄, where the initial dihydride product [Ir(H)₂(COD)(MeCN)](BF₄) (in CH₂Cl₂) reacts with MeCN to form the monohydride product [IrH(1-κ-4,5-η-C₄H₄)(NCCH₃)]- (PMet₃)BF₄. In this case, these species could be isolated and fully characterized.⁴⁸ We note that 3 is related to this Ir system by the formal loss of a proton. Given that Rh³⁺ hydride complexes are known to be less stable than their Ir³⁻ analogues this transformation is not unexpected.

At 253 K the generation of cyclooctene was revealed by its characteristic ¹H NMR resonance at δ 1.21, which rapidly increases in intensity over the time scale of 17 minutes (Figure S2). This demonstrates that the initial H₂ addition to 1 or 2 proceeds at 253 K. When the temperature was raised to 263 K the formation of cyclooctane was also observed through its characteristic singlet at δ 1.50. Hydride resonances were not observed at any time during this reaction. However, the residual OH signal of methanol and the H₂ signal show dramatic temperature dependence, coalescing at 263 K thereby suggesting the rapid interchange of these sites, presumably through the formation of transient, non observable hydride species.

At 273 K the deuteration of the H₂, forming HD becomes evident (Figure S3). In addition, the phenyl proton signals for the phosphine become more complicated in appearance at this point. This reaction monitoring demonstrated the instability of 3 and suggested that the ultimate formation of a bis(solvent) adduct, [Rh(P,S Bu)(MeOH)₂]⁺, 4, takes place even though direct evidence for the production of this complex could not be obtained. Further H₂ oxidative addition to yield a putative dihydride species 5 appears excluded by the absence of hydride signals in this experiment (however, see additional discussion below). Monitoring the reaction carried out with regular H₂ at 5 bar pressure and room temperature by ³¹P NMR did not result in the appearance of any new resonance, in fact only the signal for
unreacted starting material could be seen even after 7 h. After 3 days the starting material was completely consumed and the new NMR spectrum shows very few small resonances, the major one being a doublet at \(\delta = 43.9\) (J\text{HH} = 134.1 Hz). These data suggest that 4 is not stable.

Our attempts to isolate the final product of this reaction in a crystalline form have so far not succeeded. Heller et al. have recently reported the successful generation and isolation of the complex [Rh(BINAP)(MeOH)\(_2\)]\(^+\) by hydrogenation of [Rh(BINAP)(COD)]\(^+\) or [Rh(BINAP)(NBD)]\(^+\) in methanol, although no reaction intermediates were observed in those cases.\(^{18}\)

When this reaction was carried out in CD\(_2\)Cl\(_2\) using 2, reaction with p-H\(_2\) was evident at temperatures down to 233 K. Under these conditions weak signals for a new hydride containing species were detected at \(\delta = 9.7\) and -23.0. The high field signal yielded a \(^{31}\)P coupling of 188 Hz which is characteristic of a \(trans\) \(^{31}\)P splitting. These two resonances were broad and neither the \(J_{HH}\) nor the \(J_{HR}\) couplings could be quantified. In the corresponding \(^{31}\)P decoupled spectra the \(\delta = -23.0\) signal yields a \(J_{HH}\) splitting of -9 Hz and a \(J_{HR}\) splitting of 20 Hz. The signals for this species were too weak to enable its characterisation but the hydride \(trans\) to phosphine deduction is confirmed by the \(J_{HH}\) coupling when the larger coupling and a species such as A in Scheme 2 is possible.

The addition of 1 µl of MeOH to this solution suppressed the observation of these signals.

Two key observations outlined above (the coalescence of the MeOH and H\(_2\) signals, and H/D exchange between these two molecules) lead us to speculate on the mechanism associated with these phenomena, which are obviously related to the same process, occurring rapidly on the NMR timescale. Two possible pathways are indicated in Scheme 3. In pathway a, H\(_2\) oxidative addition yields a \(Rh^{III}\) dihydride species 5 that would be sufficiently acidic to release a proton to the solvent and yield a \(Rh^{IV}\) monohydride intermediate 6. Reversal of all steps with implication of deuteron incorporation is a consequence of this exchange pathway. In the alternative pathway b, H\(_2\) replaces a methanol ligand to yield an H\(_2\) complex (non-classical dihydride) 7, which is then deprotonated by the solvent to yield the same monohydride complex 6 as detailed above. Both of these pathways can be imagined to occur via initial reaction which places the hydride \(trans\) to S (as shown in Scheme 3) or in the alternative position \(trans\) to P which is not illustrated. Incidentally, the lack of observation of a hydride resonance under these conditions does not exclude the fact that the most stable species (at least at low temperatures) is indeed a mono- or dihydride complex, since such a species would exist primarily in the form of a deuteride and would therefore be unobservable in the hydride region of the \(^1\)H NMR spectrum.

In CD\(_2\)OD in the presence of pyridine

When the analogous reactions of either 1 or 2 with H\(_2\) were carried out in the presence of pyridine at low temperature (233 - 283 K), on the other hand, two common and dominant hydride containing products formed. For example, when a \(d_4\)-methanol solution of 1 was prepared which contained a 75-fold excess of pyridine (75 equiv) and the resulting reaction with p-H\(_2\) monitored by \(^1\)H NMR spectroscopy at 233 K, four PHIP enhanced hydride signals were observed at \(\delta = -13.1, \delta = -14.3, \delta = -17.2\) and \(\delta = -17.6\). These hydride ligand signals all contained anti-phase features due to their formation from p-H\(_2\) that are associated with their common \(J_{HH}\) coupling in addition to phase splittings due to further couplings to a single rhodium and single phosphorus centre. A more complete NMR monitoring of this reaction was undertaken after warming the sample to 263 K, during which process the NMR spectral features did not change. The hydride region of the resulting \(^1\)H NMR spectrum is shown in Figure 1a. The \(J_{PH}\) coupling values are all consistent with \(cis\) hydride phosphorus ligand arrangements. In addition, in the corresponding \(^1\)H-\(^{31}\)P HMQC NMR spectrum (Figure 1b), the \(\delta = -13.1\) (J\text{HH} = -13 Hz, J\text{RH} = 24 Hz) and \(\delta = -17.6\) (J\text{HH} = -13 Hz, J\text{RH} = 19 Hz) signals proved to couple to a single \(^{31}\)P centre that was located at \(\delta = 47.9\) and appeared with a J\text{PP} of 140.0 Hz. These resonances therefore arise from groups within the same complex (8). In a similar manner the \(\delta = -14.3\) (J\text{HH} = -10 Hz, J\text{RH} = 24 Hz) and \(\delta = -17.2\) (J\text{HH} = -10 Hz, J\text{RH} = 20 Hz) signals arise from a second species (9) where now the connected \(^{31}\)P resonance appears at \(\delta = 45.0\) with a J\text{PP} of 141.6 Hz. On the basis of the relative hydride resonance peak areas it can be suggested that 8 and 9 are formed in a step which shows a kinetic selectivity of approximately 1:4 at 233 K, if it is assumed that these resonances
Upon increasing the solution temperature to 273 K, no change in the relative size of the PHIP-enhanced signals was observed. However, upon warming to 298 K and beyond, the hydride signals for 8 and 9 could no longer be observed. When this experiment was repeated at 263 K with normal dihydrogen, the ratio of the hydride signals of 8 and 9 was 1:7. When, on the other hand, the reaction was conducted at room temperature (ca. 15 min between bubbling and recording the NMR spectrum), only the presence of compound 9 could be detected, reflecting the greater thermodynamic preference for this isomer.

In order to probe the ligand arrangement in compounds 8 and 9 further, a 15N labelled pyridine sample was examined. Now, the two phosphorus signals associated with these two complexes exhibit additional and identical extra splittings of 50 Hz due to the presence of a resolved trans 31P-15N coupling. In the corresponding 1H-15N HMQC NMR spectrum (Figure 1c), the hydride signals at δ -17.2 and -17.6 showed strong correlation peaks to 15N resonances at δ 266.2 and δ 267.6 respectively. In addition, a hydride-15N splitting of 20 Hz was exhibited by the two low field hydride resonances of 8 and 9. Rhodium signals have also been detected at δ -7268 for 8 and δ -7389 for 9 through the recording of a 1H-103Rh HMQC spectrum as shown in Figure 1d.

This information therefore confirms that there are two pyridine ligands attached to the metal centre in 8 and 9, which are located trans to one hydride and to the phosphine donor. Given the bidentate nature of the P,S ligand it can be further concluded that

Table 1. NMR data for complexes 8 and 9 in MeOD at 283 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H</th>
<th>31P</th>
<th>15N</th>
<th>103Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-13.1, dd, J_{RH} = -13 Hz; J_{RHP} = 24 Hz, $J_{RH}P$ = 140.0 Hz</td>
<td>47.9, d</td>
<td>267.6, t, J_{PN} = 50 Hz; J_{SN} = 20 Hz</td>
<td>-7390, d $J_{RP}=131$ Hz</td>
</tr>
<tr>
<td>9</td>
<td>-14.3, dd, J_{RH} = -10 Hz; J_{RHP} = 24 Hz, $J_{RH}P$ = 141.6 Hz</td>
<td>45.0, d</td>
<td>266.2, t, J_{PN} = 50 Hz; J_{SN} = 20 Hz</td>
<td>-7268, d $J_{RP}=131$ Hz</td>
</tr>
</tbody>
</table>

Figure 1. NMR spectra showing characteristic resonances of 8 and 9 (as indicated) observed during reaction of 2 in d$_3$-methanol with p-H$_2$ and 75 equiv of pyridine at 263 K: (a) p-H$_2$-enhanced 1H NMR spectrum showing the hydride region; (b) 1H-31P HMQC NMR spectrum collected using 15N labeled pyridine; (c) 15N labeled, 1H-15N HMQC NMR spectrum; (d) 1H-103Rh HMQC NMR spectrum (in b) the inset boxes reflect vertical expansions of x 2 and x 8 relative to the baseline).
the second hydride ligand in both 8 and 9 is trans to sulfur. All the NMR data associated with 8 and 9 resulting from this study are summarized in Table 1. The similarity of these NMR data suggests that these two products are simply diastereoisomers of one another, differentiated by the ferrocene ligand orientation as shown in Scheme 4. This product geometry indicates that the initial H₂ oxidative addition takes place over the S-Rh-C axis.

Figure 2. Hydride ligand exchange data for the interconversion of 8 and 9 in the presence of 75-fold excess of py, as probed through the selective excitation of (a) H₉ of 8 and (b) H₈ of 9, over the defined observation period; the observation points are listed as H₈ (.), H₉ (.), H₁ (.) and H₋ (.) as defined in Scheme 4. The solid lines correspond to simulated changes that yield the rate constants in the text.

When an nOe experiment was recorded to probe the hydride site interchange process undergone by these complexes at 273 K with the 75 fold excess of pyridine, several exchange processes were observed (as revealed in Figure 2). These include a mutual hydride site interchange within 9 which proceeds with an exchange rate constant of 0.785(6) s⁻¹ and the interconversion of 9 into 8 on a slower timescale that places the moving hydride into either site of 8 with rates of 0.167(2) s⁻¹ where H₁ becomes H₂ and H₂ becomes H₁ and 0.160(3) s⁻¹ where H₁ becomes H₀ and H₀ becomes H₁. Hence there is a limited selectivity in this process. Isomer 8 converts into 9 on a faster timescale where the observed rate constant is 1.10(1) s⁻¹ for the H₋→H₀ transformations and 1.19(1) s⁻¹ for the H₋→H₁ and H₀→H₋ transformations. The experimental rate constant for hydride site interchange in 8 is zero. The overall scheme of hydride site exchange rates is summarized in Scheme 5. Table S1 (Supp. Inf.) shows the list of constraints that were used for the calculation of the exchange rate constants. There was no evidence for hydride exchange into free H₂ or MeOH from 8 or 9 in these experiments which are limited by the timescale of NMR relaxation and contrary to the experiment run in pure CD₃OD there was no coalescence between the solvent and H₂ resonances. We note, however, that the hydride sites of 8 and 9 are partially deuterated in these experiments. This readily shows up in a 3¹P-decoupled HMBC measurement as isotopically perturbed signals at δ -13.1, -14.3, -17.2 and -17.6 in the corresponding ¹H NMR spectrum for the Rh(H)(D) partners and at δ -14.3 and δ -17.2 for the corresponding ³¹P signals. Hence, the electronic effect of pyridine coordination stabilizes the dihydride species against deprotonation (cf. Scheme 3).

Figure 3. Scheme 5. The three numbers on each arrow are the exchange rates in s⁻¹ relative to the solution with an 8-fold, 75-fold and 173-fold excess of py.

While the deuterium label incorporation into the hydride sites is relatively slow, it precludes the measurement of precise rate data as would be required for the assembly of an Eyring plot. Nonetheless, the interconversion between these species has been defined as occurring without H₂ loss. This is reflected in the fact that strong PHIP is only seen when 1 or 2 are being converted into 8 and 9. When we monitor these processes with differing amounts of pyridine, changing the Rh/pyridine ratio from 1:8, to 1:75, and 1:173 we see no change in the relative hydride signal intensities of 8 and 9. There is, however, a significant effect on the hydride site interchange rate constants.

The rate constant for the mutual hydride site exchange in 9 falls to 0.29 s⁻¹ with an 8 fold excess of pyridine while it is 0.39 s⁻¹ with a 173 fold excess. The kinetic effect of pyridine is therefore complex, first promoting the process and then inhibiting it. A similar trend is observed for the H₋→H₀ (and H₀→H₋) rate from 0.06 s⁻¹ through 0.16 s⁻¹ to 0.02 s⁻¹ and for the H₋→H₁ (and H₁→H₋) rate from 0.14 s⁻¹ through 0.17 s⁻¹ to 0.12 s⁻¹, though the effect here is less dramatic. In contrast, the H₋→H₋ (H₋→H₋) process shows a rate increasing with [py] from 0 s⁻¹ through 1.19 s⁻¹ to 1.23 s⁻¹.
while the rate of the \(\text{H}_2\text{P} \rightarrow \text{Cl} \) (\(\text{H}_2\text{P} \rightarrow \text{Cl} \)) process shows the opposite trend from 1.47 through 1.10 to 0.02 s\(^{-1}\). We can conclude therefore that pyridine plays a role in these processes. All observed hydride site exchange rate constants are collected in Table S3.

The hydride signal at \(\delta \) -17.2 shows nOe connections to peaks at \(\delta \) 8.71, 8.23, 4.67, 3.84 and 1.21, which are due to the \textit{ortho} proton of a pyridine ligand, the \textit{ortho} proton of the phosphine, the ferrocenyl group and the \(\text{Bu} \) group in 9. The second hydride signal in 9 which resonates at \(\delta \) -14.3 shows through space interactions with protons that give rise to resonances at \(\delta \) 8.71, 8.31, 8.23 and 6.68. The extra signal at \(\delta \) 8.31 is therefore the \textit{ortho} proton of a second pyridine ligand. In the corresponding \(^1\text{H}-^3\text{P} \) HMQC, the \(^3\text{P} \) centre which resonates at \(\delta \) 45.0 connects to two aromatic signals at \(\delta \) 8.23 and 6.78. In contrast, the \(^3\text{P} \) signal of the minor isomer 8 proved to connect with \(^1\text{H} \) signals at 8.03 and 7.5 in an HMQC measurement. Furthermore, nOe data confirmed that the signal at \(\delta \) -13.1 in 8 connects with \(^1\text{H} \) signals at \(\delta \) 8.42 and 8.03. The \(\delta \) 8.42 resonance therefore corresponds to an ortho-pyridine signal. This information has therefore confirmed the assignment shown in Scheme 4. The structure corresponding to 9 has therefore the hydride ligand \textit{trans} to pyridine located on the same side as the ferrocenyl group. When a long range \(^1\text{H}-^3\text{P} \) experiment was recorded, further proton signals were located at \(\delta \) 7.6, 4.8 and 4.2 in 9.

The hydrogenation of the cyclooctadiene ligand is readily evident in these \(\mu\text{-H}_2 \) enhanced \(^1\text{H} \) NMR spectra from 253 K. Two sets of polarised signals appear at \(\delta \) 1.53 and 1.50 due to the \textit{CH}_2 protons of the hydrogenated components of COE. A further resonance is evident at \(\delta \) 1.41 for the backbone signals as described above. In these \(^1\text{H} \) NMR spectra the corresponding cyclooctane signal appears at \(\delta \) 1.2 and forms very slowly at 273 K.

When the reaction of the chloride derived precursor 1 with normal dihydrogen is monitored in an analogous experiment with only a 15 fold excess of pyridine (instead of 75 in the experiment described above) 5 appears as the first formed hydride containing product at 273 K. The problem with this measurement is, however, that it relies on detecting a weak signal from magnetisation that is at thermal equilibrium. When this reaction is repeated with \(\mu\text{-H}_2 \) weak PHP-enhanced hydride signals are now seen for a further two species, 10 and 11, besides those of 8 and 9 in the resulting NMR spectra at 273 K (Figure 3). The hydride signals of 10 appear at \(\delta \) -12.3 and -18.7 with \(\text{Rh} \)-\(\text{H} \) couplings of 25.1 Hz and 26.8 Hz, respectively, and a common \(J_{\text{HH}} \) coupling of -5.9 Hz. The hydride ligand signals from species 11 are, however, much weaker than those of 10 and appear at \(\delta \) -15.0 (\(J_{\text{RR}} = 20 \), \(J_{\text{RH}} = -9 \) Hz) and \(\delta \) -17.8 (\(J_{\text{RR}} = 15 \), \(J_{\text{RH}} = -9 \) Hz). The relative ratio of the hydride signals for 10, 8, 9, and 11 proved to be 0.9:7.0:39.6:1 at 273 K. In a series of 2D measurements the \(\delta \) -12.3 hydride signal proved to connect with a \(\delta \) 34.3 \(^3\text{P} \) resonance where \(J_{\text{RR}} \) = 140 Hz, while the \(\delta \) -15.0 hydride signal connects with a \(^3\text{P} \) resonance at \(\delta \) 51.4 that exhibits a \(J_{\text{RR}} \) coupling of 148 Hz. The relative intensity of the signals for 10 and 11 proved to fall as the excess of pyridine is increased. When labelled pyridine is employed both of the sets of hydride signals show limited broadening but no \textit{trans} -\(^{15}\text{N} \) coupling is evident. We therefore assign 10 and 11 to chloride containing \([\text{Rh}(\text{H})\text{L}](\text{P} \text{SR})\) (pyridine)Cl as shown in Scheme 6. This deduction is further supported by the fact that while the relative intensities of the signals for 8 and 9 seem to remain constant regardless of the [py] those for 10 and 11 drop as the [py] increases.

When a series of EXSY measurements were undertaken to examine the dynamic behaviour of this complex reaction system, interconversion between 10, 8 and 9 was evident with the signals for 11 proving to be too weak to monitor.

![NMR spectra showing characteristic hydride resonances of 8, 9, 10 and 11 (as indicated) observed during reaction of 1 in d_4-methanol with p-H_2 and 45-fold excess of pyridine at 273 K.](image)

When the pyridine excess was 75 fold, the experimental rate constant for the \(\text{H}_2\text{P} \rightarrow \text{Cl} \) and \(\text{H}_2\text{P} \rightarrow \text{Cl} \) processes (10\(\to \)9) were indistinguishable at 31 s\(^{-1}\). In contrast the corresponding rate constant for \(\text{H}_2\text{P} \rightarrow \text{Cl} \) (10\(\to \)8) was zero, as was mutual \(\text{H}_2\text{P} \rightarrow \text{H}_2 \) interchange (10). These values reduce from 31 s\(^{-1}\) to 20 s\(^{-1}\) to 3 s\(^{-1}\) as the pyridine excess falls from 75 fold through 42 fold to 15 fold. Hence this process is [py] dependent. Concerning the 9\(\to \)10 process, the \textit{H}_2\text{P} rate constant is 0.41 s\(^{-1}\), and the \textit{H}_2\text{P} rate has a similar value. The corresponding rates for the 9\(\to \)8 process are slightly smaller than those found when 2 is employed (H_2\text{P} and H_2\text{P} are again similar at 0.1 s\(^{-1}\) vs. 0.16 s\(^{-1}\) for 2). The new rate constants for 8\(\to \)9 with hydride position retention are zero when 1 is the precursor and 1.1 s\(^{-1}\) when 2 is employed. 8 does, however, form 10 with rate constants 1.3 s\(^{-1}\) for \(\text{H}_2\text{P} \) and zero for \(\text{H}_2\text{P} \). The observed hydride site exchange rate constants at 273 K measured on sample 1 for different pyridine concentrations are reported in Table S2.

In CD\(_3\)OD in the presence of acetonitrile

In a further study, a d\(_4\)-methanol sample of 1 containing 20 \(\mu \)L of acetonitrile was prepared. No reaction of 1 with H\(_2\) was evident until 273 K. At this point, the corresponding \(^1\text{H} \) NMR spectrum contained two PHP polarized hydride peaks at \(\delta \) -14.5 and -17.6. These hydride signals again appear as simple anti-
phase doublets with additional phosphorus and rhodium couplings (Figure 4). The signal at δ = -14.5 exhibits a J_HH coupling of 11 Hz, a J_PP coupling of 20 Hz and a J_PcH coupling of 21 Hz while the corresponding splittings of the δ = -17.6 signal are 12, 17 Hz and 20 Hz respectively. In the corresponding ^1H-^31P HMOC NMR spectrum, the δ = -14.5 signal and the δ = -17.2 signal proved to couple to a single ^31P centre located at δ = 47.6 which exhibited a J_HP splitting of 148 Hz. These results suggest that hydrogenation of Rh in the presence of acetonitrile selectively forms the MeCN analogue (12) of 8 (Scheme 7). There are a number of similarities between these data and those of 8. For example, all the couplings suggest a cis PH ligand arrangement and the chemical shifts are reflective of hydride ligands trans to sulfur and nitrogen. The coordination of MeCN has therefore the same effect as that of pyridine in reducing the hydride acidity and reducing the speed of the H/D exchange between H_2 and the solvent.

When hydrogenation of the more reactive substrate phenylacetylene by 1 was examined in d_8-methanol using p-H_2, PHHP polarized signals could be readily seen for the styrene product at 263 K when no pyridine was present. No hydride signals still visible however in this experiment. In contrast, when a 10-fold excess of phenylacetylene and acetonitrile was added there was evidence for both the formation of 12 and the hydrogenation of phenylacetylene.

(b) DFT calculations

On the basis of the presented experimental evidence, H_2 is able to hydrogenate the COD ligand in compounds 1 and 2 in MeOH, presumably yielding a [Rh(P,S'Bu)(MeOH)]^+ product (4). However, any further oxidative addition of H_2 to yield a putative dihydridorhodium(III) species. A first question addressed by the computation tool was to explore the relative stability of the [Rh(P,S'Bu)L]_2^+ (L = MeOH, py, MeCN) complexes and their ability to oxidatively add H_2, as well as defining the relative stability of all possible product isomers, see Scheme 8. The associated calculations were carried out using either the B3LYP functional or the M06 functional. The hypothetical replacement of the COD ligand in [Rh(P,S'Bu)(COD)]^+ (2) with two L donors to yield I^L (without COD hydrogenation) was found at the B3LYP level as endoergic when L = MeOH (ΔE = 15.4 kcal/mol, ΔG = 24.7 kcal/mol) and more favourable for the other two ligands (ΔE/ΔG are -6.4/4.4 kcal/mol for L = py and -1.5/+6.0 for L = MeCN). However, in consideration of the energy gain of the COD hydrogenation process (ΔE = -34.4 or ΔG = -18.5 kcal/mol for the hydrogenation to cyclooctene; ΔE = -64.3 or ΔG = -33.1 kcal/mol for the hydrogenation to cyclooctane), all the underlying reactions become favourable.

The oxidative addition of H_2 was also found to be energetically favourable for all three ligand systems, as shown by the data collected in Table 2. It should be noted that while the gas phase free energies are positive, the computed values do not take into account stabilisation from solvation and the partial quenching of translational and rotational modes in the condensed phase. Furthermore, the hydride complexes were observed at low temperatures, where the detrimental effect of the positive TAS contribution is smaller (for instance, the calculated ΔG for the oxidative addition to P^P to yield V^P at the M06 level decreased from +6.0 to +4.9 kcal/mol when applying the thermochemical corrections at 253 K instead of 298 K) and indeed the hydride resonances were lost upon warming the NMR tubes to higher temperatures (vide supra). For the pyridine system, the calculations have also been carried out at the M06 level, showing a slightly less favourable process. We note that the oxidative addition process for L = MeOH is predicted by these calculations to be more favourable than for the other two ligands. Therefore, failure to observe the corresponding hydride resonances by 'H NMR during the experiments appears indeed attributable to the accumulation of deuteride species by rapid H/D exchange. The dihydridorhodium is, though, at least sufficiently accessible to allow the H/D process to take place as suggested in Scheme 3.
Hydride site exchange can be envisaged by rotation of the dihydrogen ligand in the intermediates C and D. The observation of such a ligand exchange process by NMR is not inconsistent provided the lifetime of the rapidly relaxing dihydrogen form is short.23, 24

![Diagram](image.png)

Scheme 8

Table 2. Relative gas phase energies E (free energies G in parentheses) in kcal/mol for the products of H\textsubscript{2} oxidative addition to P.

<table>
<thead>
<tr>
<th>L</th>
<th>Functional</th>
<th>IIL</th>
<th>IIIL</th>
<th>IVL</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>B3LYP</td>
<td>-8.5 (+2.6)</td>
<td>-10.5 (+1.3)</td>
<td>-14.1 (+2.5)</td>
<td>-17.6 (+6.5)</td>
</tr>
<tr>
<td>py</td>
<td>B3LYP</td>
<td>-4.5 (+7.4)</td>
<td>-4.9 (+7.9)</td>
<td>-10.1 (+1.5)</td>
<td>-10.0 (+2.1)</td>
</tr>
<tr>
<td>py</td>
<td>M06</td>
<td>+4.5 (+15.2)</td>
<td>+2.2 (+14.7)</td>
<td>-2.5 (+7.8)</td>
<td>-3.5 (+6.0)</td>
</tr>
<tr>
<td>MeCN</td>
<td>B3LYP</td>
<td>-4.2 (+5.6)</td>
<td>-4.9 (+6.0)</td>
<td>-8.5 (+1.7)</td>
<td>-10.9 (+0.1)</td>
</tr>
</tbody>
</table>

The computational results also suggest that the two isomers resulting from the H-H addition across the S-Rh-L axis are energetically preferred independent on L, in agreement with the assignment of the NMR spectra. The stereochemistry of structure IV corresponds to that of 8 and 12 and V corresponds to 9. Structure VP is slightly less stable than IVP at the B3LYP level, but more stable at the M06 level in agreement with the NMR evidence. For L = MeCN and MeOH, the calculations also indicate greater stability for isomer VL, even at the B3LYP level, whereas the NMR assignment indicates that the observed compound 12 has the same configuration as IV.

A second question addressed by the DFT study is the labilizing effect of the hydride ligands, involving dissociation of a neutral donor placed trans to a hydride ligand (either the sulphur donor of the bidentate P,S ligand or a pyridine molecule) and rearrangement of the coordination sphere, as shown in Scheme 9 for the specific case of thioether dissociation.

The putative 5-coordinate intermediate A would then rearrange to its diastereoisomer B (same chirality at ferrocene and inverted chirality at rhodium) by either concerted hydride migration and rotation of the P,S ligand or via tautomerization to the dihydrogen complex C followed by P,S rotation to yield the rotamer D.

All calculations of this pathway were carried out with the M06 functional, since this is expected to better handle the long range dispersion interactions involved in the ligand dissociation processes. They show that pyridine dissociation is less favourable than the P,S ligand thioether arm dissociation. The most favourable dihydride complex resulting from py dissociation, [(P,S'Bu)Rh(H\textsubscript{2})(py)]+, is located at 29.7 kcal/mol from VP, while the isomeric non-classical complex [(P,S'Bu)Rh(H\textsubscript{2})(py)]+ is more stable at only 18.3 kcal/mol from VP. However, the most stable dihydride complex resulting from dissociation of the thioether arm (B in Scheme 9) is only 12.4 kcal/mol from VP, with A being only slightly higher at +14.7 kcal/mol and the nonclassical isomers C and D are even more stabilized at +11.8 and +8.3 kcal/mol, respectively. Therefore, the isomerization pathway shown in Scheme 9 was fully explored. The results are summarized in Figure 5. Rearrangement of the classical to the nonclassical dihydroxides occurs via localized transition states TS\textsubscript{Ac} and TS\textsubscript{BD} at +18.4 and +16.2 kcal/mol. A more direct pathway from IVP to C and from VP to D could not be found. The P,S ligand rotation pathway involved in the interconversion of C and D was not straightforward to investigate for the location of a stationary point, but a manual scan of the dihedral N-Rh-P-C
angle (see Figure S4) led to the identification a new local minimum corresponding to a new rotational intermediate E and two maxima, the highest point being 4.3 kcal/mol higher than D (+12.6 kcal/mol from VPP). The search for a more direct pathway from A to B was unsuccessful. The barrier for site exchange was calculated for D and turned out rather low (2.5 kcal/mol, or +10.8 kcal/mol from VPP), lower than the barriers required to go back to the stable classical dihydride isomers.

The results in Figure 5 are in agreement with certain experimental observations. Isomerization from VPP (9) to IVPP (8) requires transiting over the TSAC barrier, whereas the site exchange in 9 may occur by simple access of the nonclassical intermediate and facile H2 rotation, followed by the reverse pathway to VPP through the lower TSBD barrier. This agrees with the faster site exchange relative to the 9→8 process. During the reverse isomerization of IVPP (8) to VPP (9), on the other hand, once the highest TSAC barrier is passed and the intermediate C is generated, the isomerization process through P,S ligand rotation and the lower energy TSBD occurs faster than the reverse generation of IVPP, consistent with the fact that site exchange for 8 is not observed.

A most interesting experimental result is that the transformation of the minor isomer (8) into the major one (9) occurs preferentially as H5→3c and H6→3d at low [py] but preferentially as H6→3d and H5→3c at high [py] (see Scheme 5). The former situation, according to Scheme 9, would be compatible with a concerted pathway directly converting A to B without transiting through the nonclassical intermediate (arrows with question mark in Scheme 9) through a transition state at lower energy than TSAC and TSBD. As stated above, such a pathway could not be located but we cannot exclude that it exists. At greater pyridine concentrations, this pathway may be blocked by reversible coordination of pyridine to A and B while perhaps the excess pyridine could also assist a faster collapse of the two hydrides into the H2 ligand (for instance through the effect of H-bonding).

Reversal of the relative rates of site exchange requires a new isomerisation pathway, resulting in selective migration of the axial H ligand in the square pyramidal geometry of A and B without moving the second H ligand in the equatorial plane. One attractive possibility for this transformation is a selective deprotonation of the axial site in A by excess pyridine, which is the strongest base present in solution, to yield a square planar monohydride intermediate [RhH(κ²-P,S)(py)2], followed by reprotonation at the opposite face of the square plane to afford B. This pathway is closely related to one of the proposed pathways for the H/D exchange between H2 and solvent in pure CD3OH (through intermediates 5 and 6 of Scheme 3). No calculations were carried out, however, to confirm the feasibility of this pathway. The fact that this strong effect is not observed during the transformation of the minor isomer into the major one (8→9) is consistent with the need to overcome the smaller TSBD barrier in the first step to achieve the rapid site scrambling. Hence, if the transition state of the putative site-conserving concerted pathway is lower than TSAC but higher or comparable to TSBD, then the site exchange would remain operative even at low pyridine concentration. For the same reason, a very large concentration of pyridine does not afford a selective site inversion because collapse to the nonclassical intermediate promotes non selective deprotonation.

Conclusions

The present contribution has explored the precatalyst activation phase for hydrogenation processes carried out in alcohol solvents with [Rh(diene)(LL')]+ systems, using [Rh(COD)(P,S Bu)]+ as a model compound. The COD ligand is removed by hydrogenation to yield a putative [Rh(P,S Bu)(CH3OH)]2+ complex which promotes a very rapid H/D exchange between H2 and the solvent, possibly via a dihydride species [Rh(P,S Bu)(H2)(CH3OH)]2+ that is accessible according to the DFT calculations. Addition of L (pyridine or MeCN) slows down this exchange, allowing the observation of diastereomeric dihydride species at low temperature. Evidence has also been obtained for equilibrium deprotonation of these cationic dihydride complexes in the presence of strong bases (e.g. excess pyridine). This phenomenon is presumably linked to the need of a strong base promoter for the catalytic action of these compounds and of the iridium analogues in the ionic hydrogenation of polar unsaturated substrates.

Acknowledgements

The York authors would like to thank the EPSRC (grant no. EP/G009546/1) for funding. The Toulouse and Moscow authors are grateful to the CNRS (Centre National de la Recherche Scientifique) and the RFBR (Russian Foundation for Basic Research) for support through the GDRI (Groupe de Recherche Internationale) “Homogeneous catalysis for Sustainable Development” and the RFBR grants no. 12-03-93112, 12-03-31326, and 12-03-33018. We are also grateful to the IUF (Institut Universitaire de France) for additional funding and to the CINES (Centre Informatique National de l’Enseignement Supérieur) and the CICT (Centre Interuniversitaire de Calcul de Toulouse, project CALMIP) for granting free computational time. EMK thanks the Embassy of France in Moscow for a Ph.D. grant.

Notes and references

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia; Fax: +7-499-1355085; Tel: +7-499-1356448; E-mail: nataliabelk@ineos.ac.ru

Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York, YO10 5NY, UK; Fax: +44-1904-322516 ; Tel : +44-1904-322564 ; E-mail: simon.duckett@york.ac.uk

Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France.

Electronic Supplementary Information (ESI) available: sample preparation details for the parahydrogen NMR experiments, selected NMR spectra, description of the EXSY experiments of hydride exchange, figures of DFT optimized geometries and full table of cartesian coordinates for the DFT optimized structures. See DOI: 10.1039/b000000x/

DOI: 10.1039/b000000x/

