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Abstract

The rheological properties of suspensions of bubbles in yield stress fluids are
investigated through experiments on model systems made of monodisperse
bubbles dispersed in concentrated emulsions. Thanks to this highly tunable
system, the bubble size and the rheological properties of the suspending
yield stress fluid are varied over a wide range. We show that the macroscopic
response under shear of the suspensions depends on the gas volume fraction
and the bubble stiffness in the suspending fluid. This relative stiffness can
be quantified through capillary numbers comparing the capillary pressure
to stress scales associated with the rheological properties of the suspending
fluid. We demonstrate that those capillary numbers govern the decrease of
the elastic and loss moduli, the absence of variation of the yield stress and the
increase of the consistency with the gas volume fraction, for the investigated
range of capillary numbers. Micro-mechanical estimates are consistent with
the experimental data and provide insight on the experimental results.

Keywords: yield stress fluid, bubble, capillarity, suspension, emulsion,
elastic modulus, yield stress, consistency

1. Introduction

Yield stress fluids are widely used in the industry where their versatile
character, from solid under a critical stress to liquid above that threshold,
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has many applications (Coussot, 2005). Examples include creams and gels in
the cosmetic industry, and also mud or fresh building materials like plaster or
concrete slurries. During processing of those materials, air bubbles are often
present in the fluid, either because they get entrapped during mixing or as
the result of deliberate addition to confer innovative properties to the final
product. This is for instance the case in dairy products (van Aken, 2001) or
in the building industry in which aerated materials are designed to be lighter
and better insulating. Processing of these aerated yield stress fluids requires
to understand and monitor their behaviour under shear flows.

Understanding the response of a sheared bubble suspension in a non-
Newtonian fluid is complex: as the suspending fluid itself is non-Newtonian,
the behaviour of the suspension is expected to be non-Newtonian too, and the
contribution of additional non-linear phenomena due to the presence of the
bubbles may be difficult to quantify. Some useful understanding of the phys-
ical mechanisms at stake can be collected from previous results on related
cases of simpler suspensions. The simplest type of suspension is a disper-
sion of solid particles in a Newtonian fluid. The relative viscosity of such
suspensions is an increasing function of the solid volume fraction which is
well described by a Krieger-Dougherty law (Wildemuth and Williams, 1984).
From a microscopic point of view, all the shear deformation undergone by the
suspension occurs in the fluid between the solid grains. As a consequence,
the effective local shear rate in the fluid has to be greater than the macro-
scopic shear rate applied to the suspension, leading to increased dissipation.
Suspensions of bubbles in Newtonian fluids have been studied by Rust and
Manga (2002a) and Llewellin et al. (2002): their experiments showed that
the relative viscosity of the bubbly liquid in a steady shear flow increases
with the gas volume fraction at low shear rate (with a lesser growth than the
relative viscosity of particle suspensions) and decreases at high shear rate.
Observation of the bubbles in the flow (also quantified in Rust and Manga
(2002b)) evidenced the importance of bubble deformation in the contribution
of the bubbles to the overall viscosity: bubbles in their experimental set-up
are spherical at low shear rate and elongated in the flow at high shear rate.
The distortion of flow lines around non-deformable bubbles leads to increased
local shear rates in the suspending fluid compared to the macroscopic shear
rate applied to the suspension. However, the absence of friction at the bubble
surface lessens the total dissipation in the bubble suspension compared to the
particle suspension. At high shear rate, the elongation of inviscid bubbles in
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the flow accommodates part of the shear deformation and decreases the total
dissipation. This transition from stiff to soft bubbles with increasing shear
rate is the result of a competition between two physical effects: the viscous
stress in the fluid tends to stretch the bubbles in the flow whereas the capil-
lary stress minimizes the bubbles’ surface by favouring a spherical shape. To
quantify this competition, the authors introduce a capillary number that can
be defined as “viscous” and is the ratio of the viscous stress to the capillary
stress: Cavisc =

ηγ̇
σ/R

where η is the viscosity of the suspending fluid, γ̇ is the
applied shear rate, σ is the surface tension between the gas and the liquid
and R is the bubble radius.
The case of suspensions in non-Newtonian fluids is more complicated as the
local shear rate between the particles, and consequently the apparent viscos-
ity of the interstitial fluid, is not known. Numerous experiments have been
performed on filled polymer melts, which are dispersions of rigid particles in
visco-elastic fluids and have large industrial applications (Mewis and Wagner,
2012). The results obtained by Poslinski et al. (1988) on suspensions of glass
spheres in a polymer melt shed light on two important effects of particle ad-
dition in a non-Newtonian fluid. In the absence of fillers, the suspending fluid
considered by the authors is Newtonian at low shear rate, and then shear-
thinning for higher shear rates. When particles are added to the fluid, the
viscosity of the suspension is increased for all shear rates, and the Newtonian
plateau gets shorter and shorter as the solid volume fraction increases. The
onset of shear-thinning in the suspension for lower shear rates is due to shear
amplification in the fluid between the particles, in which the effective local
shear rate can be high enough to get off the Newtonian plateau even though
at the macroscopic shear rate applied to the suspension the fluid alone would
still be Newtonian. The overall response of the suspension is the coupling
of the fluid rheology to the flow lines perturbation caused by the inclusions.
Suspensions of particles in yield stress fluids have been studied by Mahaut
et al. (2008) who characterized the elastic and plastic response of suspen-
sions of hard spheres in a Herschel-Bulkley fluid. Below the yield stress, the
elastic modulus of the suspensions grows with the solid volume fraction and
follows a Krieger-Dougherty law, as can be expected from the viscosity of
suspensions in Newtonian fluids: both measurements characterize the linear
response of each suspension. The yield stress increases with the solid volume
fraction too, and its growth, of smaller magnitude than the one of the linear
properties of the suspensions, is well predicted by micro-mechanical esti-
mates (Chateau et al., 2008). For shear thinning yield stress fluids, the lesser

3



growth of the yield stress compared to the linear properties of the suspension
can also be understood as a manifestation of shear amplification in the fluid
between the grains. The local shear rate in the suspending fluid is higher
than the macroscopic shear rate applied to the suspension and increases with
the solid volume fraction, leading to decreasing apparent (secant) viscosity of
the interstitial fluid. The overall response results from the interplay of flow
lines perturbation and apparent fluidification of the suspending fluid.

Bubbly yield stress fluids have been the subject of fewer studies. Be-
sides stability studies (Goyon et al., 2008; Salonen et al., 2011), their elastic
properties have been studied in detail in Ducloué et al. (2014) and a first
description of the rheology of mixtures of foams and pastes has been given in
Kogan et al. (2013). However, more work is needed to investigate a broader
range of rheological parameters for the yield stress fluid and to describe the
flow properties of those suspensions. We anticipate from the results on bub-
ble suspensions in Newtonian fluids that the rheology of an aerated yield
stress fluid will also be the result of the interplay of the suspending fluid
rheology and capillary forces acting on the bubble surface. Yield stress fluids
behave as visco-elastic solids below their yield stress and visco-plastic fluids
above that threshold. We are thus interested in the visco-elastic properties,
yield stress and flow curve of suspensions of bubbles in those fluids. In this
aim, we perform an experimental study of the overall rheological properties
of model suspensions of bubbles in tunable yield stress fluids. We limit to
gas volume fractions up to 50% so that we do not consider foams of yield
stress fluids, in which the bubbles are deformed by geometrical constraints.

In section 2, we present the materials used for the study, and the rheo-
metrical procedures. In section 3, we discuss the complex shear modulus of
a soft aerated solid. In section 4, we review our results for the plasticity
threshold of bubbly yield stress fluids. Section 5 is dedicated to the flow
characterisation of our suspensions.

2. Materials and methods

To perform this experimental study, we prepare model suspensions of
monodisperse bubbles in simple yield stress fluids. For most systems, the
suspensions are obtained by mixing a simple yield stress fluid with a sepa-
rately produced monodisperse foam.
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oil - vol. fraction continuous phase σ (mN.m−1)

emulsion (1) dodecane - 73% SDS 2.7% w. in water 36 ± 1

emulsion (2a) silicon (V20) - 75% Forafac R©(DuPontTM) 4% w. in water 15.5 ± 0.1

emulsion (2b) silicon (V20) - 73% Forafac R©(DuPontTM) 4% w. in water 15.5 ± 0.1

emulsion (3) silicon (V350) - 79% TTAB 3% w. in water/glycerol 50/50 w/w 35.5 ± 0.1

emulsion (4a) silicon (V350) - 70% TTAB 3% w. in water/glycerol 36/64 w/w 35 ± 1

emulsion (4b) silicon (V350) - 70% TTAB 3% w. in water/glycerol 36/64 w/w 35 ± 1

Table 1: Synthetic description of all the concentrated emulsions used as model yield stress
fluids to prepare bubble suspensions: nature and volume fraction of the oil dispersed phase,
composition of the aqueous continuous phase (including the surfactant) and surface tension
between the air and the continuous phase.

2.1. Model yield stress fluids

The simple yield stress fluids that we choose to perform the study are
concentrated oil in water emulsions. By changing the chemical composition
of the two phases and the oil volume fraction, we obtain various suspending
emulsions with elastic moduli ranging from 100 to 1000Pa and yield stresses
between 10 and 40Pa. Unless otherwise indicated, the radius of the droplets
is around 1 to 2µm (the polydispersity, computed as in Mabille et al. (2000),
is around 20%). At the considered gas volume fractions, this small droplet
size should ensure that there is scale separation between the drops and the
bubbles, and consequently validate the use of the suspending emulsion as a
continuous medium embedding the bubbles (Goyon et al., 2008). The variety
of the suspending emulsions used for the study is illustrated in table 1, which
gives their composition.

2.2. Suspensions preparation

Most suspensions are prepared by gently mixing the suspending emulsion
with a separately produced monodisperse foam. The foams are obtained by
blowing nitrogen plus a small amount of perfluorohexane (C6F14) through a
porous glass frit or through needles: we are able to produce nearly monodis-
perse foams with average bubble radii R ranging from 40µm to 800µm.
Coarsening is strongly reduced by the presence of C6F14 (Gandolfo and
Rosano, 1997), meaning that the bubble size is stable during measurements.
The continuous phase of the foam is the same as the one in the emulsion,
ensuring that the dispersion of bubbles in the emulsion during mixing is easy
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and does not induce any additional chemical effect in the suspensions. The
mixing with the foam adds in a small amount of continuous phase to the
emulsion, which lowers its oil volume fraction and thus alters its rheological
behaviour. For a series of suspensions at different gas volume fractions in a
given emulsion, we fix the oil volume fraction of the suspending emulsion by
adding as necessary a complement of pure continuous phase in the system
(the same protocol was used in Goyon et al. (2010); Kogan et al. (2013) for
instance). An example of a dispersion of bubbles in an emulsion is shown in
figure 1. The prepared bubble suspension is then poured in the rheometer

Figure 1: Microphotograph of a bubble suspension in suspending emulsion 3. The bubble
radius is 200µm. The granulated background is emulsion 3, which is transparent.

geometry to perform measurements. Because of the random nature of the
mixing and pouring process, we assume that the suspension is isotropic when
it is set in place in the rheometer.

2.3. Rheometrical procedures

The rheometrical measurements are performed on a stress-controlled rheome-
ter (either Bohlin C-VOR 200 or Malvern Kinexus Ultra). The geometry used
to perform the measurement does not affect the result providing the sheared
thickness of suspension is larger than several bubble diameters. Depend-
ing on the bubble size, different geometries were used to ensure that this
condition was satisfied, while minimizing the required volume of material to
fill in the geometry. For Rb ≤ 50µm, the material is sheared between par-
allel plates (radius R=25mm, gap h=2.5mm). The planes are serrated to
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prevent slippage of the suspension (Coussot, 2005). Suspensions containing
bigger bubbles require a larger thickness of sheared material and are stud-
ied in roughened Couette-like devices : for 50µm < Rb < 800µm, we use
a vane in cup (exceptionally a serrated bob in cup) geometry (inner radius
Ri=12.5mm, outer radius Ro=18mm), and for Rb ≥ 800µm, we use vane
in cup geometries (either Ri=12.5mm and Ro=25mm or Ri=22.5mm and
Ro=45mm).
The rheometrical procedure is described below. Typical values of the pa-
rameters are given all along the description. The shear modulus G′ of the
suspensions is measured immediately after setting the material in the rheome-
ter, by imposing small amplitude oscillations at a frequency of typically 1Hz.
The oscillatory stress is chosen to be well below the yield stress of the sus-
pensions, so that the oscillations are performed in the linear elastic regime
of each suspension. At this frequency, the loss modulus of the systems is
negligible.
After the elastic modulus, the static yield stress τy of the suspensions is mea-
sured by initiating flow from rest at a small and constant imposed shear rate
γ̇, typically 0.005s−1. The low shear rate ensures that the contribution of
viscous effects to the torque is negligible. The curve obtained during the
measurement of the static yield stress of suspending emulsion 2a is shown as
an example in figure 2. The suspending emulsion is elasto-plastic: the stress
increases first linearly with the strain, until it reaches a plateau at yielding.
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Figure 2: Yield stress measurement (left) and flow curve (right) of suspending emulsion
2a. The material is elasto-plastic below the yield stress and visco-plastic beyond.

Once the plateau stress is attained, the suspensions are set to rest at zero
stress for a few dozens of seconds, so that the elastic deformation stored in
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Fluid rheology Capillarity

Emulsion G′(0) (Pa) τy(0) (Pa) R (µm) σ/(2R) (Pa)

50 ± 10 360 ± 82

1 285 ± 20 10 ± 0.4 143 ± 17 120 ± 18

800 ± 40 23 ± 1.7

2a 230 ± 20 12 ± 0.3 41 ± 5 189 ± 54

2b 163 ± 10 7.2 ± 0.5 129 ± 10 60 ± 11

3 650 ± 50 40 ± 2 1000 ± 100 18 ± 2.2

4a 650 ± 50 20.5 ± 0.5 50 ± 10 350 ± 80

4b 799 ± 40 20.5 ± 0.5 150 ± 10 117 ± 11

Table 2: Relevant stress scales for the study: rheological characteristics of the suspending
emulsions, and capillary stress scale in the bubbles. The flow curve description is discussed
below in section 5.

the material is relaxed Cloitre et al. (2000). After that, a shear rate ramp is
applied over around 2 minutes, typically from 10−3 to 10s−1, which, with our
suspensions, is enough to ensure that the viscous contribution to the total
torque overcomes the one of the yield stress. The flow curve of suspending
emulsion 2a is shown in figure 2. The flow curve of all suspending emulsions
is well fitted to a Herschel-Bulkley model τ(γ̇) = τy + kγ̇n, where k is the
consistency and n ∼ 0.5 is the plastic index.
The rheological characteristics of the suspending emulsions used for the study
are detailed in table 2, along with the radius of the bubbles that were added
to each suspending emulsion to prepare the suspensions. The parameters
k and n of the flow curve of the suspending emulsions are not discussed
here, and are reserved for section 5. For a given set of suspending emulsion
and bubble size, several suspensions were produced to vary the gas volume
fraction in the range 0%-50%.
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3. Complex modulus

3.1. Elastic modulus

Experimental results. For applied stresses well below the yield stress, the sus-
pending emulsion behaves as a soft visco-elastic solid. The study of the linear
elastic properties of suspensions of bubbles in elastic solids has been the sub-
ject of previous work (Ducloué et al., 2014). Because of surface tension forces
at the interface between the gas and the suspending emulsion, bubbles resist
deformation and behave as equivalent soft elastic inclusions in the unyielded
suspending emulsion. The overall elasticity of the suspensions depends on
the ratio of the fluid’s elastic modulus to the bubble’s equivalent elasticity
in the suspending medium. This competition is quantitatively governed by
a capillary number defined as the ratio of the suspending medium elastic
modulus to the capillary stress scale in the bubbles, given by the Laplace
pressure:

Caelast =
G′(0)

2σ/R
(1)

For a suspension of bubbles with known radius in a given suspending emul-
sion, Caelast is entirely determined and the elastic modulus G′(φ) of the sus-
pension depends solely on the gas volume fraction φ. In the range of Caelast
experimentally accessible with our set-up (0.2 ≤ Caelast ≤ 9) G′ decreases
with φ and this decrease is all the more significant as Caelast is large. Micro-
mechanical estimates taking into account the physical parameters φ and
Caelast of the systems predict dimensionless elastic moduli Ĝ = G′(φ)/G′(0)
for semi-dilute suspensions (Thuy Linh et al., 2013; Palierne, 1990):

Ĝhomog(φ,Ca) = 1−
φ(4Ca− 1)

1 + 12
5
Ca− 2

5
φ(1− 4Ca)

(2)

in the Mori-Tanaka scheme. This estimate allows to predict values for Ĝ in
a broader range of Ca than is experimentally accessible with our systems.
The computed Ĝ undergoes a transition for Ca = 0.25: below this value, Ĝ
increases with φ, and it turns into a decreasing function of φ for Ca > 0.25.
In this latter range of capillary numbers, the micro-mechanical estimates
are in good agreement with the experimental measurements. Experimental
results from Ducloué et al. (2014) as well as micro-mechanical estimates for
Ĝ as a function of Caelast (left) and φ (right) are presented in figure 3.
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Figure 3: (left) Dimensionless elastic modulus Ĝ of the suspensions as a function of the
elastic capillary number Caelast for four values of φ. Symbols are experimental data points,
full lines are micro-mechanical computations (figure from Ducloué et al. (2014)). (right)
Dimensionless elastic modulus Ĝ of 3 bubble dispersions in suspending emulsions as a
function of the gas volume fraction φ. Symbols are experimental data points, full lines
are micro-mechanical computations; the capillary numbers are, from top to bottom: 0.3,
0.6, 9. From 0.25 to 9, Ĝ turns from being roughly constant with φ to decreasing as fast
as for surface tension-free pores. Dashed lines are the computed limits from equation 2,
for suspensions of infinitely rigid (Caelast = 0, top) and freely deformable (Caelast → ∞,
bottom) bubbles (data replotted from Ducloué et al. (2014)).

3.2. Viscous modulus

The viscous modulus of the systems, defined as the imaginary part of
the complex shear modulus, is negligible during the oscillatory measurement
performed at 1Hz. To study its evolution with the gas volume fraction, we
design a system with high viscous effects by using an aqueous phase with a
high glycerol weight content (64%) (emulsion 4). Because of the high glyc-
erol weight content in the aqueous phase, this emulsion is unstable below
25◦C. The measurements are all performed at 25◦C, but the temperature
was poorly controlled during preparation and storage of this emulsion, which
may explain that the two batches of this emulsion we made have slightly
different moduli. We accurately measure the viscous component of the com-
plex modulus by performing oscillations at very small deformation over a
frequency sweep, in the range 0.1Hz ≤ f ≤ 50Hz. For 1Hz ≤ f ≤ 20Hz,
the viscous modulus G′′(0) of the suspending emulsion stands out against
the noise in the oscillations and scales as the square root of the frequency:
G′′(0) ∼ a(0)f 0.5. Above this frequency, we did not manage to calibrate the
inertia of our geometry with enough precision to get accurate moduli. This
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frequency dependence of the loss modulus is known for concentrated emul-
sions (Mason and Weitz, 1995), as well as aqueous foams (Cohen-Addad
et al., 1998), which are structurally very similar. The power law scaling re-
mains the same for the suspensions of bubbles in the suspending emulsion:
G′′(φ) ∼ a(φ)f 0.5 in the same range of frequency. G′(f) and G′′(f) for sus-
pending emulsion 4b and a suspension of bubbles in this emulsion are plotted
in figure 4. We quantify the evolution of the viscous modulus with the gas
volume fraction by computing Ĝ′′(φ) = a(φ)/a(0).
Ĝ′′(φ) is plotted in figure 4 for suspensions of bubbles with two different radii
in two batches of suspending emulsion 4. Ĝ(φ) for the same suspensions is
also re-plotted for comparison. We observe that Ĝ′′ is a decreasing function
of φ. It can be noticed that this decrease is much larger than observed for the
elastic modulus of the same suspensions. Remarkably, and contrary to the
observations on Ĝ, although R is three times larger in one of the suspensions,
the values for Ĝ′′(φ) are similar for both series of suspensions.
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Figure 4: (left) Frequency dependence of elastic and viscous moduli of suspending emulsion
4b (black symbols) and a suspension of 150µm bubbles in that emulsion. The green lines
are the power law fits to the G′′(f). (right) Dimensionless elastic and viscous moduli
as a function of the gas volume fraction for two suspensions of bubbles in emulsion 4:
50µm in emulsion 4a and 150µm in emulsion 4b. The full colored lines are the computed
dimensionless elastic moduli for those systems. The thick black line is given by equation 4.

3.3. Discussion

Loss capillary number. To understand that result, we would like to compare
G′′(0), which is a scale of viscous dissipation in the suspending emulsion, to
a scale of viscous dissipation arising from the bubbles. In the suspending
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emulsion, the dissipated power per unit volume scales as G′′(0)γo
2f , where

γo is the oscillating strain amplitude. In the bubbles, the dissipation mainly
comes from the change in the area of the bubbles under shear. As the oscillat-
ing deformation is very small (γo ∼ 10−4), there is no macroscopic surfactant
flow on the surface of the bubbles and so the change of a bubble relative area
is governed by the macroscopic applied strain γo and scales as γo (Palierne,
1990). The surface viscosity at the bubble interface has two contributions:
a shear viscosity and a dilatational viscosity. For most surfactant solutions,
the contribution of the dilatational viscosity greatly overcomes the one of
the shear viscosity (Cohen-Addad et al., 2013). Surface rheology measure-
ments (Kao et al., 1992; Biance et al., 2009) indicate that the surface dilata-
tional viscosity of mobile surfactant solutions (employed in our systems) is
of order ηd ∼ 10−5 to 10−4N.s.m−1. The dissipated power in a bubble per
unit volume is proportional to the bubble specific surface area and so finally
it scales as fηdγo

2f/R. The ratio of the power dissipated per unit volume in
the suspending emulsion compared to the one in the bubbles reads

Caloss =
G′′(0)

fηd/R
(3)

which defines a loss capillary number. The value of G′′ for f ∼ 8Hz, which
is located in the power-law scaling part of the experimental curve, is around
95Pa in emulsion 4a and 125Pa in emulsion 4b. For the suspensions of 50µm
bubbles in emulsion 4a, Caloss is around 6 to 60 depending on the exact value
of ηd and it is around 23 to 230 for the 150µm bubbles in emulsion 4b. The
high value of Caloss emphasizes that the dissipation is much higher in the
suspending emulsion, which can be qualitatively understood by noticing that
dissipation in the emulsion mostly arises from the same mechanisms as in the
bubbles, from interfacial solicitation at the droplet surface. As the droplets
are much smaller than the bubbles, the droplets’ specific surface area is much
larger than the bubbles’ one and the dissipation per unit volume is higher
in the emulsion. This argument is only qualitative, because contrary to the
bubbles, the droplets are compressed and dissipation can also occur in the
films of continuous phase separating the droplets. Given that the decrease
of Ĝ′′(φ) that we observe in the experiments does not depend on the bubble
radius, and thus not on the bubble specific surface area, we can guess that
bubble dissipation is likely to be negligible, which in terms of loss capillary
numbers means that Caloss is very high. As the bubbles’ contribution to the
overall dissipation is very small, we can use the results established above for
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the elastic modulus (equation 2) in the limit of infinite capillary number,
by noticing that both moduli are the linear response of the suspensions and
should be described by the same equations providing we use the suitable
capillary number. This function

Ĝhomog(φ,Ca → ∞) =
1− φ

1 + (2/3)φ
(4)

is plotted in figure 4 (thick black line) and is in good agreement with the
measured Ĝ′′. This function happens to be equal to the Mori-Tanaka bound,
which is a classical poromechanics result for the elastic modulus of an elastic
solid containing pores with no surface tension (Dormieux et al., 2006).

Special case Ca → ∞. The moduli for small amplitude oscillations are the
linear response of our suspensions of bubbles in yield stress fluids, which we
would like to compare to the linear response of suspensions of bubbles in
Newtonian fluids, that is: their relative viscosity. The viscosity measure-
ments made by Rust and Manga (2002b) are not suitable for comparison
with our experiments because they are performed in a steady shear flow,
which means that deformable bubbles are elongated in the flow (whereas to
the first order in deformation they remain spherical in our systems). How-
ever, Llewellin et al. (2002) have performed oscillatory measurements on the
same suspensions of bubbles in a viscous syrup to determine their relative
viscosity. Their measurements are made over a frequency sweep at constant
shear stress (and consequently constant γof with γo the amplitude of the
oscillating strain and f the frequency). At low frequency, γo ∼ 2, and the
bubbles undergo large deformation, which cannot compare to our experi-
ments. At high frequency, though, the strain is small and the bubbles re-
main spherical in the liquid. The dimensionless viscosity of their suspensions
on the high frequency plateau thus correspond to a similar situation as our
moduli measurement at 1Hz. They find a rather fast decrease in this plateau
viscosity with φ. Both their experimental results, Ĝ for our suspensions of
very soft bubbles, and Ĝ′′(φ) for the suspension in emulsion 4b are plotted
for comparison in figure 5. All three data sets are very close. In all cases,
the bubbles’s contribution to the measured quantity is very small compared
to that of the surrounding medium. This translates into negligible elastic
contribution compared to the yield stress fluid, and negligible viscous dissi-
pation compared to the Newtonian fluid and the yield stress fluid. Although
the nature of the suspensions is different, the similarity in the equations for
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the linear response of the systems and the naught contribution of the bub-
bles yields to similar evolution with φ. For all systems, this evolution is well
described by the micro-mechanical estimate of equation 4.
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Figure 5: Dimensionless viscosity (bubbles in a Newtonian liquid, data replotted
from Llewellin et al. (2002)), dimensionless reduced dissipation Ĝ′′ and dimensionless
elastic modulus (both, bubbles in a yield stress fluid) as a function of φ. The dashed line
is, as before, the result of equation 2 in the limit case of Ca → ∞.

4. Yield stress

4.1. Experimental results

The plastic properties of the suspensions exhibit a very different be-
haviour from that of the moduli in solid regime. We discuss below the evo-
lution of the plateau yield stress with the gas volume fraction. The shape of
the whole stress-strain curve during the yield stress measurement is discussed
in Appendix. We measured the yield stress of seven bubble suspensions with
bubble radius R ranging from (41±5)µm to (800±40)µm and suspending
emulsions of yield stress τy(0) between 7Pa and 20Pa. Surprisingly, for all
these systems, we find that for gas volume fractions φ up to 50% the plateau
yield stress is not affected by the presence of the bubbles. This remains true
all over the radius range mentioned above. The dimensionless yield stress
τy(φ)/τy(0) as a function of φ is plotted for all these suspensions in figure 6.
Given the experimental precision, τy(φ)/τy(0) ∼ 1, meaning that the yield
stress of a bubble suspension is comparable to the one of the suspending
emulsion for the range of parameters investigated. Neither the emulsion’s
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yield stress, the bubble radius nor the surface tension seem to play a role, al-
though the range of physical and rheometrical parameters explored is rather
extensive (see tables 1 and 2 for details).
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Figure 6: Dimensionless yield stress as a function of the gas volume fraction, for seven
suspensions detailed in the figure caption: symbols refer to the emulsion composition and
colors differentiate the bubble sizes. The line is a micro-mechanical estimate (equation 8).

4.2. Discussion

To figure out the role played by the bubbles when flow is developed at
the yield stress, we follow Rust and Manga (2002b) and compare the stress
exerted by the suspending emulsion on the bubbles at macroscopic yielding
to the capillary stress. The capillary stress scales, as before, as the Laplace
pressure. We thus compute a plastic capillary number as

Caplast =
τy(0)

2σ/R
(5)

For the systems presented in figure 6, the plastic capillary number is always
very small, between 0.0069 and 0.11. We can infer from this small value of
Caplast that the bubbles are stiff compared to the suspending emulsion at
the yield stress. As a result, they remain spherical and are not significantly
deformed by flow.
To go one step further, we take advantage of the rigid behaviour of the bub-
bles in the suspending emulsion that allows us to use a micro-mechanical
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result obtained on suspensions of particles in yield stress fluids. Micro-
mechanical computations (Chateau et al., 2008) and dedicated experiments (Ma-
haut et al., 2008) with various beads type and size in different yield stress
fluids have shown that the yield stress of the suspensions can be related to
their linear response g(φ) through the formula:

τy(φ)

τy(0)
=

√

(1− φ)g(φ) (6)

where g(φ) is the evolution with the volume fraction of any linear property of
the dispersion. Since the bubbles are non-deformable during the yield stress
measurement, they do not store any energy and the approach developed
for grains holds for the bubbles. Note that the boundary condition at the
surface of a particle is no-slip, whereas it is full slip at the surface of the
bubble. This, however, does not modify the above result, as this boundary
condition information is implicitly enclosed in the g(φ) value. In Mahaut
et al. (2008), G′(φ)/G′(0) is chosen as a measurement of g(φ). The value of
g(φ) for our rigid bubbles would need be measured on a system with a close
to zero capillary number describing the linear response of the system, that
is, either Caelast → 0 or Caloss → 0. This is not experimentally possible with
our systems. We thus choose G′(φ)/G′(0) as a measurement of g(φ) and rely
on the theoretical limit given by equation 2 :

g(φ) = Ĝhomog(φ,Caelast → 0) =
5 + 3φ

5− 2φ
(7)

The combination of this expression and equation 6 leads to

τy(φ)

τy(0)
=

√

(1− φ)(5 + 3φ)

5− 2φ
(8)

which is an almost steady function which is plotted in figure 6. It is in good
agreement with the experimental data.
To shed light on the relevancy of a plastic capillary number, we need reach
higher Caplast for which bubbles could be deformable at yielding of the sur-
rounding medium. In this aim, we try to formulate suspensions with either
higher yield stress or larger bubble radius. Large Caplast can not be obtained
by our method of mixing a foam with the emulsion: the bubbles are broken
in the suspending emulsion during mixing, leading to heterogeneous suspen-
sions and lower capillary numbers than expected (see Kogan et al. (2013)
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for examples). We thus prepare a series of suspensions of R = (1 ± 0.1)mm
bubbles in emulsion 2, in which the yield stress is (40±2)Pa, thanks to a mil-
lifluidic set-up that allows us to directly inject the bubbles in the suspending
emulsion. For this system, Caplast = 0.57, and we observe that τy(φ)/τy(0) is
a decreasing function of φ, as can be seen in figure 7. As already described
for the viscosity of bubble suspensions in Newtonian fluids at high shear
rates, or the elastic modulus of bubble suspensions in yield stress fluids, the
relative softness of the bubbles compared to the suspending emulsion leads
to a decrease of the macroscopic rheological properties.
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Figure 7: Dimensionless yield stress as a function of the gas volume fraction, for R =1mm
bubbles in emulsion 2. The grey symbols are all the other systems, re-plotted here for
comparison. The dotted line is the theoertical limit given by equation 9.

The theoretical value of τy(φ)/τy(0) for fully deformable bubbles (that
is, pores with no surface tension) can be computed thanks to the micro-
mechanical approach leading to equation 6. Although the bubbles can obvi-
ously not be seen as rigid particles, the energetic approach underlying equa-
tion 6 holds for fully deformable bubbles because the zero surface tension
condition means that bubble deformation does not require any energy and
so it does not change the global energetic balance. Substituting g(φ) by the
value of G′(φ)/G′(0) for infinite capillary number (given by equation 4) in
equation 6, we derive an expression for the yield stress of suspensions of fully
deformable bubbles

τy(φ)

τy(0)
=

(1− φ)
√

1 + (2/3)φ
(9)
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which is plotted in figure 7. One can see in this figure that our experimental
system is rather close to the limit case of infinitely soft (zero surface tension)
bubbles in the suspending emulsion at yielding, even though the value of the
plastic capillary number that we define to quantify the rigidity of the bubbles
during the yield stress measurement is still lower than 1.

5. Flow consistency

5.1. Experimental results

The flow curve of the suspensions can be fully exploited only for those
studied in parallel plates or Couette geometries, because the precise nature
of flow is poorly known around a vane tool (Baravian et al., 2002; Ovarlez
et al., 2011). The flow curve of the suspending emulsion is well fitted to a
Herschel-Bulkley law τ(γ̇) = τy + kγ̇n, with n = 0.45 for our systems. We
have already seen that τy exhibits little dependence on φ. To highlight the
viscous contribution to the total stress during the flow curve measurement,
we plot as an example in figure 8 τ(γ̇) − τy as a function of γ̇ for all R =
50µm bubble suspensions in emulsion 4a. We can see that for a series of
suspensions at various φ in a given suspending emulsion, the exponent n is
not modified by the presence of the bubbles. We can thus fit the flow curves
with a given n and extract the consistency k(φ) at each φ. The dimensionless
consistency k(φ)/k(0) is plotted in figure 8 for two series of suspensions in
different emulsions but both containing small enough bubbles to be studied
in a parallel plates geometry. It is found to be an increasing function of φ
for both systems.
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Figure 8: (left) Log-log plot of the flow curves of R = 50µm bubble suspensions in emulsion
4a. The yield stress has been substracted to emphasize the common viscous power-law
and the increasing consistency with φ. (right) Dimensionless consistency as a function
of the gas volume fraction, for two suspensions with small bubbles. Symbols refer to the
suspending emulsion composition. In both cases, n = 0.45. The full line is a micro-
mechanical estimate given by equation 11.

5.2. Discussion

The capillary number relevant during flow compares the total shear stress
to the capillary stress scale. As can be seen on the flow curve of a suspending
emulsion (figure 2 for instance), the maximum stress applied during flow is
equal or lower to three times the yield stress of the emulsion. The flow
capillary number thus ranges from 0.01 ≤ Caflow ≤ 0.3 and is low. For this
reason, we assume that the bubbles are not significantly deformed in the
flow.
As we have previously done for the yield stress, because the bubbles are stiff
compared to the suspending emulsion, and thus do not store any energy, we
rely on a homogenization approach developed for suspensions of particles in
yield stress fluids (Chateau et al., 2008). For those suspensions, the yield
stress is related to the consistency by the formula:

k(φ)

k(0)
=

(τy(φ)/τy(0))
n+1

(1− φ)n
(10)

The information about the boundary condition is in this case implicitly en-
closed in the value of the yield stress of the suspensions. For our suspensions
of rigid bubbles, the yield stress is well described by equation 8, substituting
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equation 8 into equation 10 leads to

k(φ)

k(0)
=

(

5 + 3φ

5− 2φ

)
n+1

2

(1− φ)
1−n

2 (11)

This function is plotted in full line in figure 8, with n = 0.45, which is
common to both emulsions. The agreement with the experimental data is
qualitatively good. Suspensions in emulsion 2a show a faster increase in the
consistency than predicted, even at relatively low gas volume fraction. This
may be linked to the beginning of growth in the yield stress at φ ∼ 30%
for this system. A reason for this difference with the other investigated
systems could be the larger droplets in this emulsion (around 5µm of radius)
that get trapped between bubbles even at relatively low gas volume fraction.
The continuous medium hypothesis for the suspending emulsion would then
become questionable.

6. Conclusion

We have experimentally studied the rheological properties of suspensions
of bubbles in model yield stress fluids. We have seen that coupling of the
suspending fluid bulk rheology to bubble deformation occurs differently de-
pending on the stress applied to the sample. In the linear visco-elastic regime
of the fluid, for the range of elastic and loss capillary numbers that we have
explored, the bubbles are deformable compared to the suspending un-yielded
fluid. Bubble addition then leads to a softening of the suspension. At yield-
ing of the suspending fluid, the bubbles are generally stiff compared to the
suspending fluid, in which case the yield stress of the suspension is the same
as the one of the suspending emulsion. If the bubbles become softer and de-
formable in the suspending fluid, the yield stress of the suspensions decreases
with the gas volume fraction. During flow, which could be analysed for our
smallest bubble suspensions only, the bubbles are stiff in the suspending fluid
and lead to an increase of the consistency with the gas volume fraction. Those
distinct behaviours, entirely ruled by the gas volume fraction and bubble rela-
tive stiffness, can be quantified through different capillary numbers, relevant
in each regime. Based on that approach, micro-mechanical estimates, ei-
ther developed to take surface tension into account (for deformable bubbles)
or adapted from developments on rigid particles (when bubbles are non- or
fully deformable) prove relevant and useful. Those results are independent
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on the exact nature of the suspending fluid, especially on its microstructure
and they should apply for any soft suspending material providing its macro-
scopic characteristics are taken into account to compute the relevant capillary
number. The apparent limitation to soft porous materials is not a physical
restriction, but it allows capillary phenomena to play a role at macroscopic
length scales, whereas capillarity only needs to be considered for nanopores
in standard materials.

On-going work will be dedicated to the study of high gas volume fractions,
for which the emulsion can no longer be described as a continuous medium:
finite size effects are expected to occur. In this regime, bubbles are pressed
again one another because of geometrical constraints, and the droplets of
emulsion are trapped between them. The rheology of this foamy yield stress
fluid is yet to be described and understood.
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Appendix

In this appendix, we discuss in more detail the stress-strain curve obtained
during the yield stress measurement. As we impose a constant shear rate to
the initially at rest suspending emulsion, it first deforms elastically, and then
yields, leading to a stress plateau. The very beginning of the elastic regime
is linear, and the slope is equal to the elastic modulus determined during
the oscillatory measurement. For larger strain, non-linear elasticity and/or
creep behaviour occurs, and the stress-strain curve deviates from the initial
slope. We have noted that the creep behaviour of the suspending emulsions is
sensitive to the history of their flow. To make precise comparisons, we choose
to present data for a system on which we have systematically made two
consecutive yield stress measurements. At the end of the first measurement,
the state of the material is such that their is very little creep below the yield
stress, and we will thus use the second measurement for all that follows. This
sample preparation should allow us to probe a possible contribution of the
bubble to the softening of the suspension below the yield stress.
The suspensions of bubbles in the suspending emulsions exhibit the same
shape of curves, elasto-plastic with the same plateau stress as the emulsion.
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However, we have seen that the elastic modulus decreases with φ, meaning
that the initial slope gets less and less abrupt with higher φ. To isolate the
possible contribution of the bubbles to the creep behaviour from that to the
decreasing elastic modulus in the suspensions, we introduce a reduced strain
G′(φ)γ/τy(φ), which re-scales the linear elastic part of all the curves. We
then plot τ/τy as a function of the reduced strain. In this representation, all
curves have the same initial slope (equal to 1) and the same plateau stress
(equal to 1, too). The result of this operation, as well as non-rescaled curves
for a series of suspensions, are presented for two sets of suspensions of bubbles
in figure 9. We observe that the beginning of all curves is well fitted by the
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Figure 9: Stress divided by the plateau yield stress, as a function of the reduced strain,
for (left) the suspensions of 50µm bubbles in emulsion 4a and (right) the suspensions of
150µm bubbles in emulsion 4b. Inset: stress versus strain for the yield stress measurement
(suspensions of 150µm bubbles in emulsion 4b), given for comparison. The decrease of
G′(φ) is visible. On all graphs, the region of interest is centered on the beginning of the
curves. The black line is y = x.

y = x function, which is consistent with the chosen scaling. We can also
see that all the systems deviate from linear elasticity well before reaching
yielding. However, no clear effect of the gas volume fraction is visible: for
a given suspending emulsion, all the measurements seem to follow a master
curve. The only impact of bubble addition on the elasto-plastic behaviour
of the suspensions seems to be the decrease in G′(φ). No additional history-
dependent or creep behaviour seems to be introduced by the bubbles.
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