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ABSTRACT: The Unitary Group Adapted State Universal Multireference Coupled Cluster (UGA-SUMRCC) theory, recently developed by 
us (J. Chem. Phys. 2012, 137, 074104), contains exactly the right number of linearly independent cluster operators. This avoids any 
redundancy of the excitation manifold in a way exactly paralleling the traditional spin− orbital based SUMRCC. The choice of the linearly 
in-dependent cluster operators inducing the same change of orbital occupancy becomes increasingly cumbersome if we go over to the cases 
of active CSFs with more than two active quasiparticles. In the present development, we explore several aspects of the UGA-SUMRCC 
theory: (a) The first is a variant where we have deliberately incorporated redundancy of the cluster amplitudes to simplify the working 
equations and have shown that it can serve as a very good approximation to the parent UGA-SUMRCC theory for states with more than 
two valence occupancies. This in turn suggests that it could be a useful avenue to pursue for arbitrary mh−np situation since the working 
equations assume simpler algebraic structure in such cases. (b) The analyses of the aspects of size extensivity are known to involve greater 
complexity if they involve various reduced density matrices (RDMs), since the RDMs are not size-extensive quantities. We have presented 
the proof for UGA-SUMRCC starting from equations containing h−p RDMs via a decomposition involving products of size-extensive 
cumulants and argue that it has relevance for general cases beyond the h−p model spaces. (c) A useful extension of UGA-SUMRCC lies in 
formulating the theory for direct calculations of energy differences of spectroscopic interest such as excitation energies, ionization 
potentials, and electron affinities relative to a closed shell ground state, thus providing attractive alternatives to other allied methods such as 
SAC-CI, CC-LRT, EOM-CC, STEOM-CC, or ADC. This extension, called UGA-based Quasi-Fock MRCC by us, also leads to exact 
cancellation of common correlation terms between the initial and final states. Taking a cue from the hierarchical development in Fock-
space theories but keeping in mind the advantages of a state-universal (equivalently called a valence specific) theory, our formulation 
proposes a spin-adapted, accurate, and compact scheme for studying such energy differences. Our results demonstrate superior 
performance of the method as compared to EOM-CC.

1. INTRODUCTION

Coupled cluster theory1−5 has emerged as by far the most
reliable method for energy and properties of molecular elec-
tronic states dominated by a single reference function. For
states involving quasi-degeneracy, the behavior of the so-called
“gold standard” single reference coupled cluster (SRCC), viz.
the CCSD(T),6 becomes erratic, although more involved
approaches have been suggested within the framework of
SRCC but invoking higher level approximations.7,8 Multi-
reference Coupled Cluster (MRCC) theories seem like a more
natural choice to handle such situations, and the past three
decades have seen considerable developments along several
avenues. Despite the undeniable success of several method-
ologies, the black box use of MRCC theories is still difficult.
One major challenge for treating open shell and multireference
states (whether at the single or at the multireference level) is

the spin adaptation of the coupled cluster wave function. For
single determinant nonsinglet states, one usually adopts a spin−
orbital based theory to achieve a natural termination at the
quartic level and it is well-known that this leads to spin-broken
solutions.9 At the MRCC level, the degree of difficulty of spin
adaptation depends on the class of MRCC theory one wants to
adapt to the proper spin. It is also well documented that spin
adaptation has a small but significant role in the accuracy of
state energies and that it plays a vital role in the computed
properties of molecules. Among the three major approaches to
MRCC, viz., valence universal or Fock-Space (VUMRCC or
FS-MRCC),10−13 state universal (SUMRCC),14,15 and state
specific (SSMRCC),16 only the VUMRCC is inherently spin
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adapted. It is also a natural theory for direct computation of
energy differences. On the other hand, the Jeziorski−Monkhorst
(JM) Ansatz14 used in the last two types of MRCC theories is not
inherently spin adapted and in a truncated coupled-cluster
scheme results in spin broken solutions for non-singlet states.
The spin adaptation of the JM Ansatz has been the subject of
much research.17−23 The most recent endeavor in this direction
has been the use of the normal ordered JM-like Ansatz with
cluster operators defined in terms of unitary generators, first
introduced by Maitra et al.22 This Ansatz was first applied by
Maitra et al.22 in the context of SS-MRCC. The model func-
tions in this approach are Unitary Group Adapted (UGA)
Gel’fand states, and to indicate this the method was termed a
Unitary Group Adapted SSMRCC (UGA-SSMRCC) theory. It
combines the twin advantages of the avoidance of spin con-
tamination and a natural termination of the so-called “direct”
term at the quartic power of the working equations of the
SSMRCC theory. Following an early lead by Mukherjee and
Zaitseveskii,24 we were led to the same Ansatz to formulate an
UGA-SUMRCC23 theory which also shares the desirable
properties of the absence of spin contamination as well as
termination of the direct term at the quartic power. We should
mention here that another spin-free generalization of the JM
Ansatz, using unitary generators, was suggested by Datta and
Mukherjee, which is known as COS-SUMRCC20 and COS-
SSMRCC.21 They are structurally closer to the parent spin−
orbital based JM Ansatz and are thus probably the closest spin-
free analogue of JM based MRCC theories. The acronym
“COS” signifies a “combinatoric open-shell” situation where the
combinatoric factor accompanying the nth power of the cluster
operator is taken to be the inverse of the “automorphic factor.”
The applications thereof are still confined to one valence
problem, although generalization to encompass multivalence
situations is expected to indicate the potentiality of the approach.
As things are at present, the UGA-based SU- and SS-MRCC22,23

appear to be simplerthough admittedly somewhat less rich
alternatives. The preliminary applications indicate the potentiality of
both the SU- and SS- methods and thus warrant further explora-
tions. We propose to address in this paper various important aspects
of the UGA-SUMRCC. The excursions covered by us in this paper
will be delineated as we go along.
Unlike in the SSMRCC theory and its UGA version, where

the number of cluster amplitudes exceeds the number of virtual
functionsthus requiring the use of suitable sufficiency
conditions to resolve the redundancythere are no redundant
cluster amplitudes in the parent spin−orbital-based SUMRCC.
While formulating the UGA-SUMRCC, it would be natural to
include only those cluster operators for the various Tμ’s which
lead to just the right number of virtual functions χμ

l by their
action on model configuration state functions (CSFs), ϕμ. This
was the strategy adopted by us in our recent UGA-SUMRCC
formulation.23 Using the singles and doubles (SD) truncation
scheme, not all the virtual functions χμ

l generated by single and
double orbital substitutions are reachable using one and two
body unitary generators accompanying the cluster operators in
Tμ in the general situation (i.e., arbitrary valence occupancy in
ϕμ’s). The χμ

l s thus span a subset of linearly independent virtual
functions, which depends on both the spin-multiplicity and the
number of active orbitals in ϕμ. In addition to having an
incomplete spanning of the space of virtual functions via singles
and doubles in Tμ, some virtual functions reached can even be
linearly dependent. The latter is more frequent when the
number of active orbitals is rather few. There are two ways to

choose the cluster operators in such a situation: (a) use suitable
combinations of unitary generators to define the linearly in-
dependent combination of excitation operators and (b) con-
tinue to use the simple unitary generators, and in case their
number exceeds the number of linearly independent excitations
one includes redundant operators and provides extra working
equations by invoking sufficiency conditions. Approach b is
entirely conceivable and natural for UGA-SSMRCC, since one
is obliged to invoke sufficiency conditions anyway. Such a strategy
was indeed adopted by Maitra et al.22 in their UGA-SSMRCC and
a related theory where the inactive double excitations were treated
in an internally contracted manner (UGA-ICID-SSMRCC).25 In
the realm of UGA-SUMRCC, such sufficiency conditions do not
appear, but it is not mandatory to disallow redundancy such as has
been employed in the UGA-SSMRCC. The use of redundant
cluster operators may lead to simpler working equations whose
efficacy needs to be looked into. In our first formulation,23 we
have applied the theory for state energies per se of the cationic,
anionic, and excited states. With our choice of vacuum as the
Hartree−Fock function, it is worth looking into the possibility
of a formulation for excitation energy directly in a spin-free
manner. In this paper, we will explore the efficacy and utility of
three distinct modifications:
(i) The first issue, that we will consider, pertains to analyzing

our choice of cluster operators vis-a-vis those used by Li and
Paldus17 to formulate SUMRCC in a UGA framework. In partic-
ular, we will show that suitable linearly independent cluster
operators can be discerned from simple perturbative reasoning,
although they will no longer lead to orthogonal excited func-
tions. In effect, for the singles−doubles truncation scheme our
choice of combinations appears to be the same as that obtained
from explicit SU2 adaptation.17 We shall demonstrate that, if
we include some redundant cluster operators, it is possible to
generate a set of spin-free UGA-SUMRCC equations for excited
state energies and excitation energies which are of the same struc-
ture irrespective of spin multiplicity. One avenue which we shall
look into is the possibility of deliberately using certain redundant
cluster operators and concomitantly using suitable sufficiency con-
ditions to generate the working equations.
(ii) We shall also try to assess the relative importance of the

inclusion of higher body connected composites in the modified
UGA-SUMRCC equation. Since we have already looked into the
effect of such higher body blocks in the parent UGA-SUMRCC
theory,23 we think that it is worthwhile to look at the importance of
the higher body contribution in the modified theory also.
(iii) The third issue we will look into is to transcribe the

UGA-SUMRCC theory for state energies to a theory for com-
puting energy differences directly with respect to the ground
state. The Fock space MRCC (FS-MRCC) theory, also known
as the Valence Universal Multi-Reference Coupled Cluster
Theory (VUMRCC), achieves this by carrying out computations
on all subduced valence sectors leading up to the target valence
sector.13 Our efforts are directed toward the formulation of a
theory for calculating the direct energy difference for the target
sector with respect to the ground state without going through
intermediate valence sectors. Thus, in our strategy, the com-
putation of excitation energy does not involve a prior com-
putation of ionization energy and electron affinity and the
associated cluster amplitudes. We call this formulation a unitary
group adapted Quasi-Fock multireference coupled cluster (UGA-
QFMRCC) theory.
In this paper, we will also discuss in detail several aspects of

connectivity and size extensivity of the parent UGA-SUMRCC
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and the consequent size intensivity of the excitation energies
from UGA-QFMRCC. A general guideline for proving the con-
nectedness of such UGA-MRCC theories is presented, which
can be extended to any valence sector and rank of operator,
although the consequent derivations become increasingly more
involved with the increase in either valence or operator rank.
A study of the performance of all our proposed variants

across a chosen set of small molecules is undertaken. We have
assessed the trends in energies computed using UGA-SUMRCC
and its approximants along a series of basis sets of increasing
quality. Statistical data in a reasonable sample space is provided for
a more objective analysis.
This paper is organized as follows: In section 2, section 2.1

presents a summary of the development of the UGA-SUMRCC
theory, while section 2.2 describes the Ansatz for direct
calculation of energy differences and the derivation of the
working equations therein. In section 3, the choice of cluster
operators in a spin-free UGA-SUMRCC or UGA-QFMRCC is
discussed. Section 3.1 demonstrates the rigorous choices we
could make and 3.2 deals with certain approximations in the
form of sufficiency conditions which could be invoked to
simplify the equations. Section 3.3 contains a discussion about
the physical content of UGA-QFMRCC, in comparison to
other existing methodologies for direct computation of excita-
tion energies. In section 4, a general proof of size extensivity for
the parent UGA-SUMRCC and UGA-QFMRCC is delineated.
In section 5.1, we discuss the aspects of computational organiza-
tion and in section 5.2 the computational cost of UGA-QFMRCC.
In section 5.3, we present our results and explore the performance
of the variant using sufficiency against the parent UGA-SUMRCC
and the Quasi-Fock theory against the parent UGA-SUMRCC
theory. We also compare our results with those from related
theories like EOMCC,26−29 STEOMCC,30−32 etc. FCI bench-
marks and experimental results are also supplied where available.
Section 6 outlines our conclusions and our outlook for the future.

2. THEORETICAL DEVELOPMENTS: THE PARENT 
UGA-SUMRCC AND ITS QUASI-FOCK (QF) 
ANALOGUE

We present here a brief summary of the parent UGA-SUMRCC23

where the aspects of spin-adaptation and termination of the
equations become evident. Thereafter, a spin-free valence-specific
formulation for direct energy differences which we call UGA-
QFMRCC is presented.
2.1. Summary of the UGA-SUMRCC. The objective for

formulating the parent UGA-SUMRCC theory23 was to develop a
spin-free theory capable of handling open shell ionized and excited
states of a closed shell ground state without spin contamination,
while maintaining natural truncation of the direct term and the
ease of implementation. This is achieved by taking the following
Ansatz for Ω:

∑ ϕ ϕΩ = Ω | ⟩⟨ |
μ

μ μ μ

(1)

with

Ω =μ μT{exp( )} (2)

where the curly bracket above indicates normal ordering with
respect to a suitable closed shell vacuum |0⟩. The state |0⟩ is
taken in UGA-SUMRCC theory to be the closed shell “core”
determinant containing doubly occupied inactive orbitals. The
occupancy in |0⟩ is common to all ϕμ’s. The Tμ’s are defined as

spin-free unitary generators expressed in terms of spatial orbitals.
The ϕμ’s are unitary group adapted states, which are Gel’fand
Configuration State Functions (CSF)33of a specific type. They are
generated from the vacuum state |0⟩ by unitary group adapted
Gel’fand creators. Another qualifier required for ϕμ is a string of
indices collectively denoted as nμ which denotes the occupancies of
the orbitals defining ϕμ. The excited states in our formulation are
generated by the action of spin-free unitary generators ({εμ

l }),
acting on ϕμ:

χ ε ϕ| ⟩ = | ⟩
μ μ μ

{ }l l
(3)

where {εμ
l } are in normal order with respect to |0⟩. The functions

χμ
l are CSFs but they are neither Gel’fand states nor the SU2
adapted CSFs of Li and Paldus.17 {εμ

l }’s are linearly independent
specific combinations of spatial orbital replacement operators,
{Eμ

l }, which are generators of the unitary group. The final working
equations involve matrix elements between ϕμ’s wherein reduced
density matrices (RDM) appear which incorporate the spin infor-
mation of the target state, and hence how we choose the excited
CSFs does not play an important role.
As we have mentioned in section 1, our focus is on electron

attached/detached and excited states of closed shell ground
states, which can be considered as one-particle (1p)/one-hole
(1h) and one-hole−one-particle (1h−1p) sectors with respect
to the closed shell state considered as a vacuum, respectively.
1h and 1p model spaces are by construction complete. The
1h−1p model spaces are said to be “quasi-complete,”35 which is
a special case of incomplete model spaces (IMS). It was shown
by Mukherjee quite some years ago36−38 that, to maintain size
extensivity for IMS, it is necessary to abandon Intermediate
Normalization (IN) of Ω. Interestingly, it was also demon-
strated in the context of VUMRCC34 that for the special case of
1h−1p model spaces, both considering and not considering
intermediate normalization leads to the same Bloch equation for
those cluster operators which contribute to Heff. As it turns out, for
the UGA-SUMRCC, such is not the case,40 although the necessary
modification in the Bloch equation abandoning IN is fairly
straightforward. Thus, the same set of modules as needed to
construct the working equations for cluster ampli-
tudes as well as Heff can more or less be used for the generalization
of the formalism for CMS. Thus, operationally speaking, we may
organize the solution of our working equation in a way quite
analogous to that for a CMS.
To generate the working equations for 1h−1p IMS, we start

out from the Bloch equation:

Ω = Ω = ΩH P PPH P PH Peff eff (4)

where Heff is defined recursively from the model space
projection of eq 4

Ω = ΩPH P P PH Peff (5)

For the quasi-complete 1h−1p IMS, all the excitation operators
Tμ appearing in Ωμ = {exp(Tμ)} have the interesting property
that Tμ can never lead to a transition to any model function ϕλ

by its action on ϕμ: ⟨ϕλ|Tμ|ϕμ⟩ = 0. This property is exploited
to effect the minor modifications necessary in the UGA-
SUMRCC for the h−p IMS, even if IN for Ωμ is not valid.
Substituting the Ansatz for Ωμ in eq 4, we obtain
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where

is a compact notation of the series:

The “contraction,” AB, connecting two strings of operators A
and B denotes the sum of all possible contractions involving all

pairs of operators from both A and B. Terms like etc.

involve contractions between H and the various Tμ’s, excluding
contractions between the operators of different Tμ’s.
The operator, Wνμ, is a closed operator labeled by orbitals

distinguishing ϕμ and ϕν. It transforms ϕμ to ϕν via the
relation

ϕ ϕ ϕ ϕ| ⟩ = | ⟩⟨ | | ⟩νμ μ ν ν μ
W Heff (10)

It is composed of operators of various ranks, the lowest rank
being the number of orbitals by which μ and ν differ. Wνμ may
also contain components with any number of spectator scat-
terings involving creation and destruction of common active
orbitals of ϕμ and ϕν, resulting in the ranks of the operator
being higher. The spectators need not all be diagonal, it is only
essential for the labels of the spectators to be one of the
common orbitals of μ and ν.
Equation 7 is satisfied if we invoke the following equality:23

Now, we will define two components from this equation:

Here, “ex” refers to the excited and “cl” to the closed
component of the operator: an operator, Aμ,ex, excites to virtual
functions by its action on ϕμ; an operator, Aμ,cl, converts ϕμ to a
sum of model space functions:

∑ϕ ϕ ϕ ϕ| ⟩ = | ⟩⟨ | | ⟩μ μ

λ

λ λ μ μ
A Acl cl, ,

(14)

Projection of ⟨ϕλ| on Gμ,cl|ϕμ⟩ gives

Projecting with ⟨χμ
l
| on Gμ,ex|ϕμ⟩ leads to

Equation 16 is to be used for determining the cluster
amplitudes of Tμ. We note that the first term, called the “direct
term,” will necessarily truncate at quartic power in all situations.
The second, so-called, “coupling term” will also naturally
terminate, but the maximum power will be controlled by the
rank of the valence sector under consideration.
We may mention here that the lack of IN for Ω requires an

iterative solution for Heff via eq 5. In our actual implementation,
we have combined this iteration with that used for obtaining
the cluster amplitudes of Tμ. We will elaborate on this in
section 5.1.
2.2. Formulation of the Quasi-Fock UGA-SUMRCC.

The inspiration for the UGA-QFMRCC theory comes from the
development of the parent UGA-SUMRCC23 and the earlier

Quasi-Fock theory of Mukhopadhyay and Mukherjee.39 In the
parent UGA-SUMRCC theory, the t-amplitudes required were
only those for the target valence sector (say, excited state).
Here, our aim is not to obtain the state energy itself but the
energy difference with respect to a subduced valence sector
(say, ground state). The benefit of a correlated theory for
obtaining energy differences lies in the exact analytic cancel-
ation of the common correlation energy of the two states,
leading to a treatment of the common correlation terms of both
states on equal footing even under truncated schemes. The
theory for computing energy differences with respect to the
ground state requires an appropriate parametrization of the
wave operator where cluster operators inducing correlation of
the ground state should also appear explicitly. We use the
notation (m,n) to denote an mh−np valence sector and T(m,n)

to denote the cluster operators thereof. The theory we will use
in this respect first computes the amplitudes for the (0,0)
valence sector which generates the cluster operators of the
ground state and thenquite unlike the approach of the Fock
Space theorydirectly computes the amplitudes for the target
(m,n) (say, (1,1)) sector. In the FS-MRCC theory, in contrast
we would have had to build the target Ω hierarchically, starting
from the (0,0) sector of the Fock space, which is spanned by
the HF function, taken as the vacuum. The operators T(1,0) and
T(0,1) respectively are constructed in the next stage of solution
and provide information on the (1,0) and (0,1) sectors of the
Fock space. Next comes the operators T(1,1) of the target sector,
viz. the h−p model space. Our theory bypasses the (1,0) and
the (0,1) sectors, and this is the reason why such a theory has
been called a Quasi Fock MRCC (QF-MRCC) in the literature.39

Our intention is to develop a spin-free UGA version of a QF-
MRCC, using the same strategy as has been formulated in our
UGA-SUMRCC,23 for the direct computation of such energy
differences as ionization potential (IP), electron affinity (EA),
and excitation energy (EE). The performance of such a
formulation also provides us some insights regarding the
physics incorporated in our excited state calculations using
UGA-SUMRCC as against that in the description of the
ground state using SRCC.
We should mention here that there exist several closely

related theories, viz. Valence Universal MRCC (VUMRCC),10−13

the so-called double-curly VUMRCC41 which uses a special
combinatoric cluster Ansatz, and Similarity Transformed Equa-
tion of Motion Coupled Cluster (STEOMCC).30−32 VUMRCC
and the double curly VUMRCC utilize a valence universal Ω,
while all the other methods involve the calculation of ground state
amplitudes which are used to transform the Hamiltonian before
the computation of the energy differences. UGA-QFMRCC falls
in the second category. However, the Ansatz for UGA-QFMRCC
is richer in structure, and we expect a better performance. We have
also employed different approximate schemes analogous to those
in the UGA-SUMRCC for UGA-QFMRCC to see their per-
formance for this method.
In the present formulation, our first assumption is that the

ground state is well described by a single reference theory,
namely single-reference coupled cluster theory. Therefore,
exp(T) parametrization of the wave operator, acting on the HF
function for the ground state is sufficient. We will treat excited
states as multireference in a state universal framework, and for
the analogous treatment of the common correlation part, the
cluster amplitudes will include the exact ground state T’s for
every model function and the differential correlation will be
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treated by the Sμ amplitudes. This idea naturally suggests that
our choice of Ansatz for UGA-QFMRCC should be of the form

Ω =μ μT Sexp( ){exp( )} (17)

We distinguish carefully between the operators Tμ used in
UGA-SUMRCC and Sμ introduced here in the context of
UGA-QFMRCC. The Tμ’s in UGA-SUMRCC represent the
actual correlation of the target state contributed by the virtual
excitations from ϕμ as in the parent UGA-SUMRCC theory.
The Sμ’s, on the other hand, represent the dif ferential correlation
and relaxation of the state, i.e., the difference in the correlation
contribution of Tμ of the target state and the subduced state
with respect to which the energy difference is required.
We explain below the theory for excitation energy, but the

same considerations apply also to any other energy difference
of interest. The ground state T-amplitudes are first calculated
for the closed shell reference state and so, the first part of our
Ansatz is known. The working equations to be derived are, thus,
for Sμ’s of the excited state only. As we have emphasized above,
the hierarchical generation of the Sμ’s going through the various
lower valence sectors as in Valence Universal Multireference
Coupled Cluster (VUMRCC)10−13 is entirely bypassed.
Having solved for T, a dressed Hamiltonian is defined as

̃ = −H T H Texp( ) exp( ) (18)

H̃ and Heff are now partitioned to separate out the ground
state energy.

̃ = + ̅H E Hgr (19)

= + ̅H E Heff gr eff (20)

ϕ ϕ̅ = ⟨ | ̅ | ⟩νμ ν νμ μ
H Weff (21)

W̅νμ may be considered as the closed operator whose matrix
element with respect to ⟨ϕν| and |ϕμ⟩ corresponds to H̅effνμ.
Invoking the Bloch equation for the model function ϕμ,

∑ϕ ϕΩ | ⟩ = Ω | ⟩ ̅μ μ

ν

ν ν νμH Heff
(22)

∑ϕ ϕ| ⟩ = | ⟩ ̅μ μ

ν

ν ν νμH T S T S Hexp( ) {exp( )} exp( ) {exp( )} eff

(23)

and operating with exp(−T) from the left, we have

∑

ϕ

ϕ

− | ⟩

= | ⟩ ̅

μ μ

ν

ν ν νμ

T H T S

S H

exp( ) exp( ) {exp( )}

{exp( )} eff
(24)

∑ϕ ϕ̃ | ⟩ = | ⟩ ̅μ μ

ν

ν ν νμH S S H{exp( )} {exp( )} eff
(25)

Using the definitions in eqs 19−21, we can cancel Egr from
either side of eq 26 to give

W̅νμ, just as the operator Wνμ as defined in eq 21, is a closed
operator which is necessarily labeled by orbitals distinguishing

ϕμ and ϕν. It consists of operators of various ranks, the lowest
rank being the number of orbitals by which μ and ν differ. Let
us call them closed transfer operators without spectators. However,
W̅νμ may contain components with an arbitrary number of
spectator scatterings involving creation and destruction of com-
mon active orbitals of ϕμ and ϕν. In such cases, the ranks of the
operator may be higher than that for W̅νμ without spectators,
although it scatters from μ to ν. The spectators need not all be
diagonal, it is only essential for the labels of the spectators in Wνμ

to belong to the set of common orbitals of ϕμ and ϕν.
Equation 28 is satisfied if the following equality is invoked:

After having solved for the amplitudes of {Sμ}, we obtain the
sought after energy differences, ΔEk, and the associated
coefficients, {cμk}, from the eigenvalue equation:

∑ ∑ ϕ ϕ̅ ≡ ⟨ | ̅ | ⟩ = Δ
ν

μν ν

ν

μ μν ν ν μH c W c E ck k k keff
(31)

3. CHOICE OF CLUSTER OPERATORS IN THE CCSD 
TRUNCATION SCHEMES FOR UGA-SUMRCC AND 
UGA-QFMRCC

3.1. Use of Nonredundant Excitation Manifold. We
begin with the comment that, in the SUMRCC method using
the JM Ansatz in a spin−orbital basis, the set of excited func-
tions, {χμ

l }, reached by the action of Tμ’s on the various model
functions ϕμ are complete in the sense that for each of the N
active model functions, ϕμ, if Mμ is the number of virtual
functions reached from ϕμ, then the total number of cluster
amplitudes is M = ΣμMμ. The corresponding dimension of the
Hilbert space spanned by the virtual functions for all the N
roots is equal to Mvirt = Σlμ,kNlμk. Since Nlμ = Mμ and the sum

over k is exactly equal to the sum over μ, Mvirt = M and we have
no redundancy in the SUMRCC theory. Moreover, in a spin−
orbital formulation, the virtual determinant, χμ

l , reached from a
model determinant, ϕμ, is uniquely specified by the indices of
the occupied and unoccupied spin−orbitals in ϕμ. In a spin-free
UGA-MRCC, one would naturally want to retain the spirit of
the spin−orbital based SUMRCC in that one would choose
only those operators in ϕμ which for a given change of orbital
occupancy would lead to just the linearly independent set of
χμ
l
’s with the same inactive and active occupancy. Since opera-

tors defined in terms of spatial orbitals do not have a one to
one correspondence with pairs (χμ

l , ϕμ), a proper choice of
linearly independent operators becomes important. However,
an overcompleteness can arise within the excitation manifold
for one model function, ϕμ when more than one excitation
operator leads to the same excited function. An excited function
is characterized by the occupancies of the orbitals and the spin
coupling among the singly occupied orbitals. Given the number
of open shells (singly occupied orbitals) and the net spin of the
state, the number of linearly independent (LIN) functions is
known, and only as many equations are logically available as
there are LIN functions. It thus is logical to choose suitable
linearly independent combinations of the various excitation
operators of Sμ inducing the same orbital occupancy changes in
the set {χμ

l }. If this proper selection is not done to attain the
exact number of LIN operators and instead every unitary
generator is used in Tμ/Sμ to generate excited CSFs, they would
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lead to an overcomplete set of virtual functions. Several UGA-
based approaches in the context of SUMRCC have been pro-
posed and implemented, mainly by Li and Paldus.17,33 Paldus
and Li had earlier formulated a theory in which Gel’fand−
Tsetlin (GT) excited states were generated.42,43 As the for-
malisms were rather complex, they had exploited SU2 group
adaptation of the generators to form their excitation operators.
The generators of Gel’fand states are combined to form the
linearly independent operators of an SU2 group. They will not
necessarily follow the one-to-one orthogonality relation of
the corresponding Gel’fand adapted excited states of an U(nc +
na + nv) group where nc denotes the number of inactive core
orbitals, na denotes the number of active (equivalently, valence)
orbitals, and nv denotes the number of inactive virtual orbitals.
They argued that, to retain size extensivity, the states must obey
this orthogonality relationship. They had also normalized the
resulting operators.
In the present formalism, we have generated the working

equations by projecting the set of Bloch equations to the
excited state CSF’s, χμ

l . Our operator combinations are LIN
although not necessarily orthogonal. The projections naturally
lead to the appearance of n-body RDMs in the working equations.
The connectedness of the projected equations is sufficient to
prove the size-extensivity of our formalism.
We propose to choose our combinations of operators in a

practicable manner within the framework of our theory, using a
two-pronged approach: a perturbative analysis of our working
equations and the knowledge of the number of LIN functions.
Whether these operators produce mutually orthogonal virtual
functions, χμ

li
∀ i is something we do not consider at all. We

illustrate our scheme using an example.
We will henceforth denote by labels i, j, ..., etc. the inactive

holes; by a, b, ..., etc. the inactive particles; by I, J, ..., etc. the
active holes; and by A, B, ..., etc. the active particles. Excitations
involving an orbital, “i,” and an orbital, “a,” can belong to two
classes: (i) not involving a change in occupancy of the active
hole (I) or particle (A) orbitals or (ii) involving a change in
occupancy of the active hole or particle orbitals. ti

a, til
Ia, and tiA

Aa

belong to the first class. It is enough if we explain our strategy
using the T’s belonging to this class. For those belonging to the
second class, like tij

Aa or tIA
ab etc., an exactly analogous analysis can

be used.
To discern which of the excitation operators accompanying

the amplitudes, ti
a, til

Ia, and tiA
Aa, are linearly independent, we first

construct the projection equations for all of them and look at
their algebraic structures. The explicit working equations for ti

a,
til
Ia, and tiA

Aa operators in the 1h−1p sector are as follows:

η γ η γ− + − − + Γ

− Γ − Γ + Γ − Γ

− Γ =

G G G G G G

G G G G

G

1

2

1

2
1

2

1

2

1

2
1

2
0

i
a

iI
aI

I
I

iA
aA

A
A

iI
Ia

I
I

iA
Aa

A
A

iIA
aIA

IA
IA

iAI
AaI

IA
IA

iIA
IaA

IA
IA

iIA
aAI

IA
AI

iIA
AaI

IA
AI

iAI
IaA

IA
AI

(32)

η η η− − Γ + − Γ + Γ

+ Γ − Γ + Γ − Γ

+ Γ =

G G G G G G

G G G G

G

2

2 2

0

i
a

I
I

iI
aI

I
I

iA
aA

IA
IA

iI
Ia

I
I

iA
Aa

AI
IA

iIA
aIA

IA
IA

iIA
AIa

IA
AI

iIA
IaA

IA
IA

iIA
aAI

IA
AI

IiA
aAI

IA
AI

iAI
IaA

IA
IA

(33)

γ γ γ− − Γ − − Γ + − Γ

+ Γ − Γ − Γ + Γ

+ Γ =

G G G G G G

G G G G

G

2

2 2

0

i
a
A
A

iI
aI

IA
IA

iA
aA

A
A

iI
Ia

AI
IA

iA
Aa

A
A

iIA
aIA

IA
IA

iIA
AIa

IA
IA

iIA
IaA

IA
AI

iIA
aAI

IA
AI

IiA
aAI

IA
AI

iAI
IaA

IA
IA

(34)

where

γ ϕ ϕ

η ϕ ϕ γ

= ⟨ | | ⟩ =

= − ⟨ | | ⟩ = − =

μ μ

μ μ

E

E

{ } 1

2 { } 2 1

A
A

A
A

I
I

I
I

I
I

(35)

ϕ ϕ

ϕ ϕ

Γ = ⟨ | | ⟩ = −

Γ = ⟨ | | ⟩ = + −

μ μ

μ μ

E

E

{ } 1

{ } 1 ( 1)

IA
IA

IA
IA

IA
AI

IA
AI S

(36)

where S is the spin of the CSF, ϕμ (i.e., S = 0 for singlet and S =
1 for triplet). To obtain the LIN combinations of operators, it is
sufficient to consider up to two-body G-blocks. For the singlet
excited states, using the values of the RDMs as in eq 35, we
arrive at the following equations:

− + + − =G G G G G
1

2

1

2
0i

a
iI
aI

iA
aA

iI
Ia

iA
Aa

(37)

− + + − =G G G G G2 2 0i
a

iI
aI

iA
aA

iI
Ia

iA
Aa

(38)

− + + − =G G G G G2 2 0i
a

iI
aI

iA
aA

iI
Ia

iA
Aa

(39)

Similarly, the equations for triplet states are

− + + − =G G G G G
1

2

1

2
0i

a
iI
aI

iA
aA

iI
Ia

iA
Aa

(40)

− + + =G G G G2 0i
a

iI
aI

iA
aA

iI
Ia

(41)

− + − =G G G G2 0i
a

iI
aI

iA
aA

iA
Aa

(42)

We note here that eq 38 and eq 39 are identical. Thus, tiI
Ia and

tiA
Aa are linearly dependent operators. After a slight mathematical
manipulation, the set of equations can be equivalently written as

− + =G G G 0i
a

iI
aI

iA
aA

(43)

− =G G 0iI
Ia

iA
Aa

(44)

The first order perturbative estimate of the cluster amplitude
ti
a from eq 43 is given by

≈
− +

− + − + −
=T

f V V E

f V V f V V
t E

( ){ }
{ }i

a i

a
iI
aI

iA
aA

i

i
iI
iI

iA
iA

a

a
aI
aI

aA
aA i

a(1)1
1 (1)

(45)

Similarly, eq 44 indicates that

≈
−

− + − + −
t

V V

f V V f V V

( )
i
a iI

Ia
iA
Aa

i

i
iI
iI

iA
iA

a

a
aI
aI

aA
aA

(1)2

(46)

The quantities f p
p (p = i or a) are orbital energies, and Vrs

pq are
the two-body matrix elements. Thus, the corresponding
operators, {EiI

Ia} and {EiA
Aa}, should be treated on the same

footing in a combination as guided by the first order estimate.
We should therefore introduce 2Ti

a
≡

2ti
a[{EiI

Ia} − {EiA
Aa}] with a

common amplitude 2ti
a as the unknown and use eq 44 for its

determination.
Thus the first class of operators contains 1ti

a{Ei
a} and 2Ti

a
≡

2ti
a[{EiA

Aa} − {EiI
Ia}]. Similarly, the second class of operators
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contains 2T̃i
a = 1tĩ

a[{EiI
aA} − 0.5{EiI

Aa}] and 2T̃i
a = 2tĩ

a[{EiA
aI} −

0.5{EiA
Ia}].

The triplet equations, on the other hand, do not indicate any
linear dependence, and hence, all three amplitudes, ti

a, tiI
Ia, and

tiA
Aa can be used.
A comparative list of Paldus and our operators is provided

in Tables 1 and 2, wherein the operators chosen by Li and

Paldus17 have been converted to normal order with respect to
the HF function for an easy comparison with our manifold of
operators.
The perturbative analysis is workable only up to two-body

operators. In the case of a two active electron situation, we
know that the excited functions must be either symmetric
(triplet) or antisymmetric (singlet) depending on whether the
model function is triplet or singlet, respectively. This con-
sideration allows us to construct combinations of operators.
Beyond two-body operators for more than two active electrons,
taking explicit combination of operators becomes rather cum-
bersome and difficult in any scheme but doable in principle via
the combination of unitary generators adapted to SU2.
3.2. Deliberate Use of Sufficiency Conditions. In the

previous subsection, we have seen that suitable combinations of
operators need to be chosen to ensure a linearly independent
excitation manifold. This would become increasingly compli-
cated as we proceed to higher valence sectors. There is a pos-
sibility that inflating the number of equations by invoking
sufficiency conditions would allow us to use all possible unitary
generators (E) without having to bother about what com-
bination to use. We explore this possibility for a 1h−1p sector
using both UGA-SUMRCC and UGA-QFMRCC. The true
benefit of this scheme is, however, expected to be in the
extension of these theories to higher valence sectors and higher
body T operators. In the context of the example mentioned in
section 2.1, this would mean using the following set of equations:

− + − + − =G G G G G G2 0i
a

iI
aI

iA
aA

iIA
aIA

iIA
aAI

iAI
IaA

(47)

+ − =G G G 0iI
Ia

iIA
IaA

IiA
aAI

(48)

− + =G G G 0iA
Aa

iIA
AIa

IiA
aAI

(49)

Similarly, the equations for the other dependent operators
may be separated out. The excitation manifold here is over-
complete with the same function generated more than once.
Unlike the space of Gel’fand adapted excited functions, our
manifold in the parent UGA-SUMRCC is linearly independent
but nonorthogonal. On invoking sufficiency, the operators
become linearly independent. A possible hurdle is the in-
dependent evaluation of dependent amplitudes which might
destroy the relative contribution of these amplitudes. The per-
formance of this approximation with artificial inflation of un-
knowns and equations has thus to be carefully assessed to test
its efficacy. The results are presented in section 5.3.

3.3. Treatment of Orbital Relaxation and Differential
Correlation for Excitation Energies (EE) in UGA-QF vs Allied
Theories. Whenever multiple valence sectors are involved in the
description of a state, it is pertinent to discuss the physics
incorporated in a theory for direct determination of excitation
energy (EE) under three headings: (1) an appropriate choice of the
wave operator for the excited state which ensures exact cancellation

Table 1. Choices of T’s for Singlet 1h−1p States

UGA-SUMRCC OSCC (Paldus and Li)17

Ti
I

t E{ }i
I

i
I t E{ }i

I
i
I

Ti
A

t E{ }i
A

i
A t E{ }i

A
i
A

TI
a t E{ }I

a
I
a t E{ }I

a
I
a

TA
a t E{ }A

a
A
a t E{ }A

a
A
a

1Ti
a

t E{ }i
a

i
a1

t E{ }i
a

i
a1

2

1

2Ti
a

−t E E[{ } { }]i
a

iA
Aa

iI
Ia2

− −t E E E[{ } { } { }]i
a

iI
Ia

iA
Aa

i
a1

2

2

Tij
••

+••t E E[{ } { }]ij ij
IA

ij
AI +••t E E[{ } { }]ij ij

IA
ij
AI1

2

T••
ab

+••t E E[{ } { }]ab
IA
ab

AI
ab +••t E E[{ } { }]ab

IA
ab

AI
ab1

2

T̃i
a ̃ −t E E[{ } 0.5{ }]i

a
iI
aA

iI
Aa1 ̃ +t E E[{ } { }]i

a
iI
aA

iI
Aa1

̃ −t E E[{ } 0.5{ }]i
a

iA
aI

iA
Ia2 ̃ +t E E[{ } { }]i

a
iA
aI

iA
Ia2

Tii
aa t E{ }ii

aa
ii
aa

t E{ }ii
aa

ii
aa1

2

Tii
ab

t E{ }ii
ab

ii
ab t E{ }ii

ab
ii
ab1

2

Tij
aa t E{ }ij

aa
ij
aa

t E{ }ij
aa

ij
aa1

2

Tij
ab

t E{ }ij
ab

ij
ab

+t E E[{ } { }]ij
ab

ij
ab

ij
ba1

2

1

t E{ }ij
ba

ij
ba

−t E E[{ } { }]ij
ab

ij
ab

ij
ba1

2 3

2

Table 2. Choices of T’s for Triplet 1h−1p States

UGA-SUMRCC OSCC (Paldus and Li)17

Ti
I

t E{ }i
I

i
I t E{ }i

I
i
I

Ti
A

t E{ }i
A

i
A t E{ }i

A
i
A

TI
a t E{ }I

a
I
a t E{ }I

a
I
a

TA
a t E{ }A

a
A
a t E{ }A

a
A
a

Ti
a t E{ }i

a
i
a

t E{ }i
a

i
a1

2

1

TiI
Ia

t E{ }iI
Ia

iI
Ia

− −t E E E[{ } { } { }]i
a

iI
Ia

iA
Aa

i
a1

2

2

TiA
Aa

t E{ }iA
Aa

iA
Aa

+t E E[{ } { }]i
a

iI
Ia

iA
Aa1

2

3

Tij
••

−••t E E[{ } { }]ij ij
IA

ij
AI −••t E E[{ } { }]ij ij

IA
ij
AI1

2

T••
ab

−••t E E[{ } { }]ab
IA
ab

AI
ab −••t E E[{ } { }]ab

IA
ab

AI
ab1

2

TiI
Aa

t E{ }iI
Aa

iI
Aa t E{ }iI

Aa
iI
Aa

Tij
aI

t E{ }ij
aI

ij
aI

+
δ+

t E E[{ } { }]ij
aI

ij
aI

ji
aI1

2(1 )

1

ij

Tji
aI

t E{ }ji
aI

ji
aI

−t E E[{ } { }]ij
aI

ji
aI

ij
aI1

6

2

Tij
aA

t E{ }ij
aA

ij
aA

+
δ+

t E E[{ } { }]ij
aA

ij
aA

ji
aA1

2(1 )

1

ij

Tji
aA

t E{ }ji
aA

ji
aA

−t E E[{ } { }]ij
aA

ji
aA

ij
aA1

6

2

TiI
ab

t E{ }iI
ab

iI
ab

+
δ+

t E E[{ } { }]iI
ab

iI
ab

iI
ba1

2(1 )

1

ab

TiI
ba

t E{ }iI
ba

iI
ba

−t E E[{ } { }]iI
ba

iI
ba

iI
ba1

6

2

TiA
ab

t E{ }iA
ab

iA
ab

+
δ+

t E E[{ } { }]iA
ab

iA
ab

iA
ba1

2(1 )

1

ab

TiA
ba

t E{ }iA
ba

iA
ba

−t E E[{ } { }]iA
ba

iA
ba

iA
ba1

6

2

Tii
aa t E{ }ii

aa
ii
aa

t E{ }ii
aa

ii
aa1

2

Tii
ab

t E{ }ii
ab

ii
ab t E{ }ii

ab
ii
ab1

2

Tij
aa t E{ }ij

aa
ij
aa

t E{ }ij
aa

ij
aa1

2

Tij
ab

t E{ }ij
ab

ij
ab

+t E E[{ } { }]ij
ab

ij
ab

ij
ba1

2

1

Tij
ba

t E{ }ij
ba

ij
ba

−t E E[{ } { }]ij
ab

ij
ab

ij
ba1

2 3

2
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of the correlated ground state energy in the EE, (2) orbital
relaxation of the ground state orbitals, and (3) differential
correlation. The two latter points describe the changes attendant
on excitation. Since the formulation of our UGA-QFMRCC shares
all the three characteristics 1−3 above with the Fock-space MRCC
(FS-MRCC),10−13 Eigenvalue Independent Partitioning (EIP) in
Fock space (FS-EIP),56 and the Similarity Transformed Equation of
Motion CC (STEOM-CC) theory,30−32 it is pertinent to have a
comparative perspective of all these theories.
All four theories use the factorized cluster Ansatz for the

wave operator of the excited state:

Ω = ΩTexp( ) v (50)

where exp(T) is the wave operator for the ground state in the
CC form and Ωv introduces the effects of valence correlation,
core−valence interaction, and orbital relaxation/differential
correlation. It is in the quantitative inclusion of the various
physical effects induced by Ωv that the four theories differ. The
factorized cluster Ansatz allows the complete cancellation of the
ground state correlation energy via the use of the dressed
Hamiltonian, H̃ of eq 18, which allows a clean separation of the
ground state energy Egr and the operator part of H̃, H̅, as shown
in eq 19. Thus, for the same truncation scheme for the ground
state, the magnitude of the ground state energy subtracted for all
four theories is exactly the same. The effective Hamiltonian, H̅eff

generating the energy differences depends on Ωv which may be
different for the four theories. This is reflected in eq 21 where H̅eff

depends on Ωv, which may be different for the four theories in
actual applications. The FS-MRCC, FS-EIP, and STEOM-CC all
invoke the concept of valence universality10 and express Ωv as

Ω = S{exp }v (51)

where S consists of cluster operators of different valence sectors: S
= S(0,1) + S(1,0) + S(1,1). S(m,n) are the valence cluster operators
involving destruction of “m” holes and “n” electrons occupying the
mh and np active orbitals. In the FS-MRCC, the S(1,0) and S(0,1)

amplitudes are solved to get the information on the IP and EA
sectors, respectively. The additional correlation, including the
dispersion interaction between the active hole and particle for the
(1,1) sector, is taken care of by the S(1,1) cluster amplitudes. In the
FS-EIP, the Bloch equation for every valence sector is cast into an
eigenvalue equation obtained in the union space of {ϕμ

(m,n)}, and
the set {χμ

l(m,n)
≡ εl(m,n)ϕμ

(m,n)} where {ϕμ
(m,n)} denotes the set of

model functions for the (m,n) sector and the set {χμ
l(m,n)} are the

virtual functions obtained by the action of excitation operators
εl(m,n) on ϕμ

(m,n). In STEOM-CC, a technique similar to FS-EIP is
used with the proviso of an approximation that the S(1,1)

amplitudes are ignored altogether. In our UGA-QFMRCC, all
the cluster operators are for the (1,1) sector, and there is no
hierarchical build-up through the (0,1) and (1,0) sectors to the
(1,1) sector. An advantage of FS-EIP or STEOM-CC, as currently
implemented, lies in that the (1h, 0p) and (0h,1p) valence sector
equations can be exactly cast as a matrix eigen-problem, enabling
easy and intruder-free evaluation of S amplitudes. Although in
principle, our UGA-QFMRCC also can be cast as a matrix eigen-
problem, thereby obviating intruders in a similar manner, we have
not implemented such a strategy yet. We tend to look upon the
transcription of the set of Bloch equations to the matrix eigen-
problem as a technique to handle intruders.
The strength of the UGA-QFMRCC theory lies in the model-

function dependence of the S amplitudes (the so-called μ
dependence), which eliminates altogether the artificial use of higher
rank S amplitudes with direct spectator scatterings. This in itself

ensures that all the S amplitudes have knowledge of all the valence
occupancies of the model functions. If we refer to the Ansatz of our
wave operator in eq 17, the factorized Ansatz Texp{Sμ} for the
component Ωμ of the wave operator acting on ϕμ ensures that not
only the ground state dressing via exp T of the Hamiltonian makes
the direct computation of excitation energy possible but also it
allows us to use S amplitudes involving excitations only while
incorporating the involvement of all the active holes and particles
present in ϕμ. As an example, an operator Sμ inducing excitation
from i→ a for a function ϕμ with active occupancy (I,A) subsumes
in it interaction with I and A separately as spectators as also the
interactions where I and A are both involved.
As depicted in Figure 1, single excitations like Ei

a, EiA
aA, and

EiA
Aa among others are involved in correction of orbitals for

model spaces where A is an active virtual orbital (say, for a 1p
or 1h−1p model space). In FS-MRCC or FS-EIP/STEOM-CC,
EiA
aA, EiA

Aa, EiI
aI, and EiI

Ia, which are responsible for orbital relaxation
due to change in valence occupancy, are present up to linear
power only while in UGA-QFMRCC; the set of operators Ei

a,
EiA
aA, EiI

aI, EiIA
aIA, and EiIA

aAI are clubbed together as εi
a(μ) (denoted

with bold vertices in Figure 2, which occurs to all powers.

Hence, physics is incorporated to a greater extent in UGA-
QFMRCC on two counts: (a) knowledge of the S amplitudes
regarding the valence occupancies I and A and (b) a full
exponential involving Sμi

a (with ϕμ ≡ ϕI
A). When EiA

Aa is LIN
with Ei

a, however, it occurs up to linear power even in UGA-
QFMRCC. The correlation on the other hand is incorporated
by the two-body excitation operators and differential correlation by
three-body operators with direct and exchange spectators as in
Figure 2. Thus, in FS-MRCC or FS-EIP/STEOM-CC, a CCSD

Figure 1. FS-MRCC/FS-EIP/STEOM-CC (a,b) vs UGA-QFMRCC
(d,e)-Orbital relaxation diagrams. Note that for the (0,1) sector and
the target (1,1) sector, the operator in b from normal-ordered Ωv

terminates at linear power while d subsumes a and b and, thus, occurs
to all powers. Following the usual convention, inactive lines are
denoted by single arrows, and the active lines are denoted by double
arrows. The filled circle vertex in parts d and e depict the model space
dependence of the inactive excitation operator of Sμ.

Figure 2. FS-MRCC/FS-EIP/STEOM-CC vs UGA-QFMRCC-Differ-
ential correlation. Note that for the (0,1) sector, the operators b and c from
normal-ordered Ωv are necessary for introducing differential correlation but
are absent in a singles−doubles truncation while d subsumes a and b and,
thus, occurs to all powers. The operator, c is absent in UGA-QFMRCC,
but some implicit contribution through the G-block shown in e is possible.
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truncation scheme has no such differential correlation operators
while the UGA-QFMRCC easily incorporates the direct spectator
contributions to all orders. The exchange spectator blocks
implicitly contribute in the projection equations. Other than
spectator scatterings, orbital relaxation and correlation relaxation
also occur in the presence of multiple valence occupancies. In
order to fully include all such contributions, it would be necessary
to use up to (m + n + 2) rank operators for an (m,n)-valence
sector such as in Figure 3, which is not a practical possibility in

FS-MRCC/FS-EIP/STEOM-CC with spectator scattering of “m”
holes and “n” particles in both direct and exchange modes.
However, the direct spectator scatterings in the FS-MRCC can be
subsumed in UGA-QFMRCC with low body excitation operators
labeled by the CSF index, μ, and such operators can be treated to
all powers. The operators with some exchange spectator
scatterings would still be having higher ranks than just the
excitation ranks, butunlike in FS-MRCC/FS-EIP/STEOM-
CCμ dependence via inclusion of higher body blocks would not
necessitate the inclusion of all the spectator labels. Some other
excitations like Ei

I and EA
a will terminate at the linear power in both

theories. If we ignore three and higher body excitations (exchange
spectators, in particular), in FS theories they then never appear in
the Bloch equation. In contrast, although the three/four body Sμ’s
also do not appear in UGA-QFMRCC, the corresponding blocks
do, enriching the physical content implicitly in UGA-QFMRCC.
In STEOM-CC, as mentioned above, one ignores the S(1,1)

amplitudes, and it would miss the dispersion interaction in the
wave function. Since our working equations have G-blocks with I
and A both interacting, the dispersion interaction is incorporated.
Inclusion of such multiple spectators becomes particularly relevant
for the description of differential correlation accompanying
excitation. We can simply introduce μ-dependent double excitations
of the type ij → ab, while in EIP/STEOM-CC we would need at
least a three-body operator with spectator active scattering or even a
four-body operator with the pairs of I and A. Absence of this
differential correlation in a truncated CCSD scheme is evident in
the computed energies from EIP or STEOM-CC vis-a-vis UGA-
QFMRCC. This is a general advantage of any theory based on
or derived from the Jeziorski−Monkhorst Ansatz as against the
Valence-Universal Ansatz. Moreover the Quasi-Fock formalism
has cluster amplitudes for just the (0,0) and (1,1) sectors,
thereby bypassing entirely the necessity of having to go through
the 1h−0p and 0h−1p sectors before reaching the target,
1h−1p sector. The number of cluster amplitudes in UGA-
QFMRCC is thus less than that in EIP or STEOM-CC to
include equivalent physics, which is further enhanced by the
possibility of the appearance of all powers of Sμ which do not
have exchange spectators. This would be best demonstrated in

situations where orbital relaxation is very high, such as core
electron ionization and excitation. Preliminary investigations
indicate that UGA-QFMRCC is considerably better than EOM-
CC in these cases, although COS-CC20 is even better, as expected.

4. SIZE EXTENSIVITY OF THE PARENT UGA-SUMRCC 
AND EVALUATION OF SIZE INTENSIVE ENERGIES 
IN UGA-QFMRCC

In this section, we recapitulate the aspects of size extensivity of
UGA-SUMRCC and further elaborate on how the connectedness of
equations with apparently disconnected terms arising from the
occurrence of n-body RDMs solely on one fragment of a projected
composite may be demonstrated to be actually connected. There are
two levels of connectivity to be analyzed. First, we must demonstrate
that the G blocks themselves are connected composites. Next, we
must be able to show that the different components of the working
equations obtained on projection by ⟨χμ

l
| are connected among

themselves. Since RDMs are not in general connected quantities, we
must conclusively show that all of the terms in the matrix element
⟨χμ

l
|Gμ

l(n)
|ϕμ⟩, with the potential of being disconnected, either

necessarily have common labels with the G blocks or cancel on
algebraic manipulation. In essence, one needs to show that the terms
contributing to each projection equation are connected entities and
the cluster amplitudes of the set Tμ are connected.

4.1. Connectivity of the Gμ Blocks. To start with, we
assume that the cluster amplitudes are connected and analyze the
connectivity of the G blocks. The G blocks in eqs 12 and 13 are
composed of two types of terms, the so-called “direct term” and
the “coupling term.” The composite quantity, H̅μ, is an explicitly
connected quantity if Tμ’s are connected. Hence, the direct terms
are connected. For the coupling term, we have to analyze several
different aspects of the connectivity:
(1) Connectivity of consists of those closed

components of H̅μ which excites ϕμ to ϕν and being a part of
H̅μ is explicitly connected. For connected Tν’s, is
explicitly connected. In what follows, we will henceforth denote

(2) Connectivity of {exp −(Tμ − Tν)Xνμ}: We consider two
possible cases here: the case where ϕν and ϕμ differ by at least
one orbital (case 2a) and the case where ϕμ and ϕν have the
same orbital occupancy and either ϕμ = ϕν or they differ in the
spin coupling scheme of the active orbitals (case 2b).
For case 2a, the quantity Xνμ is explicitly dependent on all the

active orbitals by which ϕμ and ϕν differ since Xνμ contains Wνμ.
Since all the CSFs in the model spaces are treated on the same
footing, the functional dependence of every cluster amplitude on
the active orbital labels remains the same. Hence, the difference of
the amplitudes tμ − tν inducing the same excitation depends
implicitly on one or more of the active orbitals by which ϕμ and ϕν

differ. Hence, the composite {exp−(Tμ − Tν)Xνμ} has at least one
common active orbital label shared by the two factors, and hence,
the composite is connected. We also note here that our analysis
subsumes the case where the action of some components of Tν on
ϕμ is zero in the coupling term in eq 12 because of the occupancy
restrictions of some active orbitals. Clearly, the corresponding Tμ

involving the same label of active orbitals in creation and
destruction must involve those orbitals by which ϕμ and ϕν

differ.
For case 2b, if ϕμ and ϕν are the same, the composite in the

coupling term reduces simply to Xνμ, which is obviously con-
nected. If ϕμ and ϕν have the same orbital occupancy but differ in
their spin coupling schemes, then the quantity Xνμ would depend

Figure 3. FS-MRCC/FS-EIP/STEOM-CC vs UGA-QFMRCC-
Orbital relaxation for the (1,1) sector. This would, in principle,
require such a three-body operator from a normal-ordered Ωv, which is
implicitly present in the Tμi

a of our UGA-QFMRCC.
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on one or more of the same orbitals involved in the different spin
couplings for ϕμ and ϕν. In such a situation, the difference tμ − tν
will have implicit dependence on all active orbitals involved in the
segments in which the spin couplings of ϕμ and ϕν are different.
4.2. Connectivity of the Working Equations Involving

{εl
μ} and Gμ. The second level of connectivity, that of the

working equation, requires more sophisticated analyses. We first
note that the various ranks n of Gμ

l(n) can contribute to a matrix
element, ⟨χμ

l
|Gμ

l
|ϕμ⟩⟨χμ

l
|ΣnGμ

l(n)
|ϕμ⟩. Using eq 3, we may express

the matrix element as expectation values with respect to ϕμ:

∑ ∑

∑

χ ϕ ϕ ε ϕ

ϕ ε ϕ

⟨ | | ⟩ = ⟨ | | ⟩

≡ ⟨ | | ⟩

μ μ μ μ μ μ μ

μ

μ
μ μ

†G G

G

{ }

{ }

l

n

l n l

n

l n

l
n

l n

( ) ( )

( )

(52)

Using Wick’s theorem to rewrite the product of {εl
μ} with those

appearing in Gμ
l(n), it is easy to see that the only non-zero

contribution to the matrix element comes from the terms which are
either completely contracted or those involving unitary generators
with active labels only. The latter will give rise to RDMs of various
ranks dependent on the rank of the unitary generators with active
labels. We note now that the set of active orbital labels destroyed by
the unitary generators must be the same as those created although
they are not necessarily in the same order. For example, with ϕμ ≡

ϕ(I,A), the non-zero 2-RDMs can only be ΓIA
IA and ΓIA

AI. We would
henceforth refer to strict index equality in the lower and upper
indices as “diagonality.” When the upper and lower index sets are
equal but not all of the equal labels are in the same order in the
upper and lower sets, we refer to this property as “quasi-
diagonality.”Hence, ΓIA

IA is diagonal and ΓIA
AI is quasi-diagonal. In our

UGA-SUMRCC, all density matrix elements are either diagonal or
quasi-diagonal.
For the h−p model spaces studied by us here, the non-zero

2-RDMs are not always product separable, and they may lead to
disconnected pieces in various terms. The disconnected pieces
appear when a part of the pairs of active orbitals appears only
on the de-excitation part of the operator, {εl

μ}, and a part on the
G block or when all the pairs of active orbitals of the RDM
come from the {εl

μ} only. Representative diagrams for the first
case are shown in Figures 4 and 5. In a CCSD truncation

scheme for an h−p quasi-complete model space, some active
lines to the right may emanate from the G block and have com-
mon labels with active lines to the left which may have arisen from
the projection which are the problematic situation depicted in
Figures 4 and 5. Even though parts of the 2-RDM may occur on
different factors ({εl

μ} and Gμ
l(n); as in Figure 5), they are by

necessity quasi-diagonal and hence connected. As a consequence,

when the factors {εl
μ} and Gμ

l(n) each have an h−p pair on them,
the labels on the h−p lines are the same leading to connected
structures. A term like Figure 4 does not occur in our formulation,
as we do not have T operators containing direct spectators, and
hence, there are no projection equations with {εl

μ} having its
adjoint structure. However, we do have the so-called exchange
spectator operators, and terms like Figure 6 arise which can

apparently cause disconnected terms when the label, I, and the
pair, i,a, are on different molecular fragments.
Our intention is to demonstrate that one can eliminate the

disconnected terms via cumulant decomposition. We shall show that
the disconnected quantities for a given working equation get canceled
on invoking the working equations for other, lower rank, t-
amplitudes. In order to match terms between equations, it becomes
necessary to decompose higher body densities into lower body
densities via a so-called cumulant decomposition.44 We will also
demonstrate that in order to factor out the lower body equation from
the higher body equation in its entirety, we need to introduce terms
containing higher body densities which are zero in value. The strategy
used by us is general and may be suitably extended for analyzing the
extensivity for general mh−np quasi-complete model spaces.
We define the 1h density matrix element ηI

I as

∑η ϕ ϕ ϕ ϕ= = ⟨ | | ⟩ = −⟨ | | ⟩ =
σ

μ σ σ μ μ μ

†I I E{ } 1
I
I

I
I

γA
A is obviously equal to ⟨ϕμ|{EA

A}|ϕμ⟩ = 1. Using the general
definition of a spin-free cumulant,44 we have

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΓ = ⟨ | | ⟩⟨ | | ⟩ − ⟨ | | ⟩⟨ | | ⟩ + Λ
μ μ μ μ μ μ μ μ
E E E E{ } { }

1

2
{ } { }wx

uv
w
u

x
v

x
u

w
v

wx
uv

(53)

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

Γ = ⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩

− ⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩

+ ⟨ | | ⟩Λ − ⟨ | | ⟩⟨ | | ⟩

× ⟨ | | ⟩ + ⟨ | | ⟩Λ

− ⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩

+ ⟨ | | ⟩Λ + ⟨ | | ⟩⟨ | | ⟩

× ⟨ | | ⟩ + ⟨ | | ⟩⟨ | | ⟩

× ⟨ | | ⟩ + Λ

μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ

E E E

E E E

E E E

E E

E E E

E E E

E E E

E

{ } { } { }

1

2
{ } { } { }

{ }
1

2
{ } { }

{ } { }

1

2
{ } { } { }

{ }
1

4
{ } { }

{ }
1

4
{ } { }

{ }

xyz
uvw
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(54)

Figure 4. Apparently disconnected term when I and A are on different
fragments. We note here that the left-most projection operator is a de-
excitation operator and is not associated with a connected amplitude.
Hence, one would have to keep in mind that it is not a connected
entity, unlike the G blocks on the right. The same holds good for the
de-excitation operators in Figures 5 and 6.

Figure 5. Apparently disconnected term with quasi-diagonal RDM.

Figure 6. Occurrence of disconnected RDM and excitation.
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for arbitrary active indices u−z, which may be holes or particles.
We then find that

η γΓ = − + ΛIA
IA

I
I
A
A

IA
IA

(55)

η γΓ = + Λ
1

2
IA
AI

I
I
A
A

IA
AI

(56)

For the h−p CSFs, it then follows that ΛIA
IA is zero and ΛIA

AI is
non-zero, indicating that ΓIA

AI is not exactly factorizable into
products of lower body RDMs.
To ascertain the connectivity of the working equations, by

the strategy delineated in the paragraphs where the ηI
I
’s are

defined, let us consider the specific example of the pair of
projection equations for ti

a and tiI
Ia, i.e., eqs 32 and 33. We note

that the active label, I, in the de-excitation operator, EaI
Ii , will

always contribute an RDM where I will figure in both the upper
and lower indices. Among the various terms generated in the
projection equations, there will be some terms containing ηI

I

while the rest of the terms will contain either ΓIA
IA or ΓIA

AI. The
latter two can also be written in terms of factors ηI

I and γA
A and a

cumulant, Λ, if we use eqs 55 and 56. Thus, the entire set of
projection equations can be grouped into two parts: in one, ηI

I

explicitly appears, and in the other, only ΛIA
IA or ΛIA

AI but no ηI
I

appears. It is then possible to rewrite eq 33 as

η γ

γ

− + + − + − +

− − + + −

+Λ − + − +

+ Λ − + + − =

⎡
⎣⎢

⎤
⎦⎥

G G

G

G G G G G

G G G

i

G G G G

G G G G

ii

2 ( 2 )

1

2
( 2 )

(term )

( 2 )

( 2 ) 0

(term )

i

a

iA

aA

iA

Aa

I
I

iI
aI

iI
Ia

A
A

iIA
aIA

iIA
IaA

iAI
IaA

A
A

iAI
AaI

iIA
aAI

iIA
AaI

IA
IA

iA
aA

iIA
aIA

iIA
IaA

iAI
IaA

IA
AI

iA
Aa

iAI
AaI

iIA
aAI

iIA
AaI

(57)

We note that in term i there are several components in which
the pair of lines containing label I are generated exclusively
from the de-excitation operator, EaI

Ii . These components are all
disconnected, and they are all characterized by the property that the
label I, never appears in the associated G blocks. These dis-
connected entities have been shown in bold letters. It is
remarkable that all the components in term i appearing in the
brackets, (...) in eq 57 appear in eq 32 which originates from
the projection with Ea

i . However, there are more components in
eq 32 than what appears in term i. The missing entities in term i
are those in eq 32 which contain: (a) ηI

I and (b) the 2-RDMs,
ΓIA
IA and ΓIA

AI. These terms obviously cannot appear in term i,
since this would have required a cumulant decomposition of a
2-RDM, ΓII

II for a, and 3-RDMs in eq 33 containing at least one
“I” in both its upper and lower indices. For h−p CSFs, ΓII

II and
all the 3-RDMs are zero since such density matrices would have
violated the exclusion principle in a ϕμ where there are only
single active hole and particle occupancies labeled by I and A,
respectively. In order to complete the appearance of all com-
ponents of eq 32 in term i, we add to eq 33 all those com-
ponents which contain ΓII

II and 3-RDMs which do not change
the equation since they are all zero in value. We thus add the
following sum of components, each of which is individually
zero:

− Γ − Γ − Γ − Γ − Γ

− Γ − Γ

G G G G G

G G

, , , , ,

,

iI
Ia

II
II

iAI
AaI

IAI
AII

iIA
aIA

IAI
IAI

iIA
aAI

IIA
IAI

iAI
AaI

IAI
IAI

iIA
IaA

IAI
AII

iAI
IaA

IAI
AII

(58)

Equation 33 thus becomes

η η η− − Γ − Γ + − Γ

− Γ + Γ + Γ − Γ

+ Γ − Γ + Γ − Γ

− Γ − Γ − Γ − Γ

− Γ =

G G G G G G

G G G G

G G G G

G G G G

G

2

2

2

0

i
a

I
I

iI
aI

I
I

iI
aI

II
II

iA
aA

IA
IA

iI
Ia

I
I

iI
Ia

II
II

iA
Aa

AI
IA

iIA
aIA

IA
IA

iIA
AIa

IA
AI

iIA
IaA

IA
IA

iIA
aAI

IA
AI

IiA
aAI

IA
AI

iAI
IaA

IA
IA

iAI
AaI

IAI
AII

iIA
aIA

IAI
IAI

iIA
aAI

IIA
IAI

iAI
AaI

IAI
IAI

iIA
IaA

IAI
AII

iAI
IaA

IAI
AII

(59)

The cumulant decomposition of the zero RDMs would
generate either a product of cumulants containing an ηI

I and
some 2-Λ or a product of 1-RDMs, one of which would be ηI

I,
or a 3-Λ. In fact, the cumulant decomposition of the associated
zero 2- and 3-RDMs have the expressions:

ηΓ = = + Λ0
1

2
II
II

I
I

II
II2

(60)

η γ ηΓ = = − − Λ + Λ0
1

4
IAI
AII

I
I

A
A

I
I

IA
AI

AII
IAI2

(61)

η γ η γΓ = = − Λ + Λ + Λ0
1

2
2IAI

IAI
I
I

A
A

I
I

IA
IA

A
A

II
II

IAI
IAI2

(62)

Using the expressions above, we can include the missing
components of eq 32 in term i (to be henceforth called
modified term i) and club the rest of the contribution of eq 58
into term ii (to be henceforth called modified term ii). We
show explicitly only the terms containing two body G blocks to
avoid complexity. The decomposition of the higher body
densities using eqs 35−62 can be similarly carried out.

η η γ η γ

η η η η

− + − −

+ − − Λ + − + − Λ

− Λ − Λ =

⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

G G G G G

i

G G

G G

ii

1

2

1

2

(modified term )

1

2

1

2
2

0

(modified term )

I
I

i
a

iI
aI

I
I

iA
aA

A
A

iI
Ia

I
I

iA
Aa

A
A

I
I

I
I

II
II

iI
aI

I
I

I
I

II
II

iI
Ia

IA
IA

iA
aA

IA
AI

iA
Aa

2 2

(63)

Owing to the validity of eq 32, the entire modified term i
vanishes, making eq 33 reduce to just the modified term ii for
up to two body G blocks:

η η η η− − Λ + − + − Λ − Λ

− Λ =

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

G G G

G

1

2

1

2
2

0

I
I

I
I

II
II

iI
aI

I
I

I
I

II
II

iI
Ia

IA
IA

iA
aA

IA
AI

iA
Aa

2 2

(64)

Since, 2- and 3-Λ’s are all size extensive quantities, eq 33
written in terms of the cumulants, Λ, consists entirely of
connected terms. Some components in the modified term ii
contain only 3-Λ’s, and their size extensivity ensures that each
such component is connected. There would also be some
contribution coming from products of γA

A and a 2-Λ where the
γA
A always occurs on the G block. Hence, these components are
also connected. By an entirely similar reasoning, eq 39 in-
volving the de-excitation operator EaA

Ai upon cumulant de-
composition would also reduce to a set of connected components
involving cumulants after invoking eq 32. Here, the roles of γA

A and
ηI
I would be interchanged. Moreover, also for true excitations
involving active orbitals (such as I→ a or i→ a), the projection
equations involving an exchange spectator scattering in the de-
excitation operator can be also similarly transformed into a
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set of connected components containing appropriate 2-Λ’s and
3-Λ’s. The disconnected components along with several other
connected components and appropriate densities vanish because
of the validity of the lower body equations without the spectators.
Turning now to the one-body projection equations, the un-
contracted active lines in a composite may appear either
entirely on the G block which is explicitly connected or one on
the projection and the other on the G block. In the latter case,
diagonality/quasi-diagonality of RDMs ensures that they are
connected since the active line on the de-excitation operator
would have one label in common with one of those occurring
on the G block.
It is interesting to note that the proof of the connectivity

brought to the fore the use of 2- and 3-Λ’s having indices for
which the corresponding 2- and 3-Γ’s vanish due to the Pauli
exclusion principle. This is clearly demonstrated in eqs 60−62
above. We may call such cumulants Exclusion Principle Violating
(EPV) Λ’s. For the h−p case at the CCSD level of truncation, the
connected expressions will contain up to 3-Λ’s. For higher
truncation schemes, 4- and higher rank Λ’s can also appear.
The same conclusions could have been drawn by an

alternative but equivalent strategy. If we include in a projection
equation, such as eq 33, all the possible higher body RDMs,
n > 2 in our case, and use cumulant decompositions for all of
them, then, in general, all the disconnected terms cancel out
because of the validity of lower body equations, leaving us with
connected terms and higher body cumulants. Clearly, this
method will prove to be more profitable for the general mh−np
case. We note that although in our h−p model spaces, all higher
body Λ’s are of the EPV type, such is not the case of a general
mh−np active space. The alternative strategy introduced above
becomes then much easier for the purpose of discerning con-
nectivity.
Since the above two strategies are equivalent for proving the

connectedness of the working equations, in our actual imple-
mentation we have used the parent projection equations like eq
33. Solving eqs 32 and 33 is equivalent to solving eqs 32 and
64, and the same is true for other projection equations. We
must, however, bear in mind that, although the n-body RDM
elements corresponding to the EPV types are zero, the cor-
responding n-body Λ’s are necessarily not so. Hence, in order
to adopt this scheme, one must start with all possible RDMs,
even those of ranks beyond the number of active electrons, in the
parent projection equations. For the h−p case, the vanishing
Γ3’s are actually implicitly included (though only formally so).
The structure of the UGA-QFMRCC equations are exactly

analogous to the UGA-SUMRCC equations where H̅ replaces
H and W̅ replaces W. Both H̅ and W̅ are connected quantities,
and therefore like UGA-SUMRCC, UGA-QFMRCC also gives
connected equations. Following the prescription of Mukherjee
et al.,34 we can say that, as UGA-QFMRCC gives connected
working equations, ΔE calculated from this theory is size intensive.

5. MOLECULAR APPLICATIONS
5.1. Computational Organizations. Three different but

closely related theories have been discussed in this paper. The
final working equation for obtaining the cluster amplitudes in
the parent UGA-SUMRCC is eq 16.
To incorporate the lack of IN of Ωμ in the definition of Heff,

we will use the expression for Heff as in section 5.1 and put it
back into eq 10 at each step of iteration. Using eq 15, at any
iterative step (i + 1), we can write:

where

ϕ ϕ ϕ ϕ| ⟩ = | ⟩⟨ | | ⟩νμ μ ν ν μ
W Hi i( )

eff
( )

(67)

We start the iteration of Heff with the following expression:

= ̅ =λμ λμ λμH H Heff,
(0) (0)

(68)

Here, an important point to notice is that, in each step of
iteration, we have chosen our Heff in such a manner that it
corresponds to the true solution for the residue eq 15:

=λμR 0cl , (69)

Subsequently, we will diagonalize Heff to get the energies for all
the “k” states.
To implement the sufficiency variant of the parent UGA-

SUMRCC, we have separated out the blocks corresponding to
linearly dependent operators. Then, the residues for each
operator are computed, and iteration is performed until the
residue becomes zero. The algorithm for Heff for the sufficiency
variant is exactly the same as that for the parent UGA-SUMRCC.

For UGA-QFMRCC, we need to generate all possible HeSμ

connected terms which is called H̅. Then, we should construct

all possible HeSμ connected diagrams to get G blocks of which
the excitation structures contribute to Sμ’s and the closed
diagrams contribute to Heff. Sμ’s are the differential amplitudes
for the target valence sector. In our implementation technique,

our goal has been to generate all diagrams possible in HeSμ

connected without going through the explicit con-
struction of all possible H̅’s. The scheme is as follows:

(1) Write all the converged closed shell T’s in a file.
(2) Read from the file and map the T’s to the indices of the

model functions. Thus, now the range of the T array is
generalized hole−particle, with entries in valid locations
and the rest zero.

(3) Add the T to Sμ and treat it as a composite array
called Sμ′.

(4) Evaluate all possible HeSμ′ connected diagrams.This gives
us the correct set of required diagrams.

(5) Construction of H̅eff: We pick up the IP-like, EA-like, and
EE-like portions from the G blocks. We also calculate the
following closed diagrams where V is connected to the
closed shell T’s and T-like differential Sμ’s:

The sum of these two portions yields H̅eff at each step of

iteration (i). For the implementation of 5, we calculate (FS1μ′),

(VS2μ′), and (VS1μ′
2) and subtract from it the closed shell

correlation energy at each iteration step. The algorithm for H̅eff

is exactly the same as for the parent UGA-SUMRCC after
replacing Heff by H̅eff and Wνμ by W̅νμ. Diagonalization of the
final H̅eff yields excitation energies directly.

5.2. Computational Cost. The computational cost of
UGA-QFMRCC must be studied stepwise. The first step is
simply a CCSD calculation. The next transformation by Sμ in-
volves a cost of roughly Ndim times a CCSD computation where
Ndim is the number of model functions.
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At each step, the scaling with the number of basis functions,
N, is dominated by the computations involving all-particle
integrals, VPPPP. The number of unknowns scale as Ngh

4Ngp
2

where gh (generalized hole) = the number of occupied orbitals +
the number of active orbitals and gp (generalized particle) = the
number of unoccupied orbitals + the number of active orbitals.
The most expensive part of our computation is the construction
of three-body G blocks which involve a cost of 6(nact)2 times a
CCSD computation where “nact” is the number of active
orbitals and there are six possible three body structures for the
G blocks given one active hole, I, and one active particle, A.
The overall scaling behavior of our UGA-QFMRCC is in fact
of the same order as those in EIP or STEOM-CC except that
the STEOM-CC ignores the three-body excitation operators
necessary for equivalence, of physics incorporated, with our
UGA-QFMRCC as mentioned in section 3.3. This is an
approximation, and such approximations are open to us as
well. Due to the compact μ-dependent representation of the
cluster operators, it was not necessary for us to try this
simplification. Since, this is a theory for Ndim states without much
superfluous cost, we believe that the theory is workable in
situations where accuracy takes precedence over computational
cost for small to medium molecules.
5.3. Results and Discussions. To demonstrate the

performance of “sufficiency conditions” and our new quasi-
Fock formulation, we present some representative computa-
tions. Work is underway to obtain more data for a more con-
clusive demonstration of the strengths and weaknesses of this
theory. We would like to draw the attention of the readers to
the fact that some UGA-SUMRCC values presented here differ

from those reported in our previous paper.23 This is due to
some small bugs in our earlier code. The conclusions of our
previous publication, however, remain unchanged. We have
chosen excited states of H2O, HF, CH2, BH, and CH+ for
theoretical comparisons in small bases. Appropriate bar charts
have been presented to compare the trends in results for the
parent UGA-SUMRCC (scheme P) and its variant (scheme S)
where sufficiency conditions have been employed. Tables are pre-
sented to demonstrate the better performance of UGA-QFMRCC
in comparison with EOMCC and the comparable performance of
UGA-QFMRCC and the parent UGA-SUMRCC. Subsequently,
we present excitation energies in comparison with experimental
results for H2O and C2H2. All unreferenced results have been
computed by us using GAMESS US- 2007 or -2010.45 Results
of EOM-CCSD for triplet states have been obtained using
DALTON 2.0.46

Molecular Specifications. In the present section, we
describe the molecular geometry, active spaces, and basis sets
considered for our computations. The geometries for comparison
with experimental results are mentioned as footnotes to the
corresponding tables. The H2O molecule has been studied in
DZV and cc-PVnZ (n = D,T,Q) bases at the ground state
equilibrium geometry: O(0, 0, 0), H(0, ± 0.751155, −0.581606)
in Å. The model space of H2O contains (3a1, 1b1) orbitals from
the occupied level and (4a1, 2b2) orbitals from the unoccupied
level in all of our applications in the present paper.
The excitation energies for the singlet and triplet Π states of

HF have been computed using the DZV and cc-PVnZ (n =
D,T,Q) bases at a bond length of 1.40 au. For HF, we have
considered the two lowest energy degenerate functions of B1
and B2 symmetry in our model space.
The coordinates for CH2 have been taken as C(0, 0, 0),

H(0, ± 0.87251610, −0.67314164) in Å. For this molecule, our
choice of model space consists of the 3a1 orbital from the
occupied set of orbitals and (4a1,1b1) from the unoccupied
orbitals.
Computations for BH have been carried out at a bond length

of 2.3289 au using cc-PVnZ (n = D,T,Q) bases. We have
chosen the (3a1) orbital from the occupied set of orbitals and
(1b1,1b2) orbitals from the virtual set for the construction of
our model space.
CH+ has been treated at its equilibrium geometry of

2.137280 au. The bases we have used for this computation

Figure 7. Bar chart showing absolute percent error of scheme S vs scheme P in UGA-SUMRCC.

Table 4. Statistical Data for Percent Error of S vs P

[(abs(S − P))/P]*100 [(S − P)/P]*100

mean 0.00175 0.00078

SD 0.00143 0.00214

max diff 0.00699 0.00362

min diff 0.00010 −0.00699

Table 3. Scheme S − Scheme P in mH: Difference between
Use of Sufficiency Conditions and Use of Linearly
Independent Manifold of Operators

molecule state cc-pVDZ cc-pVTZ cc-pVQZ

HF 1Π −1.776 −1.889 −1.992
3Π −0.959 −1.24 −1.258

H2O
1B1 −2.751 −2.638 −2.656
1A2 −1.689 −1.888 −2.206
1A1 −2.197 −1.792 −1.639
1B2 −2.234 −2.025 −1.977
3B1 −0.959 −1.009 −1.049
3A2 0.206 −0.077 −0.413
3A1 −0.336 −0.343 −0.446
3B2 0.111 −0.099 −0.332

CH2
1B1 0.887 0.108 0.212
3B1 1.668 0.529 0.316

CH+ 1Π 0.346 0.858 2.653
3Π 0.933 1.016 1.77
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are cc-PVnZ (n = D,T,Q). Here, our choice of model space
contains two degenerate function of B1 and B2 symmetry.
Use of Nonredundant vs Redundant Excitations. The

scheme using sufficiency equations (denoted as scheme S) is
tested for excited states of several molecules. On comparing
with the full scheme (denoted as scheme P) where only a
linearly independent excitation space is used, it appears that
consistency is lacking for scheme S across different molecules.
However, error ranges are not very high. A further approxi-
mation where three-body G blocks with double-exchange spec-
tators whose operator structure corresponds to three body T’s
as per our policy are neglected is also explored. This scheme is
called scheme S′. The performance of this approximation in
scheme S is found to follow the trend of performance of
scheme P′ which involves a similar approximation in scheme P.
We may thus independently analyze the issue of importance of
higher body G blocks appearing at higher orders of pertur-
bation and the use of sufficiency conditions in the working
equations. As demonstrated in our previous paper,23 the contri-
bution of four-body blocks is on the order of tenths of a mH
and may be neglected for preliminary investigations. The scheme
denoted as scheme P2 in our previous paper23 is denoted as

scheme P in this paper as G blocks up to three-body have only
been considered for all computations.
To represent the efficacy of the sufficiency variant of UGA-

SUMRCC in comparison with the parent theory, we resort to
the following sets of data/charts:
(1) Table 3 shows the difference in energy between the two

variants along the cc-PVnZ series of basis (where n = D,T,Q)
separately for excited states of H2O, HF, CH2, BH, and CH+

molecules. Several states of both singlet and triplet multi-
plicities have been considered. Clearly, we expect a range of
difference values across different bases and states, but this
should be small for the viability of scheme S. Since the state
energies for different molecules are extensive quantities,
we have compared the percent deviation of S vs P in this
reasonably large sample space of 42 data points. The bar chart
in Figure 7 pictorially represents these data. Statistical data like
mean, absolute mean, and standard deviation from absolute
mean have been extracted to inspect the systematism (please
refer to Table 4).
(2) To investigate how both the variants behave with respect

to the FCI energy (where available), we have presented tables
where deviation from FCI for each method has been provided
(Tables 5−10).
(3) To analyze the change in error with a systematic increase

in basis size, we compare the standard deviation of the
percent gain in correlation energy from cc-pVDZ to cc-pVTZ
and from cc-pVTZ to cc-pVQZ across our sample space
separately for the full projection scheme (P) and the variant using
sufficiency (S).
The bar chart in Figure 7 for different molecules shows

very consistent results. A few outliers are the 1A2 and 1B2

states of H2O in the cc-pVDZ basis, which are of opposite
trend from rest of the bases (please refer to Table 3).

Table 6. Triplet Excited States of H2O Using DZV Basis

method 3B1 M-FCI (mH) 3A2 M-FCI (mH) 3A1 M-FCI (mH) 3B2 M-FCI (mH)

scheme P −75.845827 0.356 −75.759085 0.491 −75.763853 0.957 −75.688871 1.896

scheme S −75.845315 0.868 −75.758776 0.800 −75.763417 1.393 −75.689339 1.428

scheme P′ −75.843931 2.252 −75.757459 2.117 −75.763212 1.598 −75.688797 1.970

scheme S′ −75.843689 2.494 −75.757756 1.820 −75.762718 2.092 −75.689800 0.967

EOM-CCSD −75.849656 −3.473 −75.761222 −1.646 −75.767952 −3.142 −75.692649 −1.882

FCI −75.846183 −75.759576 −75.764810 −75.690767

Table 7. Singlet and Triplet Excited States of HF Using DZV
Basis

method 1Π M-FCI 3Π M-FCI (mH)

scheme P −99.580710 2.218 −99.603656 1.328

scheme S −99.581510 1.418 −99.604007 0.977

scheme P′ −99.580289 2.639 −99.602395 2.589

scheme S′ −99.580383 2.545 −99.602908 2.076

EOM-CCSD −99.591057 −8.130 −99.613134 −8.150

FCI −99.582928 −99.604984

Table 8. Singlet and Triplet Excited States of CH2 Using cc-pVDZ Basis

method 1B1 M-FCI (mH) 1A1 M-FCI (mH) 3B1 M-FCI (mH) 3A1 M-FCI (mH)

scheme P −38.962073 0.275 −38.722847 1.545 −39.033638 −2.611 −38.742057 2.564

scheme S −38.961186 1.162 −38.723192 1.200 −39.031970 −0.943 −38.742228 2.393

scheme P′ −38.965121 −2.773 −38.725365 −0.970 −39.032726 −1.699 −38.741833 2.788

scheme S′ −38.962776 −0.428 −38.724279 0.113 −39.032367 −1.340 −38.741978 2.643

EOM-CCSD −38.959034 3.314 −38.720011 4.381 −39.028531 2.496 −38.740466 4.155

FCI −38.962348 −38.724392 −39.031028 −38.744621

Table 5. Singlet Excited States of H2O Using DZV Basis

method 1B1 M-FCI (mH) 1A2 M-FCI (mH) 1A1 M-FCI (mH) 1B2 M-FCI (mH)

scheme P −75.816863 1.399 −75.740235 1.819 −75.729277 1.461 −75.640250 3.152

scheme S −75.817596 0.666 −75.741435 0.619 −75.730500 0.238 −75.643499 −0.097

scheme P′ −75.816449 1.813 −75.741057 0.997 −75.730466 0.272 −75.641504 1.898

scheme S′ −75.816489 1.773 −75.740798 1.256 −75.730253 0.485 −75.640936 2.466

EOM-CCSD −75.821486 −3.224 −75.744183 −2.129 −75.733449 −2.711 −75.644781 −1.379

FCI −75.818262 −75.742054 −75.730738 −75.643402
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Though, in an absolute sense, these differences are not very
large. The reason may lie in some sort of inadequate
description of these states in cc-pVDZ basis. We have also

seen that the difference values may be positive or negative,
which indicates that both ordinary mean and absolute mean
would be necessary to get a feeling of the performance of
sufficiency equations vs the full scheme. The signed mean of
all the percent difference values is 0.00078%, i.e, a positive
number, suggesting that, statistically speaking, the sufficiency
results are lower than the full projection scheme. The reason
may be attributed to the greater number of degrees of
freedom in the sufficiency equations. The percent absolute
mean value, an important qualifier for our set of data, is 0.00175%,

Table 9. Singlet and Triplet Excited States of BH Using cc-pVDZ Basis

method 1Π M-FCI (mH) 3Π M-FCI (mH) 1Σ1 M-FCI (mH) 3Σ1 M-FCI (mH)

scheme P −25.105068 0.132 −25.169890 −1.299 −24.851627 −1.126 −24.914764 3.061

scheme S −25.103118 2.082 −25.167822 0.769 −24.850924 −0.423 −24.908551 9.274

scheme P′ −25.108466 −3.266 −25.170172 −1.581 −24.851432 −0.931 −24.913651 4.174

scheme S′ −25.104499 0.701 −25.169678 −1.087 −24.848211 2.290 −24.910691 7.134

EOM-CCSD −25.102518 2.682 −25.166993 1.598 −24.847535 2.966 −24.913286 4.539

FCI −25.105200 −25.168591 −24.850501 −24.917825

Table 10. Singlet and Triplet Excited States of CH+ Using
cc-pVDZ Basis

method 1Π
M-FCI
(mH) 3Π

M-FCI
(mH)

scheme P −37.886484 −0.358 −37.962947 −1.606

scheme S −37.886138 −0.012 −37.962014 −0.673

scheme P′ −37.891325 −5.199 −37.963616 −2.275

scheme S′ −37.887068 −0.942 −37.963114 −1.773

EOM-CCSD −37.883039 3.087 −37.959286 2.055

FCI −37.886126 −37.961341

Table 11. Statistical Data for Correlation Gain with Increase
in Basis Size

[(CCT-CCD)/CCD]*100 [(CCQ-CCT)/CCT]*100

UGA-
SUMRCC(P)

UGA-
SUMRCC(S)

UGA-
SUMRCC(P)

UGA-
SUMRCC(S)

mean 0.1271 0.1274 0.0625 0.0621

SD 0.0198 0.0200 0.0037 0.0045

max gain 0.1456 0.1453 0.0690 0.0690

min gain 0.0779 0.0777 0.0553 0.0532

Table 12. Singlet Excitation Energies (ΔE) of H2O in DZV Basis

method scheme 1B1
1A2

1A1
1B2

UGA-QFMRCC scheme P 0.322132 0.398896 0.409569 0.498643

scheme S 0.321385 0.397601 0.408268 0.494970

scheme P′ 0.322375 0.397914 0.407658 0.496871

scheme S′ 0.322443 0.398175 0.408680 0.497743

UGA-SUMRCC scheme P 0.322465 0.399093 0.410051 0.499078

scheme S 0.321732 0.397893 0.408828 0.495829

scheme P′ 0.322879 0.398271 0.408862 0.497824

scheme S′ 0.322839 0.398530 0.409075 0.498392

EOM-CCSD 0.317842 0.395145 0.405879 0.494547

FCI 0.322704 0.398912 0.410228 0.497564

Table 13. Triplet Excitation Energies (ΔE) of H2O in DZV Basis

method scheme 3B1
3A2

3A1
3B2

UGA-QFMRCC scheme P 0.293259 0.380042 0.375226 0.449528

scheme S 0.293661 0.380219 0.375303 0.448740

scheme P′ 0.294848 0.381453 0.375060 0.448941

scheme S′ 0.294947 0.380984 0.375299 0.447629

UGA-SUMRCC scheme P 0.293501 0.380243 0.375475 0.450457

scheme S 0.294013 0.380552 0.375911 0.449989

scheme P′ 0.295397 0.381869 0.376116 0.450531

scheme S′ 0.295639 0.381572 0.376610 0.449528

EOM-CCSD 0.289672 0.378106 0.371376 0.446679

FCI 0.294783 0.381390 0.376156 0.450199

Table 14. Singlet and Triplet Excitation Energies (ΔE) of
HF in DZV Basis

method scheme 1Π 3Π

UGA-QFMRCC scheme P 0.493533 0.470572

scheme S 0.492702 0.470053

scheme P′ 0.493850 0.471709

scheme S′ 0.493822 0.471018

UGA-SUMRCC scheme P 0.493059 0.470113

scheme S 0.492259 0.469762

scheme P′ 0.493480 0.471374

scheme S′ 0.493386 0.470861

EOM-CCSD 0.482712 0.460635

FCI 0.492826 0.470770
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certainly not a very large value. The maximum and minimum
values and standard deviations of differences are also reasonable
quantities (please refer to Table 4). From this analysis, we may
conclude that the dispersion of data for sufficiency as against
projection is not very wayward.
Our comparison against FCI shows that the full scheme

performs pretty well in all cases. Keeping in mind that these are
solutions of nonlinear equations, the errors may be both
positive and negative. We see that the full scheme gives results
mostly above FCI. The sufficiency variant of the parent theory
performs somewhat erratically in the sense that it may

overshoot or undershoot the FCI values. Though this nature
is not observed in the parent theory, when the comparison is
done along different states of a particular molecule, the variant
using sufficiency is lacking this quality. The absolute percent
difference values, on the other hand, in Figure 7 clearly show
that they not very large. The primed schemes wherein certain
three-body blocks which occur at higher orders of perturbation
have been excluded are not quite reliable, indicating that the
excluded blocks often play a significant role in the description
of excited states.
In the third set of comparisons, we have seen a consistent

change in percent correlation with an increase in basis size for
our theory (please refer to Table 11). There are no sudden
jumps in error as evidenced by the small standard deviation.
This is true for both schemes and hence validates our
expectation that there are no limitations in the description of
excited states for our theory with increasing basis size. The
mean and standard deviations are very similar for schemes P
and S, indicating that invoking sufficiency does not affect the
change of energy with increasing basis size.

Quasi-Fock MRCC. The trends for accuracy as evidenced by
difference from FCI values are the same for UGA-QFMRCC
and the parent UGA-SUMRCC. Results show a difference on
the order of mH. The UGA-QFMRCC predicts excitation
energies which are consistently lower than the corresponding
value obtained by taking an explicit difference of UGA-
SUMRCC excited state energy and CCSD ground state energy
(Tables 12−19). Due to the unitary group adapted description
of our target state and use of projection equations, higher body
G blocks (three and four body) are involved. Thus, although
the description of the ground and excited state are well-
balanced in terms of operators, there exists a discrepancy at the
block level. The use of projection equations necessitates the
involvement of certain three and four body blocks which
correspond to triples and quadruples as in CCSDtq.47 These
could implicitly contribute to an overcorrelation of the excited
state as against the ground state, which is correlated at the purely
CCSD level. The more or less consistent improvement over
EOM-CCSD is most likely due to the greater incorporation of
orbital relaxation.

Table 15. Singlet and Triplet Excitation Energies (ΔE) of
BH in cc-pVDZ Basis

method scheme 1Π 3Π

UGA-QFMRCC scheme P 0.107971 0.043900

scheme S 0.110134 0.046459

scheme P 0.102949 0.043005

scheme S′ 0.106510 0.043683

UGA-SUMRCC scheme P 0.109262 0.044440

scheme S 0.111212 0.046508

scheme P′ 0.105864 0.044158

scheme S′ 0.109831 0.044652

EOM-CCSD 0.111811 0.047337

FCI 0.113699 0.047626

Table 16. Singlet and Triplet Excitation Energies (ΔE) of
CH+ in cc-pVDZ Basis

method scheme 1Π 3Π

UGA-QFMRCC scheme P 0.114014 0.037854

scheme S 0.114647 0.039080

scheme P 0.108663 0.036595

scheme S′ 0.112453 0.037271

UGA-SUMRCC scheme P 0.115143 0.038680

scheme S 0.115489 0.039613

scheme P′ 0.115489 0.039613

scheme S′ 0.114559 0.038513

EOM-CCSD 0.118588 0.042341

FCI 0.117478 0.042263

Table 17. Singlet Excitation Energies (ΔE) of CH+ in
14σ5π1δ Basisa

method 1Π

UGA-QFMRCC (P) 0.115030

CC3 0.119068

STEOM-CC 0.116128

EOM-CCSD 0.119803

FCI 0.118700
aGeometry: bond length = 2.13713 au. Ref 48.

Table 18. Excitation Energy of H2O Considering (1b1, 4a1, 2b2) Orbitals in the Model Spacea

1B1
1A2

3B1
3A2

method Sadlej ANO Sadlej ANO Sadlej ANO Sadlej ANO

UGA-QFMRCC (P) 0.274858 0.277845 0.339898 0.342474 0.258286 0.261563 0.331370 0.334170

EOM-CCSD 0.272035 0.280795 0.336538 0.345359 0.257249 0.266374 0.330241 0.339266

VUMRCC 0.276318 0.264889

experiment 0.275252b 0.334416c 0.257245d 0.338091d

0.264595c 0.334416e

aGeometry: O(0, 0, 0), H(0, ±0.7566, −0.5858) in Å. bRef 49. cRef 50. dRef 51. eRef 52.

Table 19. Singlet and Triplet Excitation Energies (ΔE) of
C2H2 in aug-cc-pVDZ Basisa

method 11Π 21Π 13Π 23Π

UGA-QFMRCC (P) 0.295153 0.309933 0.290207 0.302958

EOM-CCSD 0.304774 0.318854 0.309009 0.314472

experiment 0.299872b 0.331109b 0.296199 0.314206
aGeometry: C(0.000, 0.000, 1.66245), H(0.000, 0.000, 0.60085) in Å.
bRef 53.
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6. SUMMARY AND FUTURE OUTLOOK
In this paper, an extensive analysis of several different aspects of
UGA-SUMRCC has been undertaken. Detailed proof of size
extensivity of the theory for hole−particle model spaces has
been presented, using cumulant decomposition of reduced
density matrices (RDM). This had not been previously dis-
cussed in the earlier paper of ours.23 A numerical study of the
use of a redundant set of linearly dependent excitation operators
versus the use of linearly independent combinations of excitation
operators has also been undertaken. The former has been found
to have mixed performance relative to the latter for the different
molecular states studied by us. A systematic study of the per-
formance of the variants of UGA-SUMRCC with increasing
basis size showed that no untoward behavior occurs with in-
creasing basis size. An extension of the UGA-SUMRCC for the
direct calculation of energy differences has also been developed,
along with numerical applications. We have called this method
UGA-Quasi-Fock MRCC theory. This has been found to
perform satisfactorily. The insight it provides into the nature of
excited state physics incorporated into our formulation is sig-
nificantly enlightening. We find that both the UGA-SUMRCC
and UGA-QFMRCC perform satisfactorily, showing a con-
sistent improvement over the popular and widely used
EOM-CCSD theory.
Our formulation is well suited for extension to higher valence

sectors, which we hope to undertake in the near future to increase
the realm of applicability. Like all the effective Hamiltonian for-
malisms, our theories also suffer from the problem of intruders
unless we confine ourselves to the low energy excited states
only. However, this difficulty may be bypassed by casting the
equations as a dressed CI using an Eigenvalue Independent
Partitioning (EIP)/intermediate Hamiltonian technique.54−58

We hope to work on this too in the near future.
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