N

N
N

HAL

open science

A unified framework for structure identification

Bruno Zanuttini, Jean-Jacques Hébrard

» To cite this version:

Bruno Zanuttini, Jean-Jacques Hébrard. A unified framework for structure identification. Information

Processing Letters, 2002, 81 (6), pp.335-339. hal-00995240

HAL Id: hal-00995240
https://hal.science/hal-00995240

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00995240
https://hal.archives-ouvertes.fr

A unified framework for structure
identification

Bruno Zanuttini and Jean-Jacques Hébrard

Département d’Informatique, Université de Caen, F 14032 Caen Cedex France

Abstract

We propose a general framework for structure identification, as defined by Dechter
and Pearl. It is based on the notion of prime implicate, and handles Horn, bijunctive
and affine, as well as Horn-renamable formulas, for which, to our knowledge, no
polynomial algorithm has been proposed before. This framework, although quite
general, gives good complexity results, and in particular we get for Horn formulas
the same running time and better output size than the algorithms previously known.

Key words: Combinatorial problems. Structure identification. Prime implicate.
Horn-renamable. Affine.

1 Introduction

The problem of structure identification in relational data was formalized by
Dechter and Pearl [3]. We focus here on bivalued (boolean) data. The problem
consists in finding, if one exists, a propositional formula with predetermined
properties (e.g., being Horn), and admitting a given set of models. The main
motivation comes from Artificial Intelligence ; indeed, a truth assignment can
be seen as an observation of the world, and a variable as a property. Thus
finding a formula admitting given observations as its models can be seen as a
knowledge compilation task, into a smaller representation, or one that allows
efficient reasoning, updating, etc.

We will therefore focus on the identification of classes of formulas that sat-
isfy these requirements, and particularly classes for which the satisfiability
problem can be solved in polynomial time. Kavvadias and Sideri [6] show

Email address: {zanutti,hebrard}@info.unicaen.fr (Bruno
Zanuttini and Jean-Jacques Hébrard).

Preprint submitted to Information Processing Letters 12 July 2001

that Schaefer’s dichotomy theorem for the generalized satisfiability problem
[9] extends in some sense to the identification problem : deciding whether
given observations are the models of at least one formula in a class C is either
polynomial or CoNP-complete, where C is defined by fixed constraints. The
polynomial classes are the same as for the generalized satisfiability problem :
Horn, bijunctive, reversed-Horn and affine. Moreover, Dechter and Pearl [3]
give algorithms for computing a formula when a Horn or bijunctive one ex-
ists ; the first finds in time O(|R|?>n?) a Horn formula with O(|R|n?) clauses,
where |R| is the number of observations and n the number of variables, and
the second gives in time O(|R|n?) a bijunctive formula with O(n?) clauses.
The reversed-Horn case is similar to the Horn case, and linear algebra gives a
polynomial algorithm for affine formulas.

We introduce here a new framework for the identification problem (section 4),
based on the notion of prime implicate. This framework handles Horn and
bijunctive formulas, with a better output size for Horn formulas than the algo-
rithms previously known (O(|R|n) clauses in time O(|R|?>n?)). It also handles
affine formulas (section 5), without needing the usual tools of linear algebra :
we show how prime implicates allow to link the conjunctive normal forms and
the algebraic representations of these formulas. Finally, our framework handles
Horn-renamable formulas (section 5), for which, to our knowledge, no polyno-
mial algorithm has been proposed before. Beyond these results, our approach
gives a unified procedure for all these classes.

2 Preliminaries

We assume a countable number of propositional variables x1, xs, We call x;
a positive literal, and —x; a negative literal. A clause is a disjunction of literals
in which each variable appears at most once, and a formula is in conjunctive
normal form (CNF) if it is written as a conjunction of clauses. For instance,
the formula ¢ = (21 V —22) A (23) A (-1 V —22 V —z4) is in CNF. A vector
m € {0,1}™ is a model of a CNF 1 (denoted by m = 1) if m satifies at least
one literal ¢ in each clause C of ¢ (we say m satisfies C' via t). A relation on
{0,1} is a subset of {0,1}". A CNF ¢ describes a relation R if R is exactly the
set of models of 1. For m € {0,1}", we write m[i] for its ith component, and
the number of vectors in R is denoted by |R|. For m,m' € {0,1}", m < m/
and m < m/ refer to the lexicographic order. Throughout the paper, R stands
for a fixed nonempty relation on {0, 1}.

A CNF is Horn if each of its clauses contains at most one positive literal (e.g.,
¢ above is Horn), and bijunctive if each of its clauses contains at most two
literals (¢ is not bijunctive). We denote by HORN (resp. BIJUNCTIVE) the
class of Horn (resp. bijunctive) formulas. A relation is said to be Horn (resp.

bijunctive) if it has at least one Horn (resp. bijunctive) description. We now
define the problem IDENTIF[C] for a class C of propositional formulas.

Problem IDENTIF[(C]

Input : A relation R

Output : 'No’ if R has no description in C, otherwise some CNF 1 € C de-
scribing R.

We are interested in finding efficient algorithms for IDENTIF[C] for different
classes C : those of Horn, bijunctive, affine and Horn-renamable formulas.

3 A polynomial algorithm for description in CNF

As a preliminar step, we consider the problem of computing in polynomial
time a CNF 9 describing R ; the rest of our work is indeed based on an
efficient algorithm for this problem. Note that such a CNF always exists (see
for instance [3]), but computing the classical canonical one requires computing
a clause for each vector not in R, and thus is not polynomial. The rest of this
section introduces a polynomial solution to this problem.

For m € R, let po(m) (resp. p1(m)) be the length of the longest common prefix
of m and its predecessor (resp. successor) m' € R in the lexicographic order,
or —1 if m’ does not exist. We define the clause C'(m,i) for all m € R and
i = 1,...,n in one of the two cases below, where ¢; = z; if m[j] = 0 and
U= —z;iftmljl=1:

e Fori>py(m)+1and m[i]| =1, C(m,i) =4 V...Vl 1 Va;
e Fori > p;(m)+1and m[i] =0, C(m,i) =4, V...V {1V x;.

Otherwise, we let C(m, i) undefined. Now we define the CNF Describe(R)
to be the conjunction of all the defined clauses C'(m, 7).

Example 1 Let R = {001,100,110,111} ; we have : py(001) = —1, and we
get the clause C(001,3) = z1 VoV ; p1(001) = 0, and C(001,2) = 21V 25 ;
p1(100) = 1, and C(100,3) = —x1 V 22 V —z3. The other clauses C(m, i) are
undefined, and we finally get the CNF Describe(R)= (z1 V 2 V x3) A (21 V
|.7)2) N (|331 V) V _|333).

Note that R can be seen as a binary tree 7', with each m € R corresponding
to a branch of 7. Then C(m, i) corresponds intuitively to a missing subtree of
T (a son of the ith node of the branch m), i.e., C(m,) forbids a set of vectors
not in R.

Proposition 2 The CNF 1p=Describe(R) describes R. It contains O(|R|n)

clauses and can be computed in time O(|R|n?).

PROOF. Let m € R. We show m [= 9. By definition, m = C(m, 1) holds for
every clause C(m, i) of ¢. Now let m’ € R, m' # m, and C(m/,7) a clause of
Y. Assume m < m' (the case m' < m is similar). Let iy be the minimal index
such that m[ig] = 0 and m/[ig] = 1. If i > iy, then m satisfies C(m/, 7) via —x;,.
Otherwise i < ig, thus m[i] = m'[i] and m = C(m/,i). Finally, m is a model
of 1. Conversely, let R = {my,...,mg}, with m; < m;;, (0 <j < |R]), and
let m € {0,1}"\R. We show that m does not satisfy ¢. If m < my, let i be
the minimal index such that m[i] = 0 and m4[i] = 1 ; m does not satisfy
C(ma,10). The case m|g < m is similar. Now assume m; < m < m,1, and let
ig, %1, i be the minimal indexes such that m;[io] = 0, m;41[éo] = 1, m,[i1] = 0,
mli1] = 1, mliz] = 0 and mj;1[é2] = 1. We have p;(m;) = po(mjt1) = 1o — 1,
and necessarily (79 < 4, and iy = i) or (ip < iy and iy = iy). If 4y < 4y, then
we have i; > p1(m;) + 1 and thus m does not satisfy C(m;, 41), and if iy < 4o,
then i > po(m;41) + 1 and m does not satisfy C(mj1,12). Finally, m is not
a model of 7.

The number of clauses is O(|R|n) by definition. Sorting R by lexicographic
order requires O(|R|n) steps (radix sort). For a given m € R, computing po(m)
or pi(m) requires O(n) steps, and writing the clauses, O(n?). O

4 A framework for identification

We now give a general procedure for IDENTIF[C], and exemplify it with the
classes HORN and ByuNcTIVE. We will see in section 5 that our framework
also handles Horn-renamable and affine formulas. We use the notion of prime
implicate. Let us recall that a clause C' is called a prime implicate of a formula
¥ if ¥ logically implies C', but implies no proper subclause of C. We call a
CNF prime if each of its clauses is a prime implicate of it.

Proposition 3 ([4, Lemma 3.2]) Every prime CNF describing a Horn (or
bijunctive) relation is Horn (resp. bijunctive).

The proof given in [4] is for Horn formulas, but still works for bijunctive for-
mulas. The idea is that every prime implicate of a formula 1) can be eventually
obtained by resolution from any CNF logically equivalent to ¢ [8], and that the
resolvent of two Horn (resp. bijunctive) clauses is also Horn (resp. bijunctive).

We now define the procedure Identify[C] for the problem IDENTIF[C].

Procedure Identify[C] (R)
Step 1 : Compute a prime CNF ¢ describing R ;

¢ < Describe(R) ;
for every clause C =t V... Vi of ¢ do
for every m € R do
last <+ 1;
fori =k to1ldo
if m satisfies C via t;
then if last = 1 then [T'[t;, m] < ’lastyes’ ; last« 0] else T'[t;, m] < ’yes’
else T'[t;,m] < 'no’
endfor ;
endfor ;
models<«) ;
fori=1to k do
if there exists m € R\models such that T'[t;, m] =’lastyes’
then models«models U{m' € R, T[t;,m'] = yes’ or ’lastyes’} /* keep t; */
else cancel t; from C
endfor ;
endfor ;
return ¢ ;

Fig. 1. Construction of DescribePI(R)

Step 2 : If ¢ is in C then return ¢, otherwise return 'No’.

By Proposition 3, Identify[HORN] solves IDENTIF[HORN], and the same
holds for the class BIJUNCTIVE.

Example 4 Let R = {001,100,110,111}, as in example 1. The CNF (z1 V
x3) A (21 V) A (—x1 V22V —x3) is prime and describes R. As it is not Horn
(resp. bijunctive), we can deduce immediately that R admits no Horn (resp.
bijunctive) description.

Now we need a polynomial procedure for computing ¢ given R. We define the
CNF DecribePI(R) to this end. We use R and the CNF v = Describe(R)
for reducing each clause C' of ¢ into a prime implicate of ¥. Given C, we drop
a maximal number of literals t; from C' such that every m € R still satisfies
C. We give a constructive definition of DescribePI(R) in figure 1 : 7" is a
two-dimensional array indexed by the literals ¢; € C' and the vectors m € R,
with T'[t;, m| =’yes’ if m satisfies C via t;, and 'no’ otherwise, and models is
a set of vectors. When we keep a literal ¢; in C', we add to models the vectors
that satisfy C via t;.

Proposition 5 The CNF DescribePI(R) describes R. It is prime, contains
O(|R|n) clauses and can be computed in time O(|R|*n?).

PROOF. By construction, DescribePI(R) logically implies Describe (R),
so its models are in R. The converse holds, for we keep one ’yes’ or ’lastyes’
per m in T. Now let C' be a clause in DescribePI(R), and t; a literal in C.

As we have kept t; in C, there exists m € R such that T'[t;, m] =’lastyes’ and
m ¢ models when we consider ¢;. Thus m does not satisfy the clause obtained
from C' by removing ¢;, and C' is a prime implicate of DescribePI(R). Finally,
DescribePI(R) contains as many clauses as the CNF Describe(R), i.e.,
O(|R|n), and it is easily seen that the time complexity of its construction is
O(|R|*n?). O

By Proposition 5, the procedure Identify [HORN] solves IDENTIF[HORN]
in time O(|R[*n?) with O(]R|n) clauses, and the same holds for the class
BIJUNCTIVE.

5 Horn-renamable and affine relations

We now consider the class HORN-RENAMABLE of Horn-renamable CNFs. A
CNF 9 is called Horn-renamable if there exists a subset S of its variables
such that replacing, for every x € S, each occurrence of x in ¢ with —x, and
conversely (renaming x in 1) yields a Horn formula. A relation is called Horn-
renamable if it has a Horn-renamable description. A priori, there may exist
no simpler method for identifying those formulas than testing the 2" possible
renamings and using algorithms for HORN ; thus the following result is not
obvious.

Proposition 6 IDENTIF[HORN-RENAMABLE] is solvable in time O(|R|*n?)
with O(|R|n) clauses.

PROOF. Horn-renamable formulas are recognizable in linear time [1,2,5].
Since every prime CNF describing a Horn relation is Horn, and renaming
preserves the notion of prime implicate, every prime CNF describing a Horn-
renamable relation is Horn-renamable. Thus the procedure Identify [HORN-
RENAMABLE] solves IDENTIF [HORN-RENAMABLE] in time O(|R|*n?) with
O(|R|n) clauses. O

We finally turn our attention to AFFINE, the class of affine formulas [6,9].
This class is one of the classes for which Schaefer shows that the generalized
satisfiability problem is polynomial.

An affine formula is a system of linear equations on the two-element field, and
a relation is affine if it is the set of solutions of such a system. For example,
R = {0001,0010,1100,1111} is affine, since R is the set of solutions of the
formula (z1 ® zo = 0) A (21 ® 23 ® 4 = 1). In some sense, addition modulo

2 plays the same role in affine formulas as disjunction in CNF formulas. We
denote by AFFINE the class of affine formulas.

The identification problem for affine formulas thus corresponds to finding a
system of equations admitting a given set of solutions. This problem can be
solved by using the tools of linear algebra [7], but what we show here is that
our procedure can be straightforwardly applied to this class, despite the fact
that being affine is not a syntactic property about CNFs. For this purpose,
we exhibit a purely syntactic link between affine and CNF representations of
a formula.

Let C =t V...V, be a clause. We denote by E(C) the equation e(t;) @
..®e(t,) =1, where e(t;) =z, ift; =z; and e(t;) = z; @ 1 if t; = ;.

Example 7 Let C = x1V —xo V —x3 V x4 V —x5. The equation E(C) is x1 ®
1010130101, ®asD1=1, ie., B2, 2; = 0.

Proposition 8 Assume R is affine, and let ¢ = C1A...ANCy, be a prime CNF
describing it. Then the affine formula A(¢) = E(Cy) A ... AN E(Cy,) describes
R.

PROOF. We first show that every solution of A(¢) is a model of ¢. Let
C = V,;t; be a clause in ¢ ; the equation E(C) admits the same solutions as
the equation @;t; = 1. Consequently, if m € {0,1}" satisfies F(C), then an
odd number of ¢;’s are assigned 1, thus at least one and m satisfies C'. Thus
the solutions of A(¢) all belong to R. Conversely, we know that if R is affine,
then for all my,msq,...,m; in R with £ odd, the vector m = m; @& ... & my
is in R, where (m; & ... ® my)[i] = my[i] & ... ® myli] for all i. Indeed, if
E = (z;,®...®x;, =b), with b € {0, 1}, is an equation satisfied by my, ..., my,
then (@5_; m;)[i]@. . .©(DF_1 m;)[i] = @1 (mlir]®. . .Omy[i,]) = be. . . @b
(k times) ; since k is odd, this is equal to b, thus m; @ ... ® my is a solution
of E. Solet C = V,t; be a clause of ¢, and, to obtain a contradiction, m € R
that is not a solution of F(C). Then without loss of generality, m assigns 1
to t1,t2, ..., 19, and 0 to the other literals of C. As C' is a prime implicate of
¢, there exists p1,...,u2p € R such that for all 4, y; satisfies C' but not the
clause obtained from it by removing ¢; ; we deduce that for all 7, u; assigns 1
to t; and 0 to the other literals of C'. Now the vector m @ pu; & ... pig, isin R
by the remark above (the sum has 2p + 1 terms), but it assigns 0 to all the
literals in C', a contradiction. O

We deduce that our framework applies to affine formulas. Indeed, we use the
procedure Identify[AFFINE], slightly modified for step 2 (due to the fact
that being affine is not a syntactic property about CNFs) : we first compute
A(¢), where ¢ is the prime CNF of step 1, and then test whether each m in

R is a solution of A(¢). If yes, R is the set of solutions of A(¢), since every
solution of A(¢) is in R (cf. proof of Proposition 8). Otherwise, Proposition 8
ensures that R is not affine. Computing A(¢) is linear in the size of ¢, and
testing whether each m € R is a solution of ¢ requires O(|R|*n?) steps. Finally,
we have a time complexity O(|R|?n?) and O(|R|n) output equations.

Example 9 Let again R = {001,100,110,111} ; DescribePI(R) is ¢ = (x1V
x3) A (1 V —z3) A (mxy V 29 V —x3). Thus A(¢) is the system (x1 & z3 =
DA (z1 B2 =0)A (21 Bx2® x5 =1). But 111 € R is not a solution of the
first equation, thus R is not the set of solutions of A(¢) and we can deduce
that R is not affine.

Finally, let us recall (cf. for instance [6,9]) the well-known characterization of
affine relations : R is affine if and only if for every my, mo, ms € R, mi®moPms
is in R. The construction of Proposition 8 gives a new proof of this criterion,
without using the tools of algebra.

Acknowledgements

The authors wish to thank an anonymous referee for suggesting the remark
before Proposition 2.

References

[1] Aspvall, B., Recognizing disguised nr(1) instances of the satisfiability problem,
J. of Algorithms 1 (1980) 97-103

[2] Chandru, V., Coullard, C.R., Hammer, P.L., Montanez, M. and Sun, X., On
renamable Horn and generalized Horn functions, Ann. Math. AT 1 (1990) 33-47

[3] Dechter, R. and Pearl, J., Structure identification in relational data, Artificial
Intelligence 58 (1992) 237-270

[4] Hammer, P.L. and Kogan, A., Horn functions and their DNF's, Inform. Process.
Lett. 44 (1992) 23-29

[6] Hébrard, J.-J., A linear algorithm for renaming a set of clauses as a Horn set,
Theoret. Comp. Sci. 124 (1994) 343-350

[6] Kavvadias, D. and Sideri, M., The inverse satisfiability problem, SIAM J.
Comput. 28 (1998) 152-163

[7] Lang, S., Linear algebra, Addison-Wesley (1966)

[8] Quine, W.V., On cores and prime implicants of truth functions, Am. Math.
Monthly 66 (1959) 755-760

[9] Schaefer, T.J., The complexity of satisfiability problems, in: Proc. 10th Annual
ACM Symposium on Theory Of Computing, San Diego, CA (1978) 216226

