
HAL Id: hal-00995239
https://hal.science/hal-00995239

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating propositional knowledge with affine
formulas

Bruno Zanuttini

To cite this version:
Bruno Zanuttini. Approximating propositional knowledge with affine formulas. 15th European Con-
ference on Artificial Intelligence (ECAI 2002), 2002, France. pp.287-291. �hal-00995239�

https://hal.science/hal-00995239
https://hal.archives-ouvertes.fr


Approximating Propositional Knowledge with Affine
Formulas
Bruno Zanuttini

�

Abstract. We consider the use of affine formulas, i.e., conjonc-
tions of linear equations modulo✁, for approximating propositional
knowledge. These formulas are very close to CNF formulas, and al-
low for efficient reasoning ; moreover, they can be minimizedeffi-
ciently. We show that this class of formulas is identifiable and PAC-
learnable from examples, that an affine least upper bound of arela-
tion can be computed in polynomial time and a greatest lower bound
with the maximum number of models in subexponential time. All
these results are better than those for, e.g., Horn formulas, which
are often considered for representing or approximating propositional
knowledge. For all these reasons we argue that affine formulas are
good candidates for approximating propositional knowledge.

1 INTRODUCTION

Affine formulas correspond to one of the only six classes of rela-
tions for which the generalized satisfiability problem is tractable [9].
These formulas consist in conjunctions (or, equivalently,systems) of
linear equations modulo✁, and are very close to usual CNF formulas.
Indeed, in some sense usual disjunction inside the clauses is simply
replaced with addition modulo✁, and as well as, e.g., Horn formu-
las, affine formulas are stable under conjunction. Intuitively, while
Horn clauses representcausal relations, linear equations represent
parity relations between variables (with, as a special case, equations
over only two variables specifying either that they must be equal or
that they must be different). Moreover, most of the notions that are
commonly used with CNF formulas (such as prime implicants/ates)
can be transposed straightforwardly to them. Finally, a great deal of
reasoning tasks that are intractable with general CNF formulas are
tractable with affine formulas : e.g., satisfiability or deduction. It is
also true of problems that are intractable even with Horn formulas,
although these formulas are often considered for representing or ap-
proximating knowledge : e.g., counting of models, minimization.

Nevertheless, not many authors have studied this class of formu-
las ; mainly Schaefer [9], Kavvadias, Sideri and Stavropoulos [6, 8]
and Zanuttini and Hébrard [12]. Moreover, none of them has really
studied them as a candidate for representing or approximating propo-
sitional knowledge. We believe however that they are good candi-
dates for approximation, for instance in the sense of [10] : given a
knowledge base (KB), the idea is to compute several approximations
of it with better computational properties, and to use laterthese ap-
proximations for helping to answer queries that are asked toit. Most
of the time, the approximations will give the answers to these queries,
and in case they do not, since the approximations have good compu-
tational properties, only a small amount of time will have been lost
and the query will be asked directly to the KB. Note also that some
✂

GREYC Université de Caen, bd Mal Juin, 14032 Caen Cedex, France

KBs can be representedexactlyby a formula with good properties ;
in this case, the formula can give the answer to any query. To sum-
marize, approximations can help saving a lot of time when answering
queries (for instance in an on-line framework), especiallyif they can
be reasoned with efficiently and if their size is reasonable.

Not many classes of formulas satisfy these requirements. Horn for-
mulas are often considered for approximating knowledge (see for
instance [10]), but they have some limits : e.g., the shortest Horn ap-
proximation of a knowledge base may be exponentially largerthan
its set of models, and some problems are not tractable with Horn for-
mulas : counting the models, abduction, minimization. . . Affine for-
mulas satisfy these requirements quite better : on one hand they all
can be made very small, which guarantees that an affine approxima-
tion can almost never be bigger than the original KB, and on the other
hand, they have very good computational properties for reasoning.

We focus here on theacquisitionof affine formulas from relations,
with a computational point of view ; in other words, we are interested
in the complexity of computing affine approximations of knowledge
bases represented as sets of vectors. We first present (Section 2) sev-
eral simple technical results about vector spaces that willbe useful.
Then we consider (Section 3) theidentificationof an affine struc-
ture in a relation [4], which corresponds to the special casewhen the
knowledge base can be represented exactly by an affine formula ; it
is well-known that affine formulas are identifiable, but we recall the
proof for sake of completeness. Then we study (Section 4) thepro-
cess ofapproximatinga relation with affine formulas [10] : we show
that the affine least upper bound of a relation can be computedin
polynomial time, and that an affine greatest lower bound withthe
maximum number of models can be computed in subexponential
time. Finally (Section 5), we consider the problem ofPAC-learning
these formulas [11], which corresponds to the case when the relation
is affine but the algorithm has a limited access to it ; we show that
affine formulas are PAC-learnable from examples only.

We wish to emphasize that these results are better than the corre-
sponding ones for Horn formulas. Although they are also identifiable,
the problem of approximation with Horn formulas is intractable : the
Horn least upper bound of a relation may be exponentially larger
than it, and computing a Horn greatest lower bound with the maxi-
mum number of models is NP-hard. Finally, the question is still open
whether Horn formulas are PAC-learnable from examples. We also
wish to emphasize here that we consider the class of affine formulas
mainly forapproximatingpropositional knowledge, independently of
the knowledge that they can representexactly.

2 PRELIMINARIES AND TECHNICAL TOOLS

We assume a countable number of propositional variables✄ ✂ ☎ ✄ ✆ ☎ ✝ ✝ ✝.
A linear equation (modulo✁) is an equation of the form✄ ✞✟ ✠ ✄ ✞✡ ✠



� � � ✠ ✄✞✁ ✂ ✄, ✄ ☎ ✆✝ ☎ ✞✟, where✄ ✞✟ ✠ � � � ✠ ✄✞✁ stands for✄ ✞✟ ✠� � � ✠ ✄ ✞✁ (mod✁). An affine formulais a finite conjunction of linear
equations ; e.g., the formula✡ :

☛✄ ✂ ✠ ✄ ☞ ✠ ✄ ✌ ✂ ✞✍ ✎ ☛✄✆ ✠ ✄ ☞ ✂ ✝✍
is affine. A✏-place vector✑ ☎ ✆✝ ☎ ✞✟✒ , seen as a✝✓✞ assignment to
the variables✄ ✂ ☎ ✄ ✆ ☎ ✝ ✝ ✝ ☎ ✄✒ , is amodelof an affine formula✡ over
the same variables (written✑ ✔✂ ✡) if ✑ satisfies all the equations
of ✡. We denote by✑ ✕✖✗ the

✖
th component of✑ , and for✑ ✂ ☎✑ ✆ ☎

✆✝ ☎ ✞✟✒ , we write✑ ✂ ✠ ✑ ✆ for the✏-place vector✑ such that✘✖ ✂✞ ☎ ✝ ✝ ✝ ☎ ✏ ☎✑ ✕✖✗ ✂ ✑ ✂ ✕✖✗ ✠ ✑ ✆ ✕✖✗.
A set of vectors✙ ✚ ✆✝ ☎ ✞✟✒ is called an✏-place relation, and an

✏-place relation✙ is saidaffineif it is the set of all the models of an
affine formula✡ over the variables✄ ✂ ☎ ✄ ✆ ☎ ✝ ✝ ✝ ☎ ✄✒ ; ✡ is then said to
describe✙ . For instance, the✛-place relation✙ :

✆✝✝✝ ✞✝ ☎ ✝✝✝ ✞✞ ☎ ✝ ✞✞✝✝ ☎ ✝✞✞✝ ✞ ☎ ✞✝✝✝✝ ☎ ✞✝✝✝✞ ☎ ✞✞✞✞✝ ☎ ✞✞✞✞✞✟
is affine and is described by the formula✡ above. The number of
vectors in a relation✙ is written ✔✙ ✔.

It is a well-known fact that the satisfiability problem is polynomial
for affine formulas [9] ; indeed, it corresponds to deciding whether
a given system of equations modulo✁ has a solution, and thus can
be solved by gaussian elimination [3, Section 8]2. Thus this prob-
lem can be solved in time✜ ☛✢ ✆✏✍ for an affine formula of

✢
equa-

tions over✏ variables. Deduction of clauses, i.e., the problem of de-
ciding ✡ ✔✂ ✣ where✡ is an affine formula and✣ is a clause (fi-
nite disjunction of negated and unnegated variables), is polynomial
too ; indeed, it corresponds to deciding whether the affine formula
✡ ✎ ✤✥✦ ✧★ ☛✄ ✞ ✂ ✝✍ ✎ ✤✩✥✦ ✧★ ☛✄ ✞ ✂ ✞✍ is unsatisfiable, which

requires time✜ ☛☛✢ ✠ ✪✍✆✏ ✍ for a clause of length✪. Minimizing
an affine formula or counting its models can also be performedef-
ficiently by putting✡ in echelon form[3, Section 8], which again
requires time✜ ☛✢ ✆✏✍ with gaussian elimination.

We now introduce the parallel that we will use between affine re-
lations and vector spaces over the two-element field (vector spaces
for short). For✙ a relation and✑ ☎ ✙ , let ✙✫ denote the relation
✆✬ ✠ ✑ ☎ ✬ ☎ ✙ ✟ ; for ✡ an affine formula and✑ ✔✂ ✡, let ✡✫ denote
the affine formula obtained from✡ by replacing✄✞ with ✄ ✞ ✠ ✞ for
every

✖
such that✑ ✕✖✗ ✂ ✞, and simplifying. Let us first remark that

for all ✙ ☎✑ ☎ ✡,
☛✙✫ ✍✫ ✂ ✙ and

☛✡✫ ✍✫ ✂ ✡. Now suppose that
✙ is affine and that✡ describes it. Then for any model✑ of ✡ (i.e.,
for any ✑ ☎ ✙ ), it is easily seen that✡✫ describes✙✫ and that
✙✫ is a vector space ; conversely, if✙ is a relation such that for any
✑ ☎ ✙ , ✙✫ is a vector space, then✙ is affine (see [3, Theorems 8.9
and 9.1]). This correspondence allows us to use the usual notions of
linear algebra, and especially the notion of basis of a vector space.

Let us first recall that the cardinality of a vector space overthe two-
element field is always a power of✁. A basis✭ of a vector space✮ is
a set of✯✰✱ ✆ ✔✮ ✔ vectors of✮ that are linearly independent, i.e., such
that none is a linear combination of the others, and that generate✮ in
the sense that their linear combinations are all and only theelements
of ✮ ; let us also recall that two different linear combinations of
linearly independent vectors give two different vectors (which yields
✔✮ ✔ ✂ ✁ ✲✳ ✲). For more details we refer the reader to [3].

Example 1 We go on with the relation✙ above. Since✙ is affine
and✝ ✞✞✝✝ ☎ ✙ , the relation✙✴ ✂✂✴✴ :

✆✝✝✝✝✝ ☎ ✝✝✝✝ ✞ ☎ ✝ ✞✞✞✝ ☎ ✝✞✞✞✞ ☎ ✞✝✝ ✞✝ ☎ ✞✝✝ ✞✞ ☎ ✞✞✞✝✝ ☎ ✞✞✞✝ ✞✟
✆ Most of the results we will use from [3] are given for equations with real or

complex coefficients and unknowns, but can be applied straightforwardly
to our framework with the same proofs.

is a vector space, and its subset✆✝✝✝✝ ✞ ☎ ✝✞✞✞✝ ☎ ✞✝✝ ✞✝✟ is one of its
bases.

We end this section by giving four simple complexity resultscon-
cerning bases and linearly independent sets of vectors. Therest of the
paper uses no result from linear algebra but these ones. The proofs
are given in appendix.

Proposition 1 Let ✭ ✚ ✆✝ ☎ ✞✟✒ and ✑ ☎ ✆✝ ☎ ✞✟✒ . Deciding
whether✭ is a set of linearly independent vectors, or whether✑
is linearly independent from✭ can be performed in time✜ ☛✔✭ ✔✆✏✍.
Proposition 2 Given a relation✙ over ✏ variables, finding a lin-
early independent subset of✙ that is maximal for set inclusion re-
quires time✜ ☛✔✙ ✔✏☞ ✍.
Proposition 3 Given a basis✭ of a vector space✮ ✚ ✆✝ ☎ ✞✟✒ ,
computing an affine formula✡ describing✮ requires time✜ ☛✏✌ ✍,
and✡ contains at most✏ equations.

Proposition 4 Given an✏-place relation✙ and a linearly indepen-
dent set of vectors✭ ✚ ✙ , deciding whether the vector space✮
generated by✭ is included in✙ requires time✜ ☛✔✙ ✔✏ ✍.

3 IDENTIFICATION

The problem ofstructure identificationwas formalized by Dechter
and Pearl [4]. It consists in some kind of knowledge compilation,
where a formula is searched with required properties and that admits
a given set of models. In our framework, it corresponds to checking
whether some knowledge given as a relation can be represented ex-
actly by an affine formula before trying toapproximateit by such a
formula. Identifying an affine structure in a relation✙ means discov-
ering that✙ is affine, and computing an affine formula✡ describing
it.

It is well-known from linear algebra (see also [9, 6]) that affine
structures areidentifiable, i.e., that there exists an algorithm that,
given a relation✙ , can either find out that✙ is the set of models
of no affine formula over the same variables, or give such a formula,
in time polynomial in the size of✙ .

The algorithm is the following. We first transform the problem into
one of vector spaces, by choosing any✑ ☎ ✙ and computing the
relation✙✫ . The problem has now become that of deciding whether
✙✫ is a vector space. Then we compute a subset✭✫ of ✙✫ that is
linearly independent and maximal for set inclusion (Proposition 2) ;
we know by maximality of✭✫ that all the vectors in✙✫ are linearly
dependent from✭✫ , i.e., that✙✫ is included in the vector space
generated by✭✫ . Thus if ✔✙✫ ✔ ✂ ✁ ✲✳✵ ✲, we can conclude that
✙✫ is exactly this vector space, and we can compute from✭✫ an
affine formula✡✫ describing✙✫ (Proposition 3) ; the formula✡ ✂☛✡✫ ✍✫ will describe

☛✙✫ ✍✫ ✂ ✙ . Otherwise, if✔✙✫ ✔ ✶✂ ✁ ✲✳✵ ✲, we
can conclude that✙✫ is not a vector space, i.e., that✙ is not affine.

Proposition 5 (identification) Affine structures are identifiable in
time ✜ ☛✔✙ ✔✏☞ ✠ ✏✌ ✍, where✙ is the relation and✏ the number of
variables.

Proof. Computing✙✫ from ✙ requires time✜ ☛✔✙ ✔✏ ✍, computing
✭✫ , ✜ ☛✔✙ ✔✏☞ ✍ (Proposition 2), computing✡✫ from ✭✫ , ✜ ☛✏✌ ✍
(Proposition 3) and finally, computing✡ requires time✜ ☛✔✡✫ ✔✍ ✚
✜ ☛✏ ✆ ✍. ✷

For sake of completeness, we also mention the approach in [12] for
proving the identifiability of affine structures ; this approach exhibits
and uses a syntactic link between usual CNFs and affine formulas
instead of results from linear algebra.



4 APPROXIMATION

We now turn our attention to the problem ofapproximationitself.
Approximating a relation✙ by an affine formula means computing
an affine formula✡ whose set of models is as close as possible to✙ ;
thus this process takes place naturally when✙ cannot be represented
exactlyby an affine formula. Many measures of closeness can be
considered, but we will focus on the two notions explored by Selman
and Kautz in [10].

The first way we can approximate✙ is by finding an affine formula
✡ �✁✂ whose set of models✙ �✁✂ is a superset of✙ , but minimal for set
inclusion. Then✡ �✁✂ is called an affineleast upper bound(LUB) of
✙ [10, 4]. The second notion is dual to this one : we now search for
an affine formula✡✄ �✂ whose set of models✙ ✄ �✂ is a subset of✙ , but
maximal for set inclusion. The formula✡✄ �✂ is then called an affine
greatest lower bound(GLB) of ✙ [10]. Remark that if✙ is affine,
then✡ �✁✂ and✡✄ �✂ both describe it.

Example 2 (continued) We consider the non-affine relation✙ ✂
✆✝✝✝ ✞✞ ☎ ✝ ✞✞✝✞ ☎ ✞✝✝✝✝ ☎ ✞✞✞✞✝ ☎ ✞✞✞✞✞✟. It is easily seen that✡ ✂☛✄ ✂ ✠ ✄ ☞ ✠ ✄✌ ✂ ✞✍ ✎ ☛✄✆ ✠ ✄ ☞ ✂ ✝✍ is its (unique) affine LUB
(with

☎
models), and that the formula✡ ✎ ☛✄ ☞ ✠ ✄ ✌ ✠ ✄ ✆ ✂ ✝✍ is its

affine GLB with the maximum number of models (✝).

Selman and Kautz suggest to use these bounds in the followingman-
ner. If ✙ is a knowledge base, store it as well as an affine LUB✡ �✁✂
and an affine GLB✡✄ �✂ of it. When✙ is asked a deductive query✣ ,
i.e., when it must be decided✙ ✔✂ ✣ where✣ is a clause, first de-
cide✡ �✁✂ ✔✂ ✣ : if the answer is positive, then conclude✙ ✔✂ ✣ . On
the other hand, if the answer is negative, then decide✡✄ �✂ ✔✂ ✣ : if
the answer is negative, then you can conclude✙ ✶✔✂ ✣ . In case it is
positive, then you must query✙ itself. In the case of affine (or Horn)
approximations, since deduction is tractable, either the answer will
have been found quickly with the bounds or only a small amountof
time will have been lost, under the condition that the size ofthe ap-
proximation is comparable to or less than the size of✙ ; but we have
seen that, contrary to Horn formulas, affine formulas can always be
made very small.

We study here these two notions of approximation with affine for-
mulas.

4.1 Affine LUBs

We first consider affineLUBsof relations. Let✙ be a relation. Once
again we transform the problem of computing an affine LUB of✙
into a problem of vector spaces, by choosing✑ ☎ ✙ and consider-
ing the relation✙✫ . Since✙✫ is a vector space if and only if✙ is
affine, we consider the closure✮✫ of ✙✫ under linear combinations,
i.e., the unique smallest vector space including✙✫ , and the associ-
ated affine relation✮ ✂ ☛✮✫ ✍✫ . It is easily seen that✮ is uniquely
defined (whatever✑ ☎ ✙ has been chosen) and is the smallest affine
relation including✙ . It follows that the affine LUB✡ �✁✂ of a relation
✙ is unique up to logical equivalence, and that its set of models is
exactly✮ (see also [9, 6]).

Now we must compute an affine formula✡✫ describing✮✫ , given
the relation✙✫ ; we will then set✡ �✁✂ ✂ ☛✡✫ ✍✫ . The idea is the
same as for identification : compute a basis✭✫ of ✮✫ , and then use
Proposition 3 for computing✡✫ . But we have seen that✮✫ is the
closure of✙✫ under linear combination, and thus any maximal (for
set inclusion) linearly independent subset of✙✫ is a basis of✮✫ .
Finally, we get the following result.

Proposition 6 (LUB) Let ✙ be a✏-place relation. The affine LUB
✡ �✁✂ of ✙ is unique up to logical equivalence and can be computed
in time✜ ☛✔✙ ✔✏☞ ✠ ✏✌ ✍.
Proof. We must first choose✑ ☎ ✙ and compute✙✫ , in time
✜ ☛✔✙ ✔✏ ✍. Then we must compute a maximal linearly independent
subset✭✫ of ✙✫ , in time ✜ ☛✔✙ ✔✏ ☞ ✍ (Proposition 2). Finally, we
must compute✡✫ from ✭✫ and set✡ �✁✂ ✂ ☛✡✫ ✍✫ , which requires
time✜ ☛✏✌ ✍ (Proposition 3).✷

4.2 Affine GLBs

Contrary to the case of LUBs, the affine GLB of a relation is not
unique up to logical equivalence in general, and there is even no rea-
son for two affine GLBs of a relation to have the same size. Whatis
most interesting then is to search for an affine GLB✡✫✞✥✟✄ �✂ with
the maximum number of models over all affine GLBs. The associated
decision problem is NP-hard for Horn GLBs (see [7]), but we show
here that there exists a subexponential algorithm for the affine case ;
remark that while NP-hard problems can be considered intractable,
subexponential algorithms can stay reasonable in practice.

We still work with the relation✙✫ for a given✑ ☎ ✙ . What we
must do is find a vector space✮✫ included in✙✫ and with maximum
cardinality, and then to compute an affine formula✡✫ describing
✮✫ ; we will then set✡✫✞✥✟✄ �✂ ✂ ☛✡✫ ✍✫ . We proceed by searching
the maximal

✢
for which there exists

✢
linearly independent vectors

✑ ✂ ☎ ✝ ✝ ✝ ☎✑ ✠ ☎ ✙✫ that generate a vector space✮✫ included in✙✫ .
Since

✢
can only range between✞ and✯✰✱ ✆ ✔✙✫ ✔ ✂ ✯✰✱ ✆ ✔✙ ✔, we get

a subexponential algorithm.

Proposition 7 (maximum GLB) Let ✙ be an✏-place relation. An
affine GLB✡✫✞✥✟✄ �✂ of ✙ with the maximum number of models can

be computed in time✜ ☛✔✙ ✔✏ ☛✯✰✱ ✯✰✱ ✔✙ ✔✍✁ ✡☛☞✌ ✲✍ ✲✎✡ ✍.
Proof. We search the maximal

✢
by dichotomy. Begin with

✢ ✂
✯✰✱ ✔✙ ✔✓✁. For a given

✢
, compute all the✏✲✍✵ ✲✠ ✑ subsets of✙✫ of✢

vectors, and for each one of them, test whether it is linearlyinde-
pendent (in time✜ ☛✢ ✆✏ ✍ with Proposition 1) and whether the vector
space it is a basis for is included in✙✫ (in time✜ ☛✔✙ ✔✏ ✍ with Propo-
sition 4). If it is the case for at least one subset of size

✢
, then increase✢

(by dichotomy) and go on, otherwise decrease
✢

and go on. Finally,
since

✢
is always bounded by✯✰✱ ✆ ✔✙ ✔, at most✯✰✱ ✆ ✯✰✱ ✆ ✔✙ ✔ differ-

ent
✢
’s will have been tried, and we get the time complexity

✜ ☛☛✯✰✱ ✯✰✱ ✔✙ ✔✍ ✒ ✓ ✔✙ ✔
✯✰✱ ✔✙ ✔

✔ ✒ ☛☛✯✰✱ ✔✙ ✔✍✆✏ ✠ ✔✙ ✔✏ ✍✍

which is less than✜ ☛☛✯✰✱ ✯✰✱ ✔✙ ✔✍ ✔✙ ✔☛☞✌ ✲✍ ✲ ☛ ✔✙ ✔✏ ✍✍, which in turn

equals✜ ☛✔✙ ✔✏ ☛✯✰✱ ✯✰✱ ✔✙ ✔✍✁ ✡☛☞✌ ✲✍ ✲✎✡ ✍. ✷
5 PAC-LEARNING

We finally turn our attention to the problem oflearning affine for-
mulas from examples. The main difference with the other problems
considered so far is that the algorithm has not access to the entire
relation✙ . It must compute an affine approximation of an affine re-
lation ✙ by asking as few informations as possible about✙ . Never-
theless, learning is a rather natural extension of approximation, since
it corresponds in some sense to introducing a dynamical aspect in
it : the algorithm is supposed to improve its result when it isallowed
more time for asking informations about✙ .



We consider here thePAC-learningframework of Valiant [11, 1],
with examples only. In this framework, we wish an algorithm to be
able to compute a function✡ of ✏ variables (in our context, an affine
formula) by asking only a polynomial number of vectors of an affine
relation✙ , such that✡ approximates with high probability the rela-
tion ✙ rather closely (Probably Approximately Correct learning).

More precisely, an affine✏-place relation✙ is given, as well as
an error parameter�. The algorithm must compute an affine formula
✡ over the variables✄ ✂ ☎ ✝ ✝ ✝ ☎ ✄✒ such that✡ approximates✙ with an
error controlled by� ; we will authorize here only one-sided errors,
i.e., the models of✡ must form a subset of✙ . At any time, the algo-
rithm can ask a vector✑ ☎ ✙ to an oracle, but the number of these
calls must be polynomial in✏ and�, as well as the work performed
with each vector3. Note that in a first time we assume that the algo-
rithm knows✏, while this is not the case in Valiant’s framework, but
we will see at the end of the section how to deal with this problem.

To be as general as possible, a probability distribution
✁

over the
vectors✑ ☎ ✙ is fixed, for two purposes : (i) when asked a vector of
✙ , the oracle outputs✑ ☎ ✙ with probability

✁ ☛✑ ✍, independently
of the previously output vectors (ii) the error corresponding to the
affine formula✡ computed by the algorithm is defined as✂ ☛✡✍ ✂✄✫ ✧✍ ☎✫ ✆✲✝✞

✁ ☛✑ ✍, and✡ is said to be acorrect approximationof
✙ if ✂ ☛✡✍ ✟ ✞✓�.

Finally, the class of affine formulas will be saidPAC-learnable
from examples onlyif there exists an algorithm that, for a fixed affine
✏-place relation✙ and a real number�, can compute in time polyno-
mial in ✏ and�, and with a polynomial number of calls to the oracle,
an affine formula✡ that with probability at least✞ ✠ ✞✓� is a correct
approximation of✙ . We exhibit here such an algorithm4.

The idea is first to treat✙ as ✙✫ , where✑ is the first vector
obtained from the oracle, i.e., to replace each obtained vector ✬ with
✬ ✠ ✑ ; once again this is done for tranforming the problem into
one of vector spaces. The idea is then to obtain a certain number of
vectors of✙✫ from the oracle and to maintain a maximal linearly
independent subset✭✫ of them. When enough vectors have been
asked, the algorithm can compute an affine formula✡✫ from this set
(Proposition 3) and output✡ ✂ ☛✡✫ ✍✫ ; since✭✫ ✚ ✙✫ and✙✫ is
closed under linear combination, the models of✡✫ will always form
a subset of✙✫ , as required.

The point is that only a polynomial number of vectors are needed
for ✡✫ to be with high probability a correct approximation of✙✫ .
To show this, we will use the function✡ ☛� ☎ ✏✍ defined in [11] ; the
value✡ ✂ ✡ ☛� ☎ ✏✍ is the smallest integer such that in✡ independent
Bernoulli trials☛ ✂ ☎ ✝ ✝ ✝ ☎ ☛☞ each with probability✌ ✞ ✍ ✞✓� of suc-
cess (the✌ ✞ ’s being not necessarily equal), the probability of having
at least✏ successes is at least✞ ✠ ✞✓�. Valiant shows that✡ ☛� ☎ ✏✍ is
almost linear in� and✏ (more precisely,✘✏ ✍ ✞ ☎ ✘ � ✎ ✞ ☎ ✡ ☛� ☎ ✏✍ ✟
✁� ☛✏ ✠ ✯✰✱ ✏ � ✍). We show below that✡ ☛� ☎ ✏✍ vectors of✙✫ are
enough for✡✫ to be correct.

Proposition 8 (PAC-learning) The class of affine formulas is PAC-
learnable from✡ ☛� ☎ ✏✍ examples, where� is the error parameter and
✏ the number of variables involved.

Proof. We have to show that if the algorithm presented above has
obtained✡ ☛� ☎ ✏✍ vectors (remind that each vector✬ is replaced with

☞ In the framework of [11], the running time can also be polynomial in the
size of the shortest affine description of✑ , but it will be useless here.✌ Following [11] and for sake of simplicity, we use only one parameter✒
for bounding both the probability of success of the algorithm and the cor-
rectness of✓ ; but two parameters✒ ✂ and✒✆ could be used with the same
complexity results.

✬ ✠ ✑ , where✑ is the first vector obtained) and kept a maximal
linearly independent subset✭✫ of them, then an affine formula✡✫
describing the vector space generated by✭✫ is a correct approxima-
tion of ✙✫ . We have seen that the set of models of✡✫ is a subset
of ✙✫ , as required. Now we have to show that with probability at
least✞ ✠ ✞✓�, ✂ ☛✡✍ ✟ ✞✓�. We thus consider the event✂ ☛✡✍ ✎ ✞✓�,
and show that its probability is less than✞✓�. For this purpose, we
associate to each call to the oracle a trial☛ ✞, which is considered
a success if and only if the vector obtained is linearly independent
from the current independent set of vectors✭✫ maintained by the
algorithm. Since✭✫ can only increase during the process, the prob-
ability ✌ ✞ of success of☛ ✞ is always at least✂ ☛✡✍. Now since there
are

✢ ✟ ✏ linearly independent vectors in✙✫ and✡✫ is not correct
(✂ ☛✡✍ ✎ ✞✓�), the algorithm has obtained less than

✢
successes ;

finally, since the calls to the oracle are independent Bernoulli trials
and✡ ☛� ☎ ✏✍☛✍ ✡ ☛� ☎ ✢ ✍✍ such calls have been made, the definition
of ✡ ☛� ☎ ✢ ✍ guarantees that this can happen with probability less than✞✓�. Thus the learning algorithm is correct. To complete the proof,
it suffices to remark that the work performed by the algorithmwith
each vector requires only polynomial time, since it corresponds to
deciding the linear independence of a vector✑ from the current set
✭✫ , and ✔✭✫ ✔ ✟ ✏ ; thus Proposition 1 concludes.✷

To conclude the section, we consider the case when the algorithm
does not know in advance the number of variables on which the re-
lation ✙ is built. Then the vectors output by the oracle are built on✔ ✍ ✏ variables, but are not necessarily total ; in case a partial vector
✑ is output, it means that all total vectors matching✑ match one
vector in✙ . But it is easily shown that if✙ really depends on a vari-
able✄ ✞ and is affine, then all partial vectors like above must assigna
value to✄ ✞, since a model assigning✄ to ✄ ✞ cannot be a model any
more if the value of✄ ✞ becomes✄ ; indeed, if✆✄ ☎ ✄ ✞✟ ☎ ✝ ✝ ✝ ☎ ✄ ✞✁ ✟ sat-
isfies a linear equation depending on✄ ✞, ✆✄ ✂ ✄ ✠ ✞ ☎ ✄ ✞✟ ☎ ✝ ✝ ✝ ☎ ✄ ✞✁ ✟
necessarily falsifies it. Thus the algorithm needs only takeinto ac-
count the variables that are defined in all the vectors outputby the
oracle, and the result stays the same (with✡ ☛� ☎ ✔✍ calls to the oracle).

6 CONCLUSION

We have presented affine formulas as good candidates for approxi-
mating propositional knowledge. Indeed, we have seen that these for-
mulas admit very good computational properties for reasoning tasks
(in particular satisfiability, deduction, counting of models) and are
guaranteed to be very short : their size can always be minimized ef-
ficiently to✜ ☛✏ ✆ ✍, where✏ is the number of variables involved.

Then we have shown that these formulas can easily be acquired
from examples. Indeed, this class isidentifiable, which means that
given a relation✙ , an affine formula✡ with ✙ as its set of mod-
els can be computed, if it exists, in polynomial time. When such a
formula does not exist, an affineleast upper boundof ✙ can be com-
puted with roughly the same algorithm, and an affinegreatest lower
boundof ✙ with the maximal number of models can be computed in
subexponential time. Finally, we have shown that affine formulas are
PAC-learnablefrom examples only.

We have argued that all these results made affine formulas an in-
teresting class for approximating knowledge, by comparingthem to
the corresponding ones for Horn formulas, which are often consid-
ered for representing or approximating propositional knowledge. In-
deed, Horn formulas are identifiable as well as affine formulas and
with a comparable time complexity [4, 12] ; on the other hand,the
Horn LUB of a relation can be exponentially bigger than it [5,The-
orem 6] while the affine LUB of a relation can always be computed



in polynomial time, and computing a Horn GLB of a relation with
the maximum number of models is a NP-hard problem [7], while it
is only subexponential for affine formulas. Then, affine formulas are
PAC-learnable from examples only while the problem is stillopen
for Horn formulas ; [2] only gives an algorithm for learning Horn
formulas with access to an equivalence oracle. All these results show
that acquisitionof affine formulas from examples is in general eas-
ier than acquisition of Horn formulas. But we also emphasizethat
workingwith affine formulas is also easier in general than with Horn
formulas. For instance, mininmizing or counting the modelsof an
affine formula is polynomial, while it is intractable with Horn. In a
forthcoming paper, we study more deeply the properties of affine for-
mulas for reasoning, as well as their semantics, i.e., the natural pieces
of knowledge that they can really represent.

ACKNOWLEDGEMENTS

I wish to thank Jean-Jacques Hébrard for his very importanthelp in
improving the redaction of this paper.

REFERENCES
[1] D. Angluin, ‘Computational learning theory : survey andselected bibli-

ography’, in :Proc. 24th Annual ACM Symposium on Theory Of Com-
puting (STOC’92)(Victoria, Canada), New York : ACM Press, 319–
342, (1992).

[2] D. Angluin, M. Frazier and L. Pitt, ‘Learning conjunctions of Horn
clauses (extended abstract)’, in :Proc. 31st Annual Symposium on
Foundations of Computer Science(St Louis, USA), Los Alamitos :
IEEE Computer Society, 186–192, (1990).

[3] C.W. Curtis, Linear algebra. An introductory approach, Springer-
Verlag, 1984.

[4] R. Dechter and J. Pearl, ‘Structure identification in relational data’,Ar-
tificial Intelligence, 58, 237–270 (1992).

[5] H. Kautz, M. Kearns and B. Selman, ‘Horn approximations of empirical
data’,Artificial Intelligence, 74, 129–145, (1995).

[6] D. Kavvadias and M. Sideri, ‘The inverse satisfiability problem’,SIAM
J. Comput., 28 (1), 152–163, (1998).

[7] D. Kavvadias, C.H. Papadimitriou and M. Sideri, ‘On Hornenvelopes
and hypergraph transversals (extended abstract)’, in :Proc. 4th In-
ternational Symposium on Algorithms And Computation (ISAAC’93),
Springer Lecture Notes in Computer Science,762, 399–405, (1993).

[8] D. Kavvadias, M. Sideri and E.C. Stavropoulos, ‘Generating all maxi-
mal models of a Boolean expression’,Inform. Process. Lett., 74, 157–
162, (2000).

[9] T.J. Schaefer, ‘The complexity of satisfiability problems’, in : Proc.
10th Annual ACM Symposium on Theory Of Computing (STOC’78)
(San Diego, USA), ACM Press, New York 216–226 (1978).

[10] B. Selman and H. Kautz, Knowledge compilation and theory approxi-
mation,Journal of the ACM, 43 (2), 193–224, (1996).

[11] L.G. Valiant, A theory of the learnable,Communications of the ACM,
27 (11), 1134–1142 (1984).

[12] B. Zanuttini and J.-J. Hébrard, ‘A unified framework for structure iden-
tification’, Inform. Process. Lett., 81, 335–339, (2002).

APPENDIX

We give here the proofs of the propositions given in Section 2.

Proposition 1 Let ✭ ✚ ✆✝ ☎ ✞✟✒ and ✑ ☎ ✆✝ ☎ ✞✟✒ . Deciding
whether✭ is a set of linearly independent vectors, or whether✑
is linearly independent from✭ can be performed in time✜ ☛✔✭ ✔✆✏✍.
Proof. For the first point, transform✭ into a set of non-zero vectors
✭ � in echelon form with gaussian elimination, in time✜ ☛✔✭ ✔✆✏✍, and
check whether✔✭ � ✔ ✂ ✔✭ ✔ [3, Theorem 6.16]. For the second point,
still transform✭ into ✭ �, then transform✭ � ✁ ✆✑ ✟ into a set✭ �� in
echelon form, and check whether✔✭ �� ✔ ✂ ✔✭ � ✔. ✷

Proposition 2 Given a relation✙ over ✏ variables, finding a lin-
early independent subset of✙ that is maximal for set inclusion re-
quires time✜ ☛✔✙ ✔✏☞ ✍.
Proof. The subset✭ of ✙ is built step by step. First initialize it with
any vector✑ ✴ ☎ ✙ not identically✝. During the process, pick any
vector✑ ☎ ✙ not yet in✭ , and check whether it is linearly indepen-
dent from✭ (Proposition 1). If yes, add it to✭ , otherwise eliminate
it from ✙ . Since there cannot be more than✏ linearly independent
vectors in✆✝ ☎ ✞✟✒ [3, Theorem 5.1], the number of vectors in✭ can
never exceed✏, and each vector of✙ is considered only once, yield-
ing the time complexity✜ ☛✔✙ ✔✔✭ ✔✆✏✍ ✚ ✜ ☛✔✙ ✔✏☞ ✍. ✷
Proposition 3 Given a basis✭ of a vector space✮ ✚ ✆✝ ☎ ✞✟✒ ,
computing an affine formula✡ describing✮ requires time✜ ☛✏✌ ✍,
and✡ contains at most✏ equations.

Proof. First complete the basis✭ ✂ ✆✑ ✂ ☎ ✝ ✝ ✝ ☎✑ ✠ ✟ with ✏ ✠ ✢
vectors✑ ✂ ☎ ✝ ✝ ✝ ☎✑✒ ☎ ✆✝ ☎ ✞✟✒ such that✆✑ ✂ ☎ ✝ ✝ ✝ ☎✑✒ ✟ is a basis
for the vector space✆✝ ☎ ✞✟✒ ; this can be done in time✜ ☛✔✭ ✔✆✏ ✠
✏ ✆ ✍ ✚ ✜ ☛✏☞ ✍ by putting ✭ in echelon form. Then associate the
linear equation✂✂ ✂ ☛✄

✞✝ ✂ ☎☎☎☎☎✒ ✆ ✞✂ ✄✞ ✂ ✝✍ to ✑ ✂ for ✝ ✂ ✢ ✠✞ ☎ ✝ ✝ ✝ ☎ ✏ , where the✆ ✞✂ ’s are uniquely determined for a given✝ ☎
✆✢ ✠ ✞ ☎ ✝ ✝ ✝ ☎ ✏✟ by the system

✞✂ ✂

✟✠✠✠✠✠✠✠✠✡
✠✠✠✠✠✠✠✠☛

✑ ✂ ✕✞✗ ✆ ✂✂ ✠ � � � ✠ ✑ ✂ ✕✏✗ ✆✒✂ ✂ ✝
✝ ✝ ✝

✑ ✂ ✟ ✂ ✕✞✗ ✆ ✂✂ ✠ � � � ✠ ✑ ✂ ✟ ✂ ✕✏✗ ✆✒✂ ✂ ✝
✑ ✂ ✕✞✗ ✆ ✂✂ ✠ � � � ✠ ✑ ✂ ✕✏✗ ✆✒✂ ✂ ✞

✑ ✂ ☞ ✂ ✕✞✗ ✆ ✂✂ ✠ � � � ✠ ✑ ✂ ☞ ✂ ✕✏✗ ✆✒✂ ✂ ✝
✝ ✝ ✝

✑✒ ✕✞✗ ✆ ✂✂ ✠ � � � ✠ ✑✒ ✕✏✗ ✆✒✂ ✂ ✝
Then the affine formula✡ ✂ ✤✒✂ ✝✠☞ ✂ ✂✂ describes✮ . Indeed, by
construction of

✞✂ , for
✖ ✂ ✞ ☎ ✝ ✝ ✝ ☎ ✢, ✑ ✞ satisfies✂✂ , thus every lin-

ear combination of✆✑ ✂ ☎ ✝ ✝ ✝ ☎✑ ✠ ✟ satisfies every✂✂ , thus✮ is in-
cluded in the set of models of✡. On the other hand, if✑ ☎ ✆✝ ☎ ✞✟✒
is not in ✮ , then it is the linear combination of some vectors of
✆✑ ✂ ☎ ✝ ✝ ✝ ☎✑✒ ✟, among which at least one✑ ✂ with ✝ ✎ ✢

; write
✑ ✂ ✑ ✂ ✠ ✄✌✍✝ ✂ ✑ ✞✎ ; then

✒✏
✞✝ ✂ ✆ ✞✂✑ ✕✖✗ ✂

✒✏
✞✝ ✂ ✆ ✞✂

☛✑ ✂ ✕✖✗ ✠
✌✏
✍✝ ✂✑ ✞✎ ✕✖✗✍

✂
✒✏

✞✝ ✂ ✆ ✞✂✑ ✂ ✕✖✗ ✠
✌✏
✍✝ ✂

☛ ✒✏
✞✝ ✂ ✆ ✞✂✑ ✞✎ ✕✖✗✍

Since
✄ ✒✞✝ ✂ ✆ ✞✂✑ ✞✎ ✕✖✗ ✂ ✝ for all ✑ and

✄ ✒✞✝ ✂ ✆ ✞✂✑ ✂ ✕✖✗ ✂ ✞ (by
construction of

✞✂ ), we get
✄ ✒✞✝ ✂ ✆ ✞✂✑ ✕✖✗ ✂ ✞, i.e.,✑ does not sat-

isfy ✂✂ , and thus does not satisfy✡. There are✏ ✠ ✢
systems

✞✂ to
solve, each one in time✜ ☛✏☞ ✍ with gaussian elimination (✏ equa-
tions and✏ unknowns), thus the total time complexity of the process
is ✜ ☛☛✏ ✠ ✢ ✍✏☞ ✍ ✚ ☛✏ ✌ ✍. ✷
Proposition 4 Given an✏-place relation✙ and a linearly indepen-
dent set of vectors✭ ✚ ✙ , deciding whether the vector space✮
generated by✭ is included in✙ requires time✜ ☛✔✙ ✔✏ ✍.
Proof. It suffices to generate all the linear combinations of vectors
of ✭ , and to answer ’no’ as soon as one is not in✙ , or ’yes’ if all are
in ✙ . Since two different linear combinations of linearly independent
vectors are different, each vector of✙ can be found at most once, and
deciding✑ ☎ ✙ requires time✜ ☛✏✍ if ✙ is sorted (in time✜ ☛✔✙ ✔✏ ✍
with a radix sort), which completes the proof.✷


