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Approximating Propositional Knowledge with Affine
Formulas

Bruno Zanuttini !

Abstract.
tions of linear equations modul for approximating propositional
knowledge. These formulas are very close to CNF formulas adn
low for efficient reasoning ; moreover, they can be minimizdit
ciently. We show that this class of formulas is identifialhel #AC-
learnable from examples, that an affine least upper bound-efa
tion can be computed in polynomial time and a greatest lowand
with the maximum number of models in subexponential timd. Al
these results are better than those for, e.g., Horn formulbgh
are often considered for representing or approximatinggsiional
knowledge. For all these reasons we argue that affine fosrara
good candidates for approximating propositional knowéedg

1 INTRODUCTION

Affine formulas correspond to one of the only six classes t&-re
tions for which the generalized satisfiability problem ectable [9].
These formulas consist in conjunctions (or, equivalestigtems) of
linear equations modul®, and are very close to usual CNF formulas.
Indeed, in some sense usual disjunction inside the classgsply
replaced with addition modul®, and as well as, e.g., Horn formu-
las, affine formulas are stable under conjunction. Intelyivwhile
Horn clauses representusalrelations, linear equations represent
parity relations between variables (with, as a special case, ieqsat
over only two variables specifying either that they must eat or
that they must be different). Moreover, most of the notidret aire
commonly used with CNF formulas (such as prime implicatgs)
can be transposed straightforwardly to them. Finally, adeal of
reasoning tasks that are intractable with general CNF ftasnare
tractable with affine formulas : e.g., satisfiability or detion. It is
also true of problems that are intractable even with Hormidas,
although these formulas are often considered for repriegeat ap-
proximating knowledge : e.g., counting of models, minintiza.
Nevertheless, not many authors have studied this classmoifo
las ; mainly Schaefer [9], Kavvadias, Sideri and Stavrops(f, 8]
and Zanuttini and Hébrard [12]. Moreover, none of them leasly
studied them as a candidate for representing or approxigmptbpo-
sitional knowledge. We believe however that they are gootliea
dates for approximation, for instance in the sense of [10yerga
knowledge base (KB), the idea is to compute several appatidms
of it with better computational properties, and to use l&tese ap-
proximations for helping to answer queries that are askéd ttost
of the time, the approximations will give the answers to éhgseries,
and in case they do not, since the approximations have gaoguwo
tational properties, only a small amount of time will haveibdost
and the query will be asked directly to the KB. Note also thethe
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We consider the use of affine formulas, i.e., conjonc- KBs can be representegkactlyby a formula with good properties ;

in this case, the formula can give the answer to any queryufo s
marize, approximations can help saving a lot of time whemwarisg
gueries (for instance in an on-line framework), especiéliyey can
be reasoned with efficiently and if their size is reasonable.

Not many classes of formulas satisfy these requirements fdo-
mulas are often considered for approximating knowledge (se
instance [10]), but they have some limits : e.g., the shoHesn ap-
proximation of a knowledge base may be exponentially latigen
its set of models, and some problems are not tractable with fbo-
mulas : counting the models, abduction, minimization. fir&f for-
mulas satisfy these requirements quite better : on one Heaydatl
can be made very small, which guarantees that an affine apmox
tion can almost never be bigger than the original KB, and erother
hand, they have very good computational properties fororgag.

We focus here on thacquisitionof affine formulas from relations,
with a computational point of view ; in other words, we areshetsted
in the complexity of computing affine approximations of kregdge
bases represented as sets of vectors. We first presen{S2rtev-
eral simple technical results about vector spaces thateiliseful.
Then we consider (Section 3) theentificationof an affine struc-
ture in a relation [4], which corresponds to the special edsen the
knowledge base can be represented exactly by an affine famitul
is well-known that affine formulas are identifiable, but weaiéthe
proof for sake of completeness. Then we study (Section 4ptbe
cess ofapproximatinga relation with affine formulas [10] : we show
that the affine least upper bound of a relation can be compgated
polynomial time, and that an affine greatest lower bound hith
maximum number of models can be computed in subexponential
time. Finally (Section 5), we consider the problemR#C-learning
these formulas [11], which corresponds to the case wherethgan
is affine but the algorithm has a limited access to it ; we shuat t
affine formulas are PAC-learnable from examples only.

We wish to emphasize that these results are better than the co
sponding ones for Horn formulas. Although they are alsotiflable,
the problem of approximation with Horn formulas is intrdita: the
Horn least upper bound of a relation may be exponentiallgelar
than it, and computing a Horn greatest lower bound with th&ima
mum number of models is NP-hard. Finally, the question isagien
whether Horn formulas are PAC-learnable from examples. \&& a
wish to emphasize here that we consider the class of affineullas
mainly forapproximatingpropositional knowledge, independently of
the knowledge that they can represeractly

2 PRELIMINARIES AND TECHNICAL TOOLS

We assume a countable number of propositional variahiless, . . ..
A linear equation (modul@) is an equation of the forma;, & z;, ®



- @z, =a,a € {0,1}, wherez;, & - -+ @ z;, stands forz;, +
--- + z;, (mod2). An affine formulais a finite conjunction of linear
equations ; e.g., the formula:

(z1®z3®xa =1) A (2D 23 = 0)

is affine. An-place vectorn € {0,1}", seen as 8/1 assignment to
the variablesey, x2, . . ., z», iSs amodelof an affine formulap over
the same variables (writtem |= ¢) if m satisfies all the equations
of ¢. We denote byn[i] theith component ofn, and formi, m2 €
{0,1}", we writem; & ms for then-place vectorn such thati =
1,...,n,m[i] = mi[i] ® ma[i].

A set of vectorsk C {0,1}" is called am-place relation and an
n-place relationR is saidaffineif it is the set of all the models of an
affine formulag over the variables1, 2, . ..,z ; ¢ is then said to
describeR. For instance, thé-place relationR :

{00010, 00011, 01100, 01101, 10000, 10001,11110, 11111}

is affine and is described by the formujaabove. The number of
vectors in a relatiotR is written|R|.

Itis a well-known fact that the satisfiability problem is pobmial
for affine formulas [9] ; indeed, it corresponds to decidingether
a given system of equations modulchas a solution, and thus can
be solved by gaussian elimination [3, Sectiof. 8]hus this prob-
lem can be solved in tim@(k>n) for an affine formula ok equa-

is a vector space, and its subg®0001, 01110, 10010} is one of its
bases.

We end this section by giving four simple complexity resuts-
cerning bases and linearly independent sets of vectorsieBhef the
paper uses no result from linear algebra but these ones. fbloésp
are given in appendix.

Proposition1 Let B C {0,1}* and m € {0,1}". Deciding
whetherB is a set of linearly independent vectors, or whether
is linearly independent fronB can be performed in tim@(|B|*n).

Proposition 2 Given a relationR over n variables, finding a lin-
early independent subset &f that is maximal for set inclusion re-
quires timeO(|R|n?).

Proposition 3 Given a basisB of a vector spacd” C {0,1}",
computing an affine formula describingV' requires timeO(n*),
and¢ contains at most equations.

Proposition 4 Given ann-place relationR and a linearly indepen-
dent set of vector® C R, deciding whether the vector spa¥e
generated byB is included inR requires timeO(|R|n).

3 IDENTIFICATION

The problem ofstructure identificationwas formalized by Dechter

tions overn variables. Deduction of clauses, i.e., the problem of de-and Pearl [4]. It consists in some kind of knowledge comiaifat

ciding ¢ = a where¢ is an affine formula and is a clause (fi-
nite disjunction of negated and unnegated variables), ligpmial
too ; indeed, it corresponds to deciding whether the affimmita
¢ A Npyea(@i = 0) A Ay, co(xi = 1) is unsatisfiable, which
requires timeO((k + £)?>n) for a clause of lengtt. Minimizing
an affine formula or counting its models can also be perforefed
ficiently by putting¢ in echelon form[3, Section 8], which again
requires timeD(k*n) with gaussian elimination.

We now introduce the parallel that we will use between affiame r
lations and vector spaces over the two-element fieddtor spaces
for short). ForR a relation andn € R, let R,,, denote the relation
{p®m, p € R} ;for ¢ an affine formula aneh |= ¢, let ., denote
the affine formula obtained from by replacingz; with z; & 1 for
everyi such thatm[:] = 1, and simplifying. Let us first remark that
for all R,m, ¢, (Rm)m = R and(¢m)m = ¢. Now suppose that
R is affine and thai describes it. Then for any model of ¢ (i.e.,
for anym € R), it is easily seen thad,, describesR,, and that
R,, is a vector space ; conversely,Afis a relation such that for any
m € R, R, is avector space, theR is affine (see [3, Theorems 8.9
and 9.1]). This correspondence allows us to use the usuainsabf
linear algebra, and especially the notion of basis of a vesptace.

Let us first recall that the cardinality of a vector space thetwo-
element field is always a power ®f A basisB of a vector spac¥ is
a set oflog, |V'| vectors ofV that are linearly independent, i.e., such
that none is a linear combination of the others, and thatrgée® in
the sense that their linear combinations are all and onlglgments
of V ; let us also recall that two different linear combinatiorfs o
linearly independent vectors give two different vectorsigh yields
[V = 2B1). For more details we refer the reader to [3].

Example 1 We go on with the relatiolR above. SinceR is affine
and01100 € R, the relationRo1100 :

{00000, 00001, 01110, 01111, 10010, 10011,11100, 11101}

2 Most of the results we will use from [3] are given for equatioith real or
complex coefficients and unknowns, but can be applied siifaigvardly
to our framework with the same proofs.

where a formula is searched with required properties artchtraits
a given set of models. In our framework, it corresponds takimg
whether some knowledge given as a relation can be represexte
actly by an affine formula before trying tapproximateit by such a
formula. Identifying an affine structure in a relati®@means discov-
ering thatR is affine, and computing an affine formupadescribing
it.

It is well-known from linear algebra (see also [9, 6]) thafiref
structures arédentifiable i.e., that there exists an algorithm that,
given a relationR, can either find out thaR is the set of models
of no affine formula over the same variables, or give such i,
in time polynomial in the size oR.

The algorithm is the following. We first transform the prablento
one of vector spaces, by choosing anye R and computing the
relationR,,. The problem has now become that of deciding whether
R,, is a vector space. Then we compute a sulbsgtof R, that is
linearly independent and maximal for set inclusion (Prapms2) ;
we know by maximality ofB,, that all the vectors iR,,, are linearly
dependent fromB,,, i.e., thatR,, is included in the vector space
generated byB,,. Thus if [R,,| = 2/®m/, we can conclude that
R,, is exactly this vector space, and we can compute fimnan
affine formulag,, describingR,,, (Proposition 3) ; the formulg =
(ém)m Will describe(Ry)m = R. Otherwise, if R | # 2/5™1, we
can conclude thaR,,, is not a vector space, i.e., th&tis not affine.

Proposition 5 (identification) Affine structures are identifiable in
time O(|R|n® + n*), whereR is the relation andn the number of
variables.

Proof. ComputingR,, from R requires timeO(|R|n), computing
B, O(|R|n®) (Proposition 2), computing,, from B.,, O(n*)
(Proposition 3) and finally, computing requires timeO(|¢m|) C
O(n*).0

For sake of completeness, we also mention the approach]ifof12
proving the identifiability of affine structures ; this appol exhibits
and uses a syntactic link between usual CNFs and affine fasmul
instead of results from linear algebra.



4 APPROXIMATION

We now turn our attention to the problem approximationitself.

Approximating a relatiork by an affine formula means computing

an affine formulap whose set of models is as close as possibR to

Proposition 6 (LUB) Let R be an-place relation. The affine LUB
¢iwb Of R is unique up to logical equivalence and can be computed
in time O(|R|n® + n*).

Proof. We must first choosen € R and computeR,,, in time

thus this process takes place naturally wicannot be represented O(|E|n). Then we must compute a maximal linearly independent
exactlyby an affine formula. Many measures of closeness can b&ubsetB,, of Ry, in time O(|R|n") (Proposition 2). Finally, we

considered, but we will focus on the two notions explored bingn
and Kautz in [10].

The first way we can approximateis by finding an affine formula
oi1ub Whose set of modelR;,,; is a superset aR, but minimal for set
inclusion. Theng,,; is called an affinéeast upper boundLUB) of

must computeb,, from B,, and set;,s = (¢m)m, Which requires
time O(n*) (Proposition 3)0

4.2 Affine GLBs

R [10, 4]. The second notion is dual to this one : we now search fo Contrary to the case of LUBs, the affine GLB of a relation is not

an affine formulapy;;, whose set of modelR,;s is a subset oR, but
maximal for set inclusion. The formulgy;; is then called an affine
greatest lower boundGLB) of R [10]. Remark that ifR is affine,
theng;,, andeg;, both describe it.

Example 2 (continued) We consider the non-affine relatiaR =
{00011, 01101, 10000, 11110,11111}. It is easily seen thap =
(21 ® 23 ® xa = 1) A (2 ® 23 = 0) is its (unique) affine LUB
(with 8 models), and that the formulaA (z3 @ z4 ® z5 = 0) isits
affine GLB with the maximum number of moddls (

Selman and Kautz suggest to use these bounds in the followndmg
ner. If R is a knowledge base, store it as well as an affine L¢JB
and an affine GLBp;, of it. When R is asked a deductive quesy,
i.e., when it must be decideR = « whereq is a clause, first de-
cide s | a:if the answer is positive, then conclude= a. On
the other hand, if the answer is negative, then degigde = o : if
the answer is negative, then you can conclilé- . In case it is
positive, then you must quety itself. In the case of affine (or Horn)
approximations, since deduction is tractable, either tisvar will
have been found quickly with the bounds or only a small amefint
time will have been lost, under the condition that the sizthefap-
proximation is comparable to or less than the siz&ofut we have
seen that, contrary to Horn formulas, affine formulas caragibe
made very small.

We study here these two notions of approximation with affare f
mulas.

4.1 Affine LUBs

We first consider affinkUBsof relations. LetR be a relation. Once
again we transform the problem of computing an affine LUBRof
into a problem of vector spaces, by choosinge R and consider-
ing the relationR,,. SinceR,, is a vector space if and only R is

affine, we consider the closuté, of R,, under linear combinations,
i.e., the unique smallest vector space includiyg, and the associ-
ated affine relatio” = (V). Itis easily seen thalt” is uniquely

unique up to logical equivalence in general, and there is agerea-
son for two affine GLBs of a relation to have the same size. What
most interesting then is to search for an affine GkBaz— g1 With
the maximum number of models over all affine GLBs. The assedia
decision problem is NP-hard for Horn GLBs (see [7]), but wevsh
here that there exists a subexponential algorithm for tfieeatase ;
remark that while NP-hard problems can be considered iatoée,
subexponential algorithms can stay reasonable in practice

We still work with the relationR,,, for a givenm € R. What we
must do is find a vector spaé#g, included inR,, and with maximum
cardinality, and then to compute an affine formylg describing
Vi ; we will then setpaz—giv = (ém)m. We proceed by searching
the maximalk for which there exist& linearly independent vectors
mi,...,mr € Ry, that generate a vector spaég included inR,,,.
Sincek can only range betwednandlog, |R..| = log, | R|, we get
a subexponential algorithm.

Proposition 7 (maximum GLB) Let R be ann-place relation. An
affine GLB¢maz—g16 Of R with the maximum number of models can

be computed in im@(|R|n(log log | R]) 28 |1 ZD*).

Proof. We search the maxim& by dichotomy. Begin withk =
log |R|/2. For a givenk, compute all the('*™!) subsets ofR,,, of

k vectors, and for each one of them, test whether it is lineadg-
pendent (in time)(k%n) with Proposition 1) and whether the vector
space itis a basis for is included &, (in time O(|R|n) with Propo-
sition 4). If it is the case for at least one subset of &izthen increase
k (by dichotomy) and go on, otherwise decreassd go on. Finally,
sincek is always bounded blog, |R|, at mostlog, log, |R| differ-
entk’s will have been tried, and we get the time complexity

|R|

log1
O((log log |R]) x <10g|R|

) x ((log|R|)*n + |R|n))

which is less tharO((log log |R|)|R|'°¢ Bl (|R|n)), which in turn
equalsO(| R|n(log log |R|)20°¢ 1BD*). O

defined (whatevem € R has been chosen) and is the smallest affine5 PAC-LEARNING

relation includingR. It follows that the affine LUBp;,; of a relation
R is unique up to logical equivalence, and that its set of model
exactlyV (see also [9, 6]).

Now we must compute an affine formupa, describingV;,,, given
the relationR,,, ; we will then setp;,p = (dm)m- The idea is the
same as for identification : compute a baBig of V,,,, and then use
Proposition 3 for computing,,. But we have seen thaf,, is the

We finally turn our attention to the problem t&farning affine for-
mulas from examples. The main difference with the other lerob
considered so far is that the algorithm has not access torifire e
relationR. It must compute an affine approximation of an affine re-
lation R by asking as few informations as possible abBufNever-
theless, learning is a rather natural extension of appratan, since

closure ofR,, under linear combination, and thus any maximal (for it corresponds in some sense to introducing a dynamicalcagpe

set inclusion) linearly independent subsetR), is a basis ofV,,,.
Finally, we get the following result.

it : the algorithm is supposed to improve its result when &lisewed
more time for asking informations aboft



We consider here theAC-learningframework of Valiant [11, 1],
with examples only. In this framework, we wish an algorithorbe
able to compute a functiop of n variables (in our context, an affine
formula) by asking only a polynomial number of vectors of &me
relation R, such thatp approximates with high probability the rela-
tion R rather closely (Probably Approximately Correct learning)

More precisely, an affin@-place relationR is given, as well as
an error parameter. The algorithm must compute an affine formula
¢ over the variables, .. ., z, such thatp approximatesk with an
error controlled by ; we will authorize here only one-sided errors,
i.e., the models op must form a subset ak. At any time, the algo-
rithm can ask a vectar € R to an oracle, but the number of these
calls must be polynomial in ande, as well as the work performed
with each vectdt. Note that in a first time we assume that the algo-
rithm knowsn, while this is not the case in Valiant’s framework, but
we will see at the end of the section how to deal with this probl

To be as general as possible, a probability distribufibaver the
vectorsm € R is fixed, for two purposes : (i) when asked a vector of
R, the oracle outputs € R with probability D(m), independently
of the previously output vectors (ii) the error correspogdio the
affine formulag computed by the algorithm is defined B%¢) =
Yomer,mps P(m), and¢ is said to be aorrect approximatiorof
Rif E(p) <1/e.

Finally, the class of affine formulas will be saRAC-learnable
from examples onlif there exists an algorithm that, for a fixed affine
n-place relatiork and a real number, can compute in time polyno-
mial in n ande, and with a polynomial number of calls to the oracle,
an affine formulap that with probability at least — 1 /¢ is a correct
approximation ofR. We exhibit here such an algorithm

The idea is first to treaR as R,,, wherem is the first vector
obtained from the oracle, i.e., to replace each obtainetbvgowith
1 @& m ; once again this is done for tranforming the problem into
one of vector spaces. The idea is then to obtain a certain euafb
vectors ofR,,, from the oracle and to maintain a maximal linearly
independent subsd®,, of them. When enough vectors have been
asked, the algorithm can compute an affine forngijafrom this set
(Proposition 3) and outpyt = (ém )m ; SinceBy, C Ry andRy, is
closed under linear combination, the modelggf will always form
a subset ofR,,, as required.

The point is that only a polynomial number of vectors are eded
for ¢, to be with high probability a correct approximation Bf, .

To show this, we will use the functioh(e, n) defined in [11] ; the
valueL = L(e, n) is the smallest integer such thatlinindependent
Bernoulli trialsT1, . .., Tt each with probabilityP; > 1/e of suc-
cess (theP;’s being not necessarily equal), the probability of having
at leastn successes is at lealst- 1/e. Valiant shows thal(e, n) is
almost linear ire andn (more preciselyyn > 1,Ve > 1, L(g, n) <
2¢e(n + log, €)). We show below thaf (e, n) vectors ofR,, are
enough forp,, to be correct.

Proposition 8 (PAC-learning) The class of affine formulas is PAC-
learnable fromL(e, n) examples, whetreis the error parameter and
n the number of variables involved.

Proof. We have to show that if the algorithm presented above has

obtainedL (e, n) vectors (remind that each vectaiis replaced with

3 In the framework of [11], the running time can also be polyiedrin the
size of the shortest affine description®f but it will be useless here.

4 Following [11] and for sake of simplicity, we use only one @aeters
for bounding both the probability of success of the algonitand the cor-
rectness ofp ; but two parameters; ande» could be used with the same
complexity results.

p & m, wherem is the first vector obtained) and kept a maximal
linearly independent subsé,, of them, then an affine formuilgd,,
describing the vector space generated3y is a correct approxima-
tion of R,,,. We have seen that the set of modelspgf is a subset
of R,,, as required. Now we have to show that with probability at
leastl —1/e, E(¢) < 1/e. We thus consider the eveBY{¢$) > 1/¢,
and show that its probability is less thayie. For this purpose, we
associate to each call to the oracle a tffa) which is considered

a success if and only if the vector obtained is linearly iretefent
from the current independent set of vectd@#s, maintained by the
algorithm. SinceB,,, can only increase during the process, the prob-
ability P; of success of; is always at leasE(¢). Now since there
arek < n linearly independent vectors R,,, and¢., is not correct
(E(p) > 1/¢), the algorithm has obtained less tharsuccesses ;
finally, since the calls to the oracle are independent Bélinoials
and L(e,n)(> L(e, k)) such calls have been made, the definition
of L(eg, k) guarantees that this can happen with probability less than
1/e. Thus the learning algorithm is correct. To complete theofyro

it suffices to remark that the work performed by the algorithith
each vector requires only polynomial time, since it coroegs to
deciding the linear independence of a veatofrom the current set
B,,, and|B,,| < n ; thus Proposition 1 concludesl

To conclude the section, we consider the case when the thlgori
does not know in advance the number of variables on whichethe r
lation R is built. Then the vectors output by the oracle are built on
t > n variables, but are not necessarily total ; in case a partictior
m is output, it means that all total vectors matchimgmatch one
vector inR. But it is easily shown that iR really depends on a vari-
ablex; and is affine, then all partial vectors like above must asaign
value toz;, since a model assigningto z; cannot be a model any
more if the value ofr; becomes ; indeed, if{z, z;,, ..., z;, } sat-
isfies a linear equation dependingen {Zz =z ® 1, zs;,..., i, }
necessarily falsifies it. Thus the algorithm needs only iake ac-
count the variables that are defined in all the vectors outguhe
oracle, and the result stays the same (\i{b, ) calls to the oracle).

6 CONCLUSION

We have presented affine formulas as good candidates fooxappr
mating propositional knowledge. Indeed, we have seenlleattfor-
mulas admit very good computational properties for reasptasks
(in particular satisfiability, deduction, counting of mdgJeand are
guaranteed to be very short : their size can always be mipoinéf-
ficiently to O(n?), wheren is the number of variables involved.
Then we have shown that these formulas can easily be acquired
from examples. Indeed, this classidentifiable which means that
given a relationR, an affine formulap with R as its set of mod-
els can be computed, if it exists, in polynomial time. Whentsa
formula does not exist, an affileast upper boundf R can be com-
puted with roughly the same algorithm, and an affineatest lower
boundof R with the maximal number of models can be computed in
subexponential time. Finally, we have shown that affine fdem are
PAC-learnabledrom examples only.
We have argued that all these results made affine formulas-an i
teresting class for approximating knowledge, by compatiiregn to
the corresponding ones for Horn formulas, which are oftersich
ered for representing or approximating propositional kiedge. In-
deed, Horn formulas are identifiable as well as affine forsalad
with a comparable time complexity [4, 12] ; on the other hahe,
Horn LUB of a relation can be exponentially bigger than itThe-
orem 6] while the affine LUB of a relation can always be comgute



in polynomial time, and computing a Horn GLB of a relationtwit Proposition 2 Given a relationR over n variables, finding a lin-
the maximum number of models is a NP-hard problem [7], while i early independent subset & that is maximal for set inclusion re-
is only subexponential for affine formulas. Then, affine fokas are  quires timeO(|R|n?).

PAC-learnable from examples only while the problem is siiien

for Horn formulas ; [2] only gives an algorithm for learningoth
formulas with access to an equivalence oracle. All thesdtseshow
that acquisitionof affine formulas from examples is in general eas-
ier than acquisition of Horn formulas. But we also emphasiz
workingwith affine formulas is also easier in general than with Horn
formulas. For instance, mininmizing or counting the mod#lan

Proof. The subseB of R is built step by step. First initialize it with
any vectormo € R not identically0. During the process, pick any
vectorm € R not yetinB, and check whether it is linearly indepen-
dent fromB (Proposition 1). If yes, add it t&, otherwise eliminate
it from R. Since there cannot be more tharlinearly independent
vectors in{0,1}" [3, Theorem 5.1], the number of vectorskhcan
affine formula is polynomial, while it is intractable with IHo In a pever exceecb, and efach vector2dB 1S con5|der3ed only once, yield-
forthcoming paper, we study more deeply the propertiesfivfeafor- ing the time complexityO(|R||B["n) € O(|R|n"). T

mulas for reasoning, as well as their semantics, i.e., thealpieces  proposition 3 Given a basisB of a vector spacé” C {0,1},
of knowledge that they can really represent. computing an affine formula describingV’ requires timeQ(n*),
and¢ contains at most equations.
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We give here the proofs of the propositions given in Section 2 . ) . . i
Proposition 4 Given ann-place relationR and a linearly indepen-

Proposition1 Let B C {0,1}* and m € {0,1}". Deciding  dent set of vector® C R, deciding whether the vector spate
whetherB is a set of linearly independent vectors, or whether  generated byB is included inR requires timeO(| R|n).

is linearly independent fromB can be performed in tim@(|B|2n). . . L
Proof. It suffices to generate all the linear combinations of vector

Proof. For the first point, transforn® into a set of non-zero vectors of B, and to answer 'no’ as soon as one is nakijor 'yes’ if all are
B’ in echelon form with gaussian elimination, in tir®€|B|>n),and  in R. Since two different linear combinations of linearly inéegent
check whethe[B’| = | B| [3, Theorem 6.16]. For the second point, vectors are different, each vector®fcan be found at most once, and
still transformB into B’, then transformB’ U {m} into a setB” in decidingm € R requires timeD(n) if R is sorted (in timeD(|R|n)
echelon form, and check wheth&”| = |B'|. O with a radix sort), which completes the profd.



