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Abstract. Selman and Kautz introduced the notion of approximation
of a theory and showed its usefulness for knowledge compilation and
on-line reasoning. We study here the complexity of the main computa-
tional problems related to the approximation of relations (sets of possible
worlds) by propositional formulas, and the semantics of reasoning with
these approximations (deduction and abduction). The classes of formu-
las that we consider are those of (reverse-)Horn, bijunctive and affine
formulas, which are the most interesting for storing knowledge.
Concerning the computation of approximations, we survey and complete
the results that can be found in the literature, trying to adopt a unified
point of view. On the contrary, as far as we know this paper is the first
real attempt to study the semantics of abduction with the bounds of a
theory.

1 Introduction

Recently there has been a great amount of research about knowledge approz-
imation ([DP92,KKS95,Val95,SK96,KR96] for instance). An approximation of
a theory X representing some knowledge is another theory that approaches it
the best (in some precise sense) but allows for efficient reasoning (for instance,
deduction) when X does not. The idea is to store the approximation with the
theory itself, and to use it for speeding up further reasoning. Thus computing ap-
proximations can be viewed as a knowledge compilation task [SK96] ; practically
speaking, this compilation is most of the time intended as an off-line process
performed in order to speed up further on-line reasoning.

We are interested here in propositional theories. Many papers have focused
on them [DP92,KKS95,5K96,Bou98,CS00], may the original theories be given as
relations [DP92,KKS95] or as formulas [Val95,SK96,CS00]. In this paper, we con-
sider the case when the original theory X' is given as a relation, which corresponds
to the case when konwledge is stored as a set of observations [DP92,ZH02a] (or
possible worlds [KKS95]) ; in this framework, we study the complexity of comput-
ing a propositional formula approximating Y. The motivation for approximating
by formulas is that most of the time formulas are smaller than their set of mod-
els, and since wa aim at storing the approximation and reasoning with it, its size
is a very important parameter to take into account.



Following [SK96], we measure closeness of the approximation to the original
theory in terms of sets of models ; we then talk about Upper Bounds when the
approximation is logically weaker than the theoy, and of Lower Bounds when
it is logically stronger. Finally, we are interested in approximations into the
classes of (reverse-)Horn, bijunctive and affine formulas, for these classes are
the most important ones for reasoning and representing knowledge, in many
senses. Indeed, they are, among other properties, tractable for the satisfiability
problem, stable by conjunction, by conjunction of facts (unit clauses) and by
unit resolution, and tractable for deduction of clauses.

Our contribution is the following. We first survey and complete the results
concerning the complexity of computing Least Upper Bounds and Greatest
Lower Bounds of relations into these classes of formulas, trying to adopt a uni-
fied point of view ; moreover, we give explicit examples and counter-examples,
or detail the proofs that can be found in the literature when useful. Secondly,
we study the semantics of reasoning with such bounds, i.e., the links between
the answers obtained when reasoning with the bounds and those that could have
been obtained with the original theory. While deduction has been extensively
studied in [Val95,SK96], as far as we know the semantics of abduction have not
really been studied in the literature.

The paper is structured as follows. Section 2 is devoted to the explanation
of our definitions and conventions. In section 3 we discuss the computation of
upper bounds, in section 4 that of lower bounds, and in section 5 we discuss the
semantics of reasoning with these bounds. We end with a summary of the results
and further directions for research in section 6.

2 Preliminaries

We assume a countable number of propositional variables 1, xs,.... A relation
on {0,1} is a subset of {0,1}" ; for instance, R = {001,011,101} is a relation.
We view any vector m of {0,1}™ as a 0/1 assignment to n variables (in the order
of their indices), and m; denotes the value assigned by m to z;. We write |R|
the number of vectors in a relation R.

A literal is either a variable z; (positive literal) or its negation —x; (negative
literal). A clause is a finite disjunction of literals, and a formula is in conjunctive
normal form (CNF for short) if it is written as a finite conjunction of clauses. A
0/1 assignment m to the variables of a formula ¢ in CNF is a model of ¢ (written
m = ¢) if it satisfies at least one literal in each clause of ¢. For instance, the
assignment m = 001 to the variables x1, 2,23 is a model of the CNF ¢ =
(z1 V —x2) A (—z1 V22 V —z3). An affine formula [Sch78,KS98] is a conjunction
of linear equations modulo 2. A model of an affine formula ¢ is an assignment
m to its variables that satisfies all the equations (written m |= ¢). For instance,
m = 001 is a model of the affine formula ¢ = (21 ® x3 = 1) A (1 ® 22 = 0).
As can be seen, equations play the same role for affine formulas than clauses do
for CNFs. If ¢ is a CNF or an affine formula, we denote by M(¢) the set of its
models.



A formula in conjunctive normal form is Horn if it has at most one positive
literal per clause ; it is reverse-Horn if it has at most one negative literal per
clause. For instance, the formula ¢1 = (21 V ~z2 V —23) A (22) A (-1 V —23)
is Horn, and ¢» = (x1 V —x2) A (x3) is reverse-Horn. Note that if a CNF is
reverse-Horn, then replacing each variable with its negation in it yields a Horn
formula, and conversely ; the corresponding models are also strongly linked, in
the sense that the models of one are the others’ where 0 is replaced with 1 and
1 with 0. For that reason, we only study Horn formulas in the paper ; all the
results for reverse-Horn formulas are dual. Finally, a CNF is bijunctive if it has
at most two literals per clause. For instance, ¢; above is not bijunctive while
¢2 is. We denote by HORN (resp. REVERSE-HORN, BIJUNCTIVE) the class of
all Horn (resp. reverse-Horn, bijunctive) CNFs, and by AFFINE the class of all
affine formulas. Unless stated otherwise, when we consider a class of formulas C
it is always one of these. In the paper, the term formula groups both CNFs and
affine formulas.

Our motivation for studying these classes of formulas comes from their very
good computational properties for reasoning. First of all, they are all polynomial
for the satisfiability problem : linear for (reverse-)Horn and bijunctive formulas,
and quadratic for affine (more precisely, SAT for affine formulas can be solved in
time O(k?n) if the formula consists of k equations over n variables, with gaussian
elimination, see for instance [Cur84]). Secondly, it follows from their definitions
that all these classes are stable by conjunction, which allows for instance to up-
date a Horn knowledge base by adding new Horn rules while preserving the Horn
form. From their definitions it also follows that they are stable by conjunction
of facts (unit clauses) and by unit resolution, which allows for instance one to
specify a value for a variable and propagate it while preserving the class, and
which also implies that deduction of clauses, one of the most common reasoning
problems, is tractable ; indeed, deciding whether X implies ¢; V ---V £, is the
same as deciding whether X A #; A --- A £, is unsatisfiable, and thus stability by
conjunction of unit clauses and by unit resolution, in addition of tractability for
SAT, makes deduction of clauses tractable. Moreover, in some sense these classes
are the only ones to possess tractability for SAT and stability by conjunction,
which follows from Schaefer’s dichotomy theorem [Sch78]. Finally, these classes
allow efficient restricted forms of abduction [Val00,Z02b] while this problem,
also of major importance for reasoning, is X4'-complete in general [EG95]. For
all these reasons we argue that these four classes are the most interesting ones
for reasoning and representing propositional knowledge.

A formula ¢ is said to describe a relation R if R = M(¢) ; ¢ is called a
description of R. For m,m' € {0,1}", let us write mAm' the vector m" € {0,1}"
such that Vi = 1,...,n,m} = m; Am}, and similarly for vV and &. The following
result, proved by Schaefer, is essential for the paper.

Proposition 1 ([Sch78]). Let R be a relation. Then R has at least one de-
scription in
(1) HORN if and only if Vm,m' € R,m Am' € R,



(71) BWUNCTIVE iff Vm,m/,m" € R,(m VvV m') A (m Vv m'") A (m' vm") € R,
(iii) AFFINE iff Vm,m/,m" € R,m ®@m' ®m" € R.

3 Upper Bounds

We are first interested in the computation of upper bounds of relations. The
idea is that we weaken the original theory in order to obtain a more interesting
representation.

Definition 1 (C-upper bound). Let R C {0,1}" be a relation and C o class
of formulas. A formula ¢ on the variables x1,...,x, is called a C-upper bound
(C-UB) of R if ¢ € C and R C M(p). If this holds for no formula ¢' with
M(@") C M(@), ¢ is called a C-least upper bound (C-LUB) of R.

Of course, the most interesting upper bounds are the least ones, for they ap-
proach the original theory the closest and thus yield a smaller loss of informa-
tion than general upper bounds. Proposition 1 immediately yields the following
result for C-LUBs.

Proposition 2. Assume C is either HORN, BIJUNCTIVE or AFFINE. Then the
C-LUB of any relation is unique up to logical equivalence.

Proof. From Proposition 1 it follows that the set of models of the C-LUB of a
relation R is the closure of R under the operation corresponding to the class. 0O

Ezample 1. Consider the relation R = {011,110,101}. It is easily seen that
011 A 110 = 010, 011 A 101 = 001, 110 A 101 = 100 and 010 A 001 = 011 A
100 = --- = 000, and finally that the set of models of any HORN-LUB of R is

{0,1}3\{111}.

For sake of simplicity now, we will say a formula ¢ is the C-LUB of a relation.
Our problem is to compute such a ¢ when C is one of the classes of interest here.

We first consider HORN-LUBs. Unfortunately, there cannot be an input-
polynomial algorithm for computing the HORN-LUB of a relation, since the
former can be exponentially bigger than the latter, as shown in [KKS95] (where
an explicit example is given).

Proposition 3 ([KKS95, Theorem 6]). There ezist relations on 2n variables,
consisting of 3n(n — 1) vectors but whose HORN-LUB has 2" clauses.

Since there cannot be an input-polynomial algorithm for this problem, it is
worth wondering whether there exist an output-polynomial one [JYP88]. But it
is shown in [KPS93,Kha95] that this problem is harder than the enumeration of
all the minimal transversals of an hypergraph, which is open and for which the
best known algorithm is subexponential [Kha95].

Now we turn our attention to bijunctive and affine formulas. Contrary to the
Horn case, for both classes polynomial algorithms are given in the literature.
The idea for bijunctive formulas is that we only need to project the relation



onto every pair of variables and compute the associated clauses, and the proof
for affine formulas uses a strong link between the sets of models of affine formulas
and vector spaces, which allows to use the notion of basis of such a space.

Proposition 4 ([DP92, Lemma 3.18]). The BIJUNCTIVE-LUB of a relation
R € {0,1}" can be computed in time O(|R|n?).

Proposition 5 ([Z02a, Proposition 6]). The AFFINE-LUB of a relation R €
{0,1}™ can be computed in time O(|R|n® + n*).

4 Lower Bounds

We are now interested in lower bounds of relations, i.e., in strengthening the
original theory. The following definition is dual to Definition 1.

Definition 2 (C-lower bound). Let R C {0,1}" be a relation and C a class
of formulas. A formula ¢ on the variables x1,...,x, is called a C-lower bound
(C-LB) of R if ¢ € C and M(p) C R. If this holds for no formula ¢' with
M(¢) C M(¢'), ¢ is called a C-greatest lower bound (C-GLB) of R.

Dually to the case of upper bounds we are mainly interested in greatest lower
bounds. But contrary to its C-LUB, the C-GLB of a relation is not unique in
general. We are thus interested in two problems : find one C-GLB of a given
theory, and find one with the maximum number of models. Indeed, two C-GLBs
of the same relation have not even the same number of models in the general
case, and one of them may even be exponentially bigger than another, as the
next example illustrates it.

Ezxample 2. Consider the relation over the variables z1,..., 2z, :
R = {m100/m € {0,1}" 3} U {0...0010,0...0001}

where m100 stands for the assignment of m; to z; fori =1,...,n—3,1 to x,_2
and 0 to z,—1,%n, 0...0010 stands for the assignment of 0 to z1,...,2p—3, 0
to £p—2, 1 to £,—1 and 0 to z,, and similarly for 0...0001. It is easily seen
with Proposition 1 that S, = {m100|jm € {0,1}"~3} is the set of models of a
HORN- and AFFINE-GLB of R, and S, = {m100/m € {0,1}"~2 U {0...0010}
that of a BIJUNCTIVE-GLB of it. On the other hand, S; = {0...0010} is also
the set of models of a HORN-GLB of R, and S;, = {0...0010,0...0001} of a
BLJUNCTIVE- and AFFINE-GLB. However, for all n it holds that |R| = 2773 + 2,
|Sha| = 2773, |Sp] =273 + 1 and |S}| =1, |S;,| = 2.

4.1 Computing one GLB

The first natural problem concerning the computation of GLBs is the one of
computing one GLB. For the classes we are interested in the problem appears to
be polynomial, mainly because one can compute in polynomial time a formula
¢ € C given the set of its models [DP92,KS98,ZH02a]. Thus we can first compute



the set of models S of a C-GLB of R, which can be done by selecting vectors
from R as long as the closure of the current S is included in R, and then a
description of S. Since the size of S is by definition less than the size of R, the
whole process is polynomial.

Proposition 6 (see also [KPS93, Theorem 2]). A HORN-GLB of a relation
R C{0,1}" can be computed in time O(|R|*n?).

Proof. We begin by computing the set of models S of the HORN-GLB. Initialize S
to (), and perform the following until there is no more convenient vector m in R :
pick m € R such that Vm' € S,mAm’' € R and set S < SU{m}U{mAm'|m' €
S}. Then S is always closed under A and included in R, and when no more
convenient m can be chosen in R, then S is obviously maximal for set inclusion.
Then compute a formula ¢ describing S.

The running time is established as follows : since at most |R| vectors can be
added to S, and at each step one has to check that at most |R| products m A m/
are in R (which requires O(n) steps if R is initially sorted into a decision tree, in
time O(|R|n)), computing S requires time O(|R|?n). Then |S| < |R| holds, and
describing S into a Horn formula requires O(|S|?n?) steps [DP92,ZH02a]. O

Proposition 7. A BIJUNCTIVE- or AFFINE-GLB of a relation R € {0,1}" can
be computed in time O(|R|>n + |R|?n?).

Proof. The proof is the same as for Proposition 6, except that the test for sta-
bility requires three vectors ; thus computing S requires time O(|R|>n) instead
of O(|R|?n), and describing S still requires O(|S|*n?) steps [ZH02a]. o

However, computing one GLB may turn out to be rather uninteresting ; indeed,
as shown in Example 2 one can find a GLB ¢ whose set of models is exponentially
smaller than that of another GLB ¢’. In such a case, it is natural to consider that
the bounds with exponentially many models are the best ones. For this reason,
the problem of computing a GLB with the mazimum number of models over all
GLBs is more interesting.

4.2 Computing a GLB with the maximum number of models

We now consider the problem of computing a GLB that has the maximum num-
ber of models over all GLBs. More formally, for R a relation and C a class of
formulas, let us call a C-maxGLB of R any C-GLB ¢ of R such that no other
C-GLB ¢’ of R has more models than ¢ ; we emphasize that we do not consider
here the relations of inclusion between the sets of models of ¢ and ¢', but only
the number of these models.

As for C-LUBs, the results here are not the same for all the classes we are
interested in. In each case computing a C-maxGLB is hard, but it is NP-hard
for HORN and BIJUNCTIVE while subexponential, and thus unlikely to be NP-
hard [SH90], for AFFINE.

In order to show NP-hardness, we show that it is NP-hard to compute the set
of models of a maxGLB ; indeed, the models of any Horn or bijunctive formula



can be enumerated in output-polynomial time, and since a GLB of R has by
definition less than |R| models, we deduce that up to a polynomial overcost
computing the set of models of a maxGLB ¢ is not harder than computing ¢ ;
thus if the former computation is NP-hard, then the latter also is.

Proposition 8 (see also [KPS93, Theorem 2]). If P£ANP, a HORN-maz-
GLB of a relation R C {0,1}" cannot be computed in time polynomial in |R)|
and n.

Proof. We consider the associated decision problem : given R and k < |R]|, is
there a HORN-glb of R that consists in at least k vectors 7, and we reduce the
problem INDEPENDENT-SET, which is known to be NP-complete (see [GJ83]), to
this one. Let us recall that an independent set of a graph G is a subset V' of its
vertices such that no two vertices in V' are joined by an edge of G. The problem
INDEPENDENT-SET is the following :

Input : A graph G = (V, E) and a positive integer k < |V|

Question : Does G contain an independent set of size at least k 7
The reduction is the following : first consider |E| variables x1,..., g, each
variable x; corresponding to the edge e; of G, and associate to each vertex
v; of G a vector mlil such that for each variable x;, mEJ] is 1 if and only if
vj € e;. Then introduce |V| new variables z g 1,..., %54 /v|, each variable
T |g|+ corresponding to the vertex vy, of G, and complete each vector mU! with
\[il|+k =
vy, (this distinguishes, for example, the two vertices of the connected graph with
only one edge). Finally, add the all-0 vector 0. Call R this relation ; it clearly
contains |V| + 1 vectors and |V| + | E| variables, and its construction from G is
polynomial.
We show that G has an independent set of size k if and only if R has a HORN-
glb of size at least k + 1. Assume first that G has an independent set V' =
{v1,v2,...,v;} (without loss of generality). Consider the set of vectors S =
{o,ml" ... ml*} C R. Obviously, for all i, 0Am[1 = 0 € S. Now for mld, mlil €
S,mld £ mlil since V' is an independent set there is no edge joining v; and
v;, thus ml! and ml! have no 1 in common on the first |E| variables ; since
mll # mUl, they have no 1 in common on the last |V'| variables neither, and
finally ml? A mldl = 0 € S. We conclude that S is stable by A, thus R has a
HORN-GLB of size at least k + 1.
Conversely, assume that G has no independent set of size k. This means that
for any subset V' C V,|V'| = k, there exist v;,v; € V' joined by an edge e. We
conclude that for any subset S of R of size at least k+ 1, there exist m!d, mlil € §
with one 1 in common on the first |E| variables, and since m!d # mll none in
common among the last |V| variables. Thus mld A mll is all-0 except for at
least one of the first |E| variables. Since every vector in R is either all-0, or 1
on exactly one of the last |V| variables, m[? A mlil ¢ R. Thus no subset of R is
both of size at least £ 4+ 1 and stable by A, thus R has no HORN-GLB of size
k + 1 or more. O

m 1if and only if j = k, i.e., if and only if ml7 is the vector associated to



Proposition 9. If P£ANP, a BUUNCTIVE-mazGLB of a relation R C {0,1}"
cannot be computed in time polynomial in |R| and n.

Proof. As for Proposition 8, we reduce the problem INDEPENDENT-SET to the
associated decision problem. We encode a given instance of INDEPENDENT-SET
in the same manner as for Horn, except that we replace 0 with 1 and 1 with
0 for each of the first |E| variables. We let the last |V| variables distinguish all
the vectors as before, with exactly one 1 per vector. The vector 0 is similarly
replaced with A =1...10...0.

Assume G has an independent set {v1, va,...,v}, and consider the subset S =
{A,mlM, ... mlF} of R. We show that for any m,m',m” € S, mg = (mVm') A
(mvVm")A(m'vm'") € S. Indeed, m and m' have no 0 in common on the first
|E| variables, for either the associated vertices have no edge in common or one
of the two vectors is all-1 on these variables. Thus m V m/' is 1 on each one of
the first |E| variables. The same holds for m vV m' and m' v m", thus m assigns
1 to each one of the first |E| variables. It is easily seen that it assigns 0 to the
last |V| variables whatever m, m' and m" may be, thus mg = A € S. Thus R
has a BIJUNCTIVE-GLB of size at least k + 1. The converse is easily seen to be
true, for if m and m' (without loss of generality) have one edge in common, then
mVm' assigns 0 to the corresponding variable, thus also myg, but my still assigns
0 to all of the last |V| variables ; since such a vector does not exist in R, the
associated subset of R cannot be completed into a BIJUNCTIVE-LB of R. O

On the contrary, a subexponential algorithm is given in [Z02a] for the affine case.
As for computing an AFFINE-GLB, it uses the correspondence with vector spaces
and the notion of basis. Note that subexponential algorithms may be reasonable
in practice, while NP-hard problems are unlikely to be tractable. Note also that
subexponential algorithms are unlikely to be NP-hard [SH90].

Proposition 10 ([Z02a, Proposition 7]). An AFFINE-mazGLB of a relation
R C {0,1}" can be computed in time O(|R|n(loglog|R|)2(8 |RD?).

5 Reasoning with bounds

Finally, we study the semantics of reasoning with the bounds of a theory. The
problem is to characterize the results obtained when reasoning with the bounds
in function of those obtained when reasoning with the theory itself. Of course,
such characterizations are of major importance for being able to use the bounds
of the theory for speeding up further answering to queries. Indeed, the idea is to
use as often as possible only the approximation for answering the queries that are
asked to the original theory, for it is meant to have much better computational
properties for reasoning ; that is why we must be able to deduce the right answer
(the one that the original theory would have given) from the one that we compute
with the approximation. Moreover, if it appears that the bounds allow to solve
any reasoning task the theory will be possibly sollicited for, we may even store
only these bounds and forget the theory itself.



We however emphasize that the size of a bound must be comparable to or
lower than the size of the original theory, for otherwise, on one hand there would
be no gain in reasoning with it, even if reasoning is more efficient in the class of
the approximation than in the general case, and on the other hand its storage
could need too much memory.

5.1 Deduction

We talk about deduction when we want to answer the question “does X logically
implies a ?”, where X is a theory and « (the query) is another theory ; the answer
is positive (written X' = «) if and only if every model of X' is a model of ¢, i.e., a
is true in all the situations where X' is. Deduction is in general coNP-complete,
since X implies « if and only if ¥ A @ is unsatisfiable, and thus it is worth
considering the semantics of deduction with bounds in classes of formulas for
which it becomes tractable.

Selman and Kautz [SK96] have studied the semantics of deduction with
bounds. The following result is given in [SK96] for Horn bounds, but it can
be straightforwardly extended to any class of formulas.

Proposition 11 ([SK96, Section 2.2]). Let X' and a be two propositional
theories, and let C be a class of propositional formulas. Let Xpyp be a C-LUB
of X, and XYgrp a C-GLB. Then :

(1) If Xup implies «, then X implies «

(it) If Xarp does not imply a, then X does not imply a.

It follows that we can use the bounds for speeding up reasoning with the original
theory in the following manner. When asked whether ¥ |= a, we first decide
whether X¥yp |= «; if the bound X1y is taken in a class of formulas for which
deduction is tractable, and if the size of Y'ryp is comparable to or less than
the size of X', then this test is efficient. If its answer is positive, then we can
conclude. Otherwise, we decide whether X¢1p |E « ; if the answer is negative,
once again we can conclude. In case it is positive, then we have no other solution
than to decide directly X' |= «, but we have only lost a small amount of time.
For more details and examples we refer the reader to [SK96] for instance.

When restricting the form of the queries, the C-LUB of a relation can even
allow to solve ezactly deduction tasks without any use of the original theory, as
stated in the next proposition (whose proof can be straightforwardly adapted
from del Val’s).

Proposition 12 (see [Val95, Theorem 1]). Assume C is either HORN, BI-
JUNCTIVE or AFFINE. Let X be a theory and a € C. Then the C-LUB of X
implies a if and only if X itself implies a.

5.2 Abduction

We now consider the problem of abduction. Contrary to the case of deduction,
as far as we know the semantics of this process with bounds have not really been



studied in the literature, except in a quite special case in [KKS95, Section 5].
This section is a first step into this direction.

Abduction consists in searching for explanations of observations, knowing a
background theory. More formally, a background theory is simply a propositional
theory X, supposed to be satisfiable, and an observation is another theory a.
We explicit what an explanation is in the following definition.

Definition 3 (explanation). Let X' and a be two propositional theories, and
H a subset of Var(X)\Var(a) (the set of hypotheses). Then an explanation of
a knowing X over H is a conjunction E of literals such that :

(i) Var(E) CH

(i) X N E implies

(i) X N E is satisfiable.

If in addition there is no proper subset of E with the same properties, E is called
a minimal ezplanation of a knowing X over H.

Ezample 3. Let X be the theory represented by the CNF formula (z; V z3 V
—z5) A (21 V—z3) A (—z1 V3V zg) A (-2 VIa V -z Vag) A(-zs Vas), let @ be
the clause (z5Vze) and H the set of hypotheses {z1,z2,23}. Then E = {1, 22}
is an explanation of a knowing X' over H. Moreover, it is a minimal explanation,
since neither E' = {1} nor E" = {2} are explanations.

With this definition, the task of abduction consists in finding, given X', o and
H, a minimal explanation E of a knowing X over H. It is well-known that in
general abduction is X¥-complete [EG95], and NP-hard if we restrict X to be
a Horn formula [EG95]. On the other hand, for bijunctive and affine formulas it
becomes polynomial if in addition we impose some restrictions to the form of «
(see for instance [Val00,Z02b]). Therefore, in all cases it is interesting to study
the semantics of abduction with bounds.

We first give general remarks that help understanding these semantics in
the general case, independently of the class of the approximation and of the
restrictions of the general problem.

Proposition 13. Let X and a be two propositional theories, and H a subset
of Var(X)\Var(a). Let C be a class of formulas, and Xrup (resp. Xarr) be a
C-LUB (resp. a C-GLB) of X. Let E be a conjunction of literals formed upon
the variables in H. Then :

(i) If Xgrg N E is satisfiable, then X A E is satisfiable

(4) If X N E does not imply a, then X A E does not imply «

(i) If Xpup AN E is not satisfiable, then X A E is not satisfiable

(w) If X up N E implies a, then X A E implies .

Proof. Points (ii) and (iv) are stated in Proposition 11, and points (i) and (iii)
directly follow from the definition of the bounds. O

Now we study more precise classes of formulas. When restricting the form of
the observations and explanations, it sometimes becomes possible to perform
abduction with the C-LUB of a theory. In these cases, it thus becomes possible



to use the approximations of a theory for performing abduction in the same
manner as we can use them for performing deduction.

We first consider the case of HORN-LUBs. We show that if the query is a
conjunction of positive literals, the positive explanations that can be found with
27 are exactly the same as those that can be found with its HORN -LUB. The
point is that when the background knowledge is Horn, a positive observation
can be explained only by a conjunction of positive literals, as shown in the next
lemma.

Lemma 1 (generalization of [RK87, Corollary 4]). Let X' be a Horn the-
ory, a a positive formula and E a minimal explanation of o knowing X. Then
E contains only positive literals.

Proof. Assume, for sake of contradiction, that E contains —z; for a certain x; €
Var(X)\Var(c). Then there is a model m of X' with m = a and m = E, thus in
particular m; = 0. We show that X' A E\{—z;} implies «, and thus that FE is not
minimal ; for that purpose, we show that there cannot be a model m' of X with
m' £ o and m' = E\{—z;}. Indeed, if there is such an m/, then m" = m A m/
must satisfy X' by Proposition 1. But by construction, m' satisfies E, since m
and m' are equal over the variables in E\{—z;} and m; = 0, thus m{ =0 ; but
m'" does not satisfy «, since m' £ «, m' assigns 0 to all the variables of « to
which m/' assigns 0, and « is positive. Thus m'" contradicts the fact that ¥ A E
implies a. O

Using Lemma 1, we can then show that performing abduction with the HORN-
LUB of X' is the same as with X itself when considering only positive observations
and conjunctions of positive literals as explanations.

Proposition 14. Let X be a theory, a a conjunction of positive literals, and H a
subset of Var(X)\Var(a). Let Xryp be the HORN-LUB of X. If E is a minimal
explanation of a knowing Xryp over H, then E is a minimal explanation of a
knowing X over H. Conversely, if E is a minimal positive explanation of a
knowing X over H, then E is a minimal explanation of o knowing Xryp over
H.

Proof. Let E be a minimal explanation of a knowing X'r.iyp. We know by Propo-
sition 13 that X' A E implies a. Since X'ryp A E is satisfiable, there is a model
m of Xryp with m = E, thus there is a model m’ of X' with m’ bitwise greater
than or equal to m (by the construction of Proposition 2) ; since E is positive
(Lemma 1), m' also satisfies E, thus X' A E is satisfiable. There is only left to
show that E is minimal knowing X. If it were not the case, then there would be
a E' C E with X A E' satisfiable, thus Xy A E' satisfiable by Proposition 13,
and such that X' A E' would imply a but X1y A E' would not (for otherwise
E would not be minimal knowing ¥1iyg). Thus there would be a model m of
Y rup satisfying E' but not «, thus a model m' of X satisfying E’ but not a
(again by the construction of Proposition 2) ; thus ¥ A E' would not imply «,
contradiction.



Conversely, let £ be a minimal positive explanation of a knowing X. We
then know by Proposition 13 that X'ryp A E is satisfiable. We also know that
Yrus A E implies a by the same proof as with E’ in the previous paragraph.
Finally, by minimality of E for X the first part of the Proposition shows that
there cannot be a E' C E with E' an explanation knowing X7y g, thus that E
is minimal knowing Xy p. |

Now we consider the case of BIJUNCTIVE-LUBs. Parallel to the restriction to
conjunctions of positive literals for HORN-LUBs, we must now restrict to obser-
vations consisting of one clause of one or two literals. Now parallel to Lemma 1,
we show in the next lemma that a minimal explanation of such an observation
knowing a bijunctive theory must contain at most one literal.

Lemma 2. Let X' be a bijunctive theory, o a clause of one or two literals and
E a minimal explanation of a knowing X. Then E contains zero or one literal.

Proof. Since E is an explanation of a knowing X, it holds that X implies C' =
(E = a) ; writing E = {{;,,...,{;,} (maybe empty) and a = £;, V {;, (the
case a = {; is similar), we get C = (€;;, A... A Ll;, = £, V L,), ie., C =
(i, V ---V i, V4, V Lj,). Since X is bijunctive, there is a subclause C' of C
consisting of two literals that is implied by X ; thus either (i) C’ is a £;, V £;,,
but this implies ¥ — E, which contradicts the fact that X A E is satisfiable, or
(i) C" is £;, V£j,, but this means ¥ — « and thus E, being minimal, is empty, or
finally (iii) C' is a £;, V ¢j,, and thus X implies ¢;, — £;,, which in turn implies
l;, - a, and thus E = () or E = {¢;,} is a minimal explanation. ]

Using Lemma 2, we can now show that, parallel to Proposition 14, performing
abduction with the BIJUNCTIVE-LUB of X is the same as with X itself when
considering only clauses of one or two literals as observations and explanations
containing zero or one literal.

Proposition 15. Let X be a theory, a a clause of one or two literals, and H
a subset of Var(X)\Var(a). Let Xryp be the BUUNCTIVE-LUB of X. If E
is a minimal explanation of a knowing Xryp over H, then E is a minimal
explanation of a knowing X over H. Conversely, if E is a minimal explanation
containing one or zero literal of o knowing X over H, then E is a minimal
explanation of a knowing Xryp over H.

Proof. Let E be a minimal explanation of a knowing X'riyp over H. Proposi-
tion 13 tells us that X’ A E implies a. Now by Lemma 2 we know that E contains
at most one literal ; since X is satisfiable, if E = () then X A E is satisfiable ;
now if E = {¢;,}, then the clause (¢;,) is not implied by Xryp (since Zryp AE
is satisfiable) ; but Xryp is logically equivalent to the conjunction of all the
clauses of length 2 or less that are implied by X, thus ¥ does not imply (/;,)
and we deduce that XA (¢;,) is satisfiable. Finally, if F is not minimal for X' then
the only possibility is that E contains one literal and () is an explanation of «
knowing X' ; but this means that X implies «, and since a contains at most two
literals we deduce that X'pyp implies a, i.e., that E is not minimal for Xy p.

The converse is established as for Proposition 14. O



Finally, we consider abduction with AFFINE-LUBs. Unfortunately, in the frame-
work for abduction defined here, no link other than those exhibited in Proposi-
tion 13 seems to exist between the explanations found with this LUB and those
that can be found with the theory itself, even if we restrict ourselves to obser-
vations consisting of one variable and to explanations containing at most two
literals. The next example illustrates that fact.

Ezample 4. Consider ¥ = {001,010,100} over the variables z1, z2, z3. It is eas-
ily seen that the AFFINE-LUB of X is (z1 ® z2 ® z3 = 1). Now consider the
observation a = x3 and the set of hypotheses H = {z1,22}. Then E = 21 Az is
a minimal explanation of a knowing the AFFINE-LUB of ¥ over H ; but YA E
is not satisfiable.

The intuition behind this fact is that the relations between variables that are
preserved between a theory and its AFFINE-LUB are the relations that can be
expressed by a linear equation ; but explanations as defined here are meant
to be conjunctions of literals, and this is intuitively why they do not behave
well. We could define explanations in a more general form (for instance as any
propositional formula over H), but this is out of scope here.

6 Conclusion

Computing...||(REVERSE-)HORN| BIJUNCTIVE AFFINE
the C-LUB exp output |R|n® |R|n® +n*
one C-GLB |R|?n? |R|*n + |R|>n°||R|*n + |R|*n®

a C-maxGLB NP-hard NP-hard ([subexponential

Table 1. Summary of results for computing approximations

We have settled the complexity of the main problems concerning the com-
putation of Least Upper Bounds and Greatest Lower Bounds of relations into
the main classes of formulas that allow efficient storage of knowledge and rea-
soning, namely the classes of Horn, reverse-Horn, bijunctive and affine formulas.
The results are summarized in Table 1. It appears that computing one GLB is
polynomial, while computing the LUB is polynomial only for the classes of bi-
junctive and affine formulas, and computing a GLB with the maximum number
of models is NP-hard for Horn and bijunctive formulas while subexponential for
affine.

Beside this, we have studied the semantics of reasoning with the bounds of
a theory. As far as we know, the semantics of abduction with LUBs had not
really been studied before. We have shown that assuming restrictions about the
form of the observation and of the explanations, we can perform abduction with
the HORN- or BIJUNCTIVE-LUB of a theory and get the same explanations as if



we had reasoned with the theory itself. These results show that assuming these
restrictions, abduction can be performed with the bounds of a theory in the
same manner as deduction.

This study of the semantics of abduction is of course incomplete, and this
problem would certainly benefit further exploration. Also, an interesting prob-
lem is the one of computing Horn-renamable approximations of relations and
studying their semantics ; Horn-renamable formulas are those formulas that we
can transform into a Horn one by replacing some variables with their negation
everywhere in the formula. This class includes Horn and reverse-Horn formulas
as well as satisfiable bijunctive formulas, and is tractable for satisfiability and
deduction as well. Thus although it is not stable by conjunction, which makes
it less interesting for storing knowledge as a set of rules, it is certainly worth
studying the complexity of computing approximations of relations into this class.
As far as we know, the only study about Horn-renamable approximations can
be found in [Bou98].
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