N

N
N

HAL

open science

An efficient algorithm for Horn description

Jean-Jacques Hébrard, Bruno Zanuttini

» To cite this version:

Jean-Jacques Hébrard, Bruno Zanuttini. An efficient algorithm for Horn description. Information

Processing Letters, 2003, 88 (4), pp.177-182. hal-00995236

HAL Id: hal-00995236
https://hal.science/hal-00995236

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00995236
https://hal.archives-ouvertes.fr

An efficient algorithm for Horn description

Jean-Jacques Hébrard Bruno Zanuttini*

June 20, 2003

Abstract

We give a new algorithm for computing a propositional Horn CNF
formula given the set of its models. Its running time is O(|R|n(|R| +
n)), where |R| is the number of models and n that of variables, and the
computed CNF contains at most |R|n clauses. This algorithm also uses
the well-known closure property of Horn relations in a new manner.

Keywords: Combinatorial problems; Algorithms; Description; Horn CNF

1 Introduction

This note addresses the problem of describing a Boolean relation by a propo-
sitional Horn CNF formula, in other words the problem of computing a Horn
CNF given the set of its models. This process is part of the process of struc-
ture identification, which has been formalized by Dechter and Pearl and mainly
studied in [3, 6, 9].

Converting a set of tuples into a Horn CNF can be thought of as a knowl-
edge compilation task [3], where the input tuples may encode for instance the
examples of a concept expressed over some attributes, and where we compute
a formula-based definition ¢ of the concept. Such a task is not easy in general
(see [6] for hardness results).

If the definition of the concept is Horn, then it allows for efficient reasoning,
contrastingly with the general CNF case (remind that not every concept can
be represented by a Horn CNF). Consequently, the process of Horn description
can also be seen as the translation of an extensional constraint into a tractable
set of clauses (see [8] for instance). Hopefully also, this process serves not only
algorithmic purposes, but also allows to convert a set of tuples into a logically
equivalent but smaller form; it is indeed known (see [9] for instance) that the
CNF representation of a Boolean function is more compact (up to a polynomial)
than its representation by a relation. Finally, a Horn CNF is more readable than

*Corresponding author.
TDépartement d’Informatique, Université de Caen, F 14032 Caen Cedex, France. E-mail
addresses: {hebrard,zanutti}@info.unicaen.fr

a set of examples, since it can be read as a set of Prolog-like propositional rules
for instance.

Several algorithms have been proposed in the literature for converting a
Horn relation into a Horn CNF. For instance, [3] and [5] both describe the same
envelope-based algorithm, with running time O(|R|*n?), where | R| is the number
of input tuples and n the number of variables. Another algorithm is proposed
in [2], even if it is meant to solve the corresponding problem in the framework
of exact identification with membership and equivalence queries; this algorithm
runs in time O(|R|m?n?), where m is the minimal number of clauses in a Horn
CNF describing R, and guarantees that the computed Horn CNF ¢ contains
at most m(n + 1) clauses; since there always exists a Horn CNF describing
R and containing at most |R|n clauses (see [9]), the algorithm of [2] runs in
time O(|R|?n*). Finally, [9] gives an algorithm that runs in time O(|R|?n?)
but needs no previous testing of whether R is Horn; a CNF ¢ describing R is
computed in all cases, and ¢ is Horn if and only if R also is (this is achieved
by computing a prime CNF ¢). Note that for all algorithms the resulting Horn
CNF ¢ can be minimized to have at most m(n — 1) clauses in time quadratic in
the length of ¢ [4], i.e., in time O(|R|*n%) for the envelope-based algorithm, since
it outputs a formula containing at most |R|n? clauses, and in time O(|R|*n*) for
the algorithm of [9], since it outputs a formula containing at most |R|n clauses.

We give here a new algorithm, which runs in time O(|R|n(|R|+n)) and thus
faster than all those previously known. This is achieved by exploiting in a new
manner the well-known closure property of Horn relations. Moreover, the output
formula is within the same size bounds as that of [9], i.e., it is never bigger than
the number of variables times the size of R, but can be exponentially smaller.
Note that the classical test for deciding whether there is a Horn description of
R at all requires time O(|R|?>n), and thus that our algorithm for describing R
is not far from being as efficient.

The note is organized as follows. Section 2 reviews the useful notions and
previous work. Section 3 defines the formula ¢ that we propose to compute.
Finally, Section 4 discusses computational issues.

2 Preliminaries

We assume basic knowledge about propositional logic. Let z1,z2,...,z, be
n Boolean variables. A literal is either a variable z; (positive literal) or the
negation —x; of one (negative literal). A clause is a finite set of literals, viewed
as their disjunction, and a formula in Conjunctive Normal Form (CNF) is a
finite set of clauses, viewed as their conjunction. A formula in CNF is Horn if
each one of its clauses is Horn, i.e., contains at most one positive literal.

A n-place tuple m € {0,1}" is viewed as a 0/1 assignment to z1, s, . .., Zn,
in this order; m[i] denotes the ith component of m or, equivalently, the value
assigned to z;. A n-place relation R C {0,1}" is a set of n-place tuples; |R)|
denotes the number of tuples in R. A tuple m is called a model of a CNF ¢
if it satifies ¢ (written m = ¢), and a formula ¢ over 1,22, ..., %, is said to

describe a n-place relation R if R is exactly the set of models of ¢.

Let us recall from [7] that a relation R can be described by at least one Horn
CNF if and only if for all m,m' € R, the tuple m A m' (componentwise logical
AND) is also in R; R is then said A-closed. This yields a straightforward test for
deciding whether a given n-place relation R can be described by a Horn CNF:
first sort R with a lexicographic sort [1] in time O(|R|n), represent it with a trie,
then for all m,m' € R (O(|R|?) such pairs), decide whether m"” = m A m/ is in
R (in time O(n) since R is represented by a trie); return "NO” if such a test fails,
"YES’ otherwise. The overall complexity of the algorithm is thus O(|R|*n).

The problem we address in this note is the one of computing a Horn CNF
¢ describing a given n-place A-closed relation R. Our algorithm solves it in
time O(|R|n(|R| + n)) and outputs at most |R|n clauses. Note that previously
deciding whether R is A-closed does not increase its asymptotical complexity.

3 The Horn formula

From now on, R denotes a fixed nonempty n-place A-closed relation; note indeed
that the case R = () is obvious, since this relation is described by the Horn CNF
{0} whatever n is. We first define the Horn CNF ¢(R) that our algorithm will
output, and computational issues will be discussed in Section 4. As a running
example, we define the 4-place relation

R, = {0000, 0001, 0100, 1000, 1001, 1110}

It is easily seen that R, is A-closed.

We introduce a new symbol, ’?’, whose intuitive meaning is “0 or 1”. For ¢ €
{0,1,7}", recall that ¢[i] denotes the ith component of ¢; we define ext(t) to be
the set of tuples {m € {0,1}"|Vi=1,...,n,t[i] #? = m[i] = t[i]} and cl(t) to
be the clause {z; | t[i] = 0} U {—z;|t[{]] = 1}. For instance, we have ext(?10?) =
{0100,0101,1100,1101} and ¢l(?10?) = {—z2,z3}. Let us first remark that the
clause ¢l(t) is Horn if and only if ¢ has at most one component equal to 0.
Now for T' C {0,1,?}", we define ext(T) to be the set of tuples |J,cr ext(t),
and enf(T) to be the CNF {cl(t)|t € T}. Note that for ¢ € {0,1,7}", the
models of cl(t) are exactly the tuples in {0,1}™\ext(t), and consequently that
for T' C {0,1}", the models of enf(T') are exactly the tuples in {0,1}™\ext(T).
Thus the following lemma is straightforward.

Lemma 1 LetT C {0,1,7}". Ifext(T) = {0,1}"\R, then cnf(T) describes R.

Example 2 (continued) The complement of R, in {0,1}* is the set of tu-
ples {0010,0011,0101,0110,0111,1010,1011,1100,1101,1111}. Accordingly, the
CNF enf({0,1}*\R,) is

{{wlan; _‘.’13'3,IL'4}, {mla T2, 3, _‘113'4}, sy {_'xla T2, T3, _‘.’13'4}}
and describes R.. Now let H, be the set of {0,1,7}-tuples:
{0712,7171,0117,1017,110?,1111}

It is easily seen that ext(H,) = {0,1}*\R., and thus that the Horn CNF
enf(He):

=1, ~23}, {22, 724}, - .., {21, ~22, 23, "2 }}

describes R, as well.

Our purpose is thus to define a set of tuples H(R) C {0,1,?}" such that
ext(H(R)) = {0,1}"\R and Vh € H(R),cl(h) is Horn. The Horn CNF ¢(R)
describing R will then be defined to be enf(H (R)).

For t € {0,1}™\R, let com(t) be the maximum integer in {1,...,n} such
that 3m € R,Vi < com(t), m[i] = t[i]. We define H(R) to be the set of tuples
{h(t) |t € {0,1}"\R}, where h(t) € {0,1,7}™ is defined according to three
different cases. Informally, h(t) is obtained from ¢ by replacing some of its
components with ’?’, and at most one of its components is 0.

Let t € {0,1}"\R.

e Case t[com(t)] = 0:
We define h(t) to be such that

{ Vi < comy(t) lth tl]=1,h()[i] =1

h(t)[com(t)] =
otherwise, h(t)[z]

For instance, with ¢ = 1100 € {0,1}*\R., we have com(t) = 3 and
tlcom(t)] = 0, thus h(t) is 110?. The following claim ensures that ev-
ery m € R satlsﬁes cl(h(t)).

Claim 3 If tfcom(t)] = 0, then RN ext(h(t)) = 0.

Proof For sake of contradiction, let 4 € R with u € ext(h(t)). Let m €
R with Vi < com(t), m[i] = ¢[i]. Since R is A-closed, the tuple mg = uAm
is in R; but Vi < com(t), if t[i] = 1 then (i) by definition of h(¢), h(t)[i]] =1
and thus pfi] = 1, since p € ext(h(t)), and (ii) m[i] = 1 by definition of
m; finally, mg[i] = 1. By definition of m, we also get Vi < com(t),
t[i] = 0 = m[i] = 0 = my[i] = 0; finally, Vi < com(t), mo[i] = t[i] = m[i],
and since p € ext(h(t)), plcom(t)] = 0 and mo[com(t)] = 0 = t[com(t)].
This contradicts the maximality of com(t). O

Now we are left with the case where t[com(t)] = 1. Let M(t) = {m' €
R|Vi < com(t),t[i] =1 = m'[i] = 1}. We define sim(t) € {0,1,...,n} to be
0 if M(t) = 0, and otherwise to be the greatest integer in {1,...,n} such that
Im' € M(t),Vi < sim(t), m'[i] = t[i]. Note that by definition sim(t) < com(t).

o Case t[com(t)] =1 and sim(t) = 0:
We define h(t) to be such that

{ Vi < com(t) with t[i] = 1, h(t)[i] = 1
otherwise , h(t)[i] =7

For instance, with ¢t = 0101 € {0, 1}*\ R., we have com(t) = 4, and it can
be checked that Ym' € R.,3i < 4,m'[i] = 0 and ¢[{] = 0101[¢] = 1. Thus
sim(t) = 0, and h(t) is 7171. Note that in the general case, by definition
of sim(t) we have Ym' € R,3i < com(t),m'[i]] = 0 and ¢t[i]] = 1, and the
following claim follows.

Claim 4 If tfcom(t)] =1 and sim(t) = 0, then RN ext(h(t)) = 0.

o Case t[com(t)] =1 and sim(t) # 0:

By definition of sim(t) we know that Im' € R,Vi < com(t),t[i]] =1 =
m'[{] = 1. We show that t[sim(t)] = 0. Assume indeed t[sim(t)] =
1, and let m' € M(t) with Vi < sim(t),m'[{] = ¢[i]. By definition of
M (t) and since sim(t) < com(t), we have m/[sim(t)] = 1. Thus Vi <
sim(t) + 1, m'[i] = t[i], which contradicts the maximality of sim(t). Thus
t[sim(t)] = 0; we then define h(t) to be such that

Vi < com(t) with ¢[i] = 1, h(t)[i{] = 1
h(t)[sim(t)] =0
otherwise , h(t)[i] =7
For instance, with ¢ = 0010 € {0,1}*\R., we have com(t) = 3, and
1110 € R, is such that Vi < 3,0010[{] = 1 = 1110[¢] = 1. Thus we have
sim(t) # 0 and find sim(t) = 1, which yields h(t) = 0717.

Claim 5 If tfcom(t)] =1 and sim(t) # 0, then RN ext(h(t)) = 0.

Proof For sake of contradiction, let u € R with u € ext(h(t)), and let
m' € M(t) be such that Vi < sim(t),m'[i] = t[i]. Since R is A-closed, the
tuple mg = p Am/' is in R; but as for Claim 3, we have Vi < com(t), t[i] =
1= mg[é] = 1, and Vi < sim(t),t[i] = 0 = m/[i] = 0 = my[i] = O; finally,
we get Vi < sim(t),mo[i] = t[i]. But since p € ext(h(t)), we also get
u[sim(t)] = 0 and thus mg[sim(t)] = 0. Finally, Vi < sim(t) + 1,mo[i] =
t[7], which contradicts the maximality of sim(t). O

Finally, we define H(R) to be the set of tuples {h(t) |t € {0,1}"\R} and the
CNF ¢(R) to be ecnf(H(R)). For instance, with R, we get the CNF

¢(Re) = {{1‘.17 _|.'L'3}, {_"7'.2; _‘.’13'4}, {xla _|$25_|‘,L'3}) {_‘$17$2, _':E3}7
{_'1'1; _':I‘.?;xfi}a {_'mla T2, I3, _':E4}}

Then the following result holds.
Proposition 6 The CNF ¢(R) is Horn and describes R.

Proof By construction ¢(R) is Horn. Now Claims 3, 4 and 5 ensure that
RnNexzt(H(R)) =0, i.e., ext(H(R)) C {0,1}"\R. Conversely, it is easily seen
that for every ¢t € {0,1}"\R we have ¢t € ext(h(t)), which yields {0,1}"\R C
ext(H(R)). Finally {0,1}"\R = ext(H(R)), and Lemma 1 concludes. O

4 The algorithm

Now we show that ¢ can be computed in time O(|R|n(|R| + n)) given R. The
first point is to express H(R) in terms of the elements of R, since R is the
input of the problem; for the moment it is expressed in terms of the elements
of {0,1}"\R.

For m € R, let p(m) (resp. s(m)) denote the length of the longest common
prefix of m and its predecessor (resp. successor) m' € R with respect to the
lexicographic order, or —1 if m' does not exist. Now for ¢ € {0,1}"\R with
tlcom(t)] = 0 (resp. tfcom(t)] = 1), let u(t) be the least (resp. greatest) element
of R with respect to the lexicographic order, such that Vi < com(t), t[{] = p(t)[];
it is immediate that p(u(t)) + 1 < com(t) (resp. s(u(t)) +1 < com(t)).

Example 7 (continued) We go on with the relation R.. The predecessor of
m = 0001 in R. with respect to the lexicographic order is 0000, thus p(0001) =
3, and its successor is 0100, thus s(0001) = 1. Similarly, the predecessor of
m = 1110 in R, is 1001, thus p(1110) = 1, and it has no successor, thus
5(1110) = —1. Now we have seen (Section 3) that with t = 1100 € {0,1}*\R.,
we have com(t) = 3 and consequently t[com(t)] = 0; we obtain u(1100) = 1110.
Similarly, with t = 0101 we have seen that com(t) = 4 and t[com(t)] = 1, and
we obtain p(t) = 0100.

It is easily seen from the definition of h(¢t) that if u(t) = u(t') and com(t) =
com(t'), then h(t) = h(t'), since by definition of u(t) we have Vi < com(t), t[i] =
u(t)[i]; thus we can define h(t) in terms of the elements of R. Indeed, let
j€e{l,...,n},m € Rand t € {0,1}"\R such that u(t) = m and com(t) = j. If
Jj > p(m)+1and m[j] =1, or j > s(m)+1 and m[j] = 0, we define h(m, j) to be
h(t). From the definition of p(m) (resp. s(m)) and from p(u(t)) + 1 < com(t)
(resp. s(u(t)) +1 < com(t)), as remarked above, it is easily seen that for
such m and j a convenient ¢t always exists, and from (u(t) = u(t'),com(t) =
com(t')) = h(t) = h(t') we conclude that H(R) = {h(m,j)|m € R and (p(m)+
1< j,m[j] =1) or (s(m) +1 < j,m[j] =0)}.

Example 8 (continued) We have seen that m = 1110 € R, is such that
m = p(1100), and that com(1100) = 3. Since m[3] = 1 and p(m) = 1 (see
Ezample 7), thus 3 > p(m) + 1, it follows that h(m,3) = h(1100) = 1107 (see
Section 8). Similarly, we have seen that m = 0100 = u(0101) and com(0101) =
4. Since m[4] = 0 and s(m) = 0 (its successor in R, is 1000), we get h(m,4) =
h(0101) =7171.

Now for m € R and convenient j € {1,...,n} we can express h(m, j) in terms
of m and j. The following is nothing more than the translation of the definition
of h(t) into these terms. Let m € R, j € {1,...,n} and ¢t € {0,1}" such that
u(t) =m and com(t) = j.

e Case j > p(m)+ 1 and m[j] = 1:

Then t[j] = t[com(t)] = 0 and we get:

Vi < j with m[i](= t[i]) = 1,h(m, j)[i{] =1
h(m, j)[j] = 0
otherwise, h(m, j)[i] =?

Now if j > s(m) + 1 and m[j] = 0, then ¢[j] = t[com(t)] = 1; remark that
Vi < j = com(t), m[i] = t[i], but m[j] = 0 and ¢[j] = 1. Let sim(m, j) = sim(t);
as for h(t) we define h(m, j) according to the value of sim(m, j).

e Case j > s(m) + 1, m[j] = 0 and sim(m,j) = 0:
Then we define h(m, j) to be such that:

Vi < j with m[i](= t[i]) = 1,h(m, j)[i] =1
h(m, 7)[j] = 1 (since m[j] = 0 but 4[] = 1)
otherwise , h(m, j)[i] =7

e Case j > s(m) + 1, m[j] = 0 and sim(m, j) # 0:
Then we define h(m, j) to be such that:

Vi < j with m[i] = 1, h(m, j)[i] = 1
h(m, j)[j] =1

h(m, j)[sim(m,)] = 0

otherwise , h(m, j)[i] =7

Now let us remark that if p(m), s(m) and sim(m, j) are known for allm € R
and all j € {1,...,n} such that s(m) + 1 < j and m[j] = 0, then computing
H(R) = U,, ;h(m,j) requires time O(|R|n?). TIf R is sorted then p(m) and
s(m) are easily computed, thus the only difficult point is the computation of
sim(m, j).

Let us recall that with M(m,j) = {m' € R|m'[j] = 1 and Vi < j,m[i] =
1 = m'[i] = 1}, sim(m,j) is by definition 0 if M(m,j) = §, and otherwise
the greatest integer in {1,...,n} such that there exists m' € M(m,j) with
Vi < sim(m,j),m'[i]] = m[i]. For given m and j it is thus easy to compute
sim(m, j) in time O(|R|n), but this would yield time O(|R|?n?) for computing
all sim(m,j)’s. We show that for a fixed m € R, one can compute in time
O(|R|n) the value of sim(m, j) for all convenient j’s, which yields time O(|R|?>n)
for computing all sim(m,j)’s. This can indeed be achieved by the algorithm
on Figure 1. The principle of the algorithm is simply to identify, for given
m and j and for a m' € R, whether m' € M(m,j). Indeed, if for a given
j we have m[j] = 1 and m'[j] = 0, then by definition of M (m,j') we have
Vi' > j,m' ¢ M(m,j"). Thus the algorithm reads m' as long as m' € M (m, j)
for the current j, and updates sim(m, j) accordingly, and then stops reading m/',
i.e., lets the computed value of sim(m, j') unchanged for every j' > j. Thus for
a given m € R the algorithm of Figure 1 computes sim(m, j) for all convenient
J’s in time O(|R|n).

Finally, we can establish the running time of the full algorithm, which is
summarized on Figure 2.

Input: m € R
Output: sim(m, j) for all j € {1,...,n} such that j > s(m) +1 and m[j] =0

Begin
For j =1,...,n do sim(m,j) + 0 endfor;
For every m' € R do
Jjo « the maximum index with Vj < jo, m'[j] = m[j];
J < Jo;
While m/[j] =1 or m[j] =0 do
If j > s(m)+ 1, m[j] =0 and m/[j] = 1 then
szm(m,]) <~ maX(SZm(maj)ajO)a
Endif;
Jei+L
Endwhile;
Endfor;
End,;

Figure 1: Computation of sim(m,j) for a given m and all convenient j’s

Input: a A-closed relation R C {0,1}"
Output: a Horn CNF ¢(R) describing R;

Begin
H(R) « 0;
Sort R by lexicographic order: R = (my,ma,...,m|g|);
For k=1,2,...,|R| do
compute p(my) and s(myg);
compute sim(myg, j) for all convenient j’s with the algorithm of Figure 1;
For j € {1,...,n} with 7 > p(mg) + 1L,m[j] =1, or j > s(my) + 1,mg[j] = 0 do
H(R) « H(R) U {h(mx,))};
Endfor;
Endfor;
return ¢(R) = enf(H(R));
End,;

Figure 2: Computation of ¢(R) from R

Proposition 9 Let R be a n-place NA-closed relation. A Horn CNF ¢ describing
R and containing at most |R|n clauses can be computed in time O(|R|n(|R|+n)).

Proof Sorting R requires time O(|R|n) with a lexicographic sort [1]. Now the
body of the main For loop is executed |R)| times; for a given my, € R, computing
p(my) and s(my) requires time O(n) by reading myg_1 and mp41, computing
sim(my, j) for all convenient j’s at a time requires time O(|R|n), and finally
the body of the inner For loop is executed n times, with a running time O(n)
for a given j. Thus the main For loop requires time O(|R|(n + |R|n + n?)).
Finally, computing cnf(H(R)) from H(R) consists in reading once H(R). Now
the number of computed clauses is obviously bounded by the number of possible
pairs {my, j}, i.e., |R|n, which completes the proof. O

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses.
Machine Learning, 9:147-164, 1992.

[3] R. Dechter and J. Pearl. Structure identification in relational data. Artificial
Intelligence, 58:237-270, 1992.

[4] P.L. Hammer and A. Kogan. Optimal compression of propositional Horn
knowledge bases: complexity and approximation. Artificial Intelligence,
64:131-145, 1993.

[5] D. Kavvadias, C.H. Papadimitriou, and M. Sideri. On Horn envelopes and
hypergraph transversals (extended abstract). In Proc. 4th International
Symposium on Algorithms And Computation (ISAAC’93), number 762 in
Springer Lecture Notes in Computer Science, pages 399-405. Springer, 1993.

[6] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Jour-
nal on Computing, 28(1):152-163, 1998.

[7] J. McKinsey. The decision problem for some classes of sentences without
quantifiers. Journal of Symbolic Logic, 8:61-77, 1943.

[8] T.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th An-
nual ACM Symposium on Theory Of Computing (STOC’78), pages 216-226.
ACM Press, 1978.

[9] B. Zanuttini and J.-J. Hébrard. A unified framework for structure identifi-
cation. Information Processing Letters, 81(6):335-339, 2002.

