
HAL Id: hal-00995235
https://hal.science/hal-00995235

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient algorithms for constraint description problems
over finite totally ordered domains: Extended abstract

Angel Gil, Miki Hermann, Gernot Salzer, Bruno Zanuttini

To cite this version:
Angel Gil, Miki Hermann, Gernot Salzer, Bruno Zanuttini. Efficient algorithms for constraint de-
scription problems over finite totally ordered domains: Extended abstract. 2nd International Joint
Conference on Automated Reasoning (IJCAR 2004), 2004, France. pp.244–258. �hal-00995235�

https://hal.science/hal-00995235
https://hal.archives-ouvertes.fr

Efficient Algorithms For Constraint Description
Problems Over Finite Totally Ordered Domains⋆

(Extended Abstract)

Ángel J. Gil1, Miki Hermann2, Gernot Salzer3, and Bruno Zanuttini4

1 Universitat Pompeu Fabra, Barcelona, Spain. angel.gil@upf.edu
2 LIX (FRE 2653), École Polytechnique, France. hermann@lix.polytechnique.fr

3 Technische Universität Wien, Austria. salzer@logic.at
4 GREYC (UMR 6072), Université de Caen, France. zanutti@info.unicaen.fr

Abstract. Given a finite set of vectors over a finite totally ordered do-
main, we study the problem of computing a constraint in conjunctive
normal form such that the set of solutions for the produced constraint
is identical to the original set. We develop an efficient polynomial-time
algorithm for the general case, followed by specific polynomial-time al-
gorithms producing Horn, dual Horn, and bijunctive constraints for sets
of vectors closed under the operations of conjunction, disjunction, and
median, respectively. We also consider the affine constraints, analyzing
them by means of computer algebra. Our results generalize the work of
Dechter and Pearl on relational data, as well as the papers by Hébrard
and Zanuttini. They also complete the results of Hähnle et al. on multi-
valued logics and Jeavons et al. on the algebraic approach to constraints.
We view our work as a step toward a complete complexity classification
of constraint satisfaction problems over finite domains.

1 Introduction and Summary of Results

Constraint satisfaction problems constitute nowadays a well-studied topic on the
frontier of complexity, logic, combinatoric, and artificial intelligence. It is indeed
well-known that this framework allows us to encode many natural problems or
knowledge bases. In principle, an instance of a constraint satisfaction problem is
a finite set of variable vectors associated with an allowed set of values. A model

is an assignment of values to all variables that satisfy every constraint. When a
constraint satisfaction problem encodes a decision problem, the models represent
its solutions. When it encodes some knowledge, the models represent possible
combinations that the variables can assume in the described universe.

The constraints are usually represented by means of a set of variable vectors
associated with an allowed set of values. This representation is not always well-
suited for our purposes, therefore other representations have been introduced.
The essence of the most studied alternative is the notion of of a relation, mak-
ing it easy to apply it within the database or knowledge base framework. An

⋆ Dedicated to the memory of Peter Ružička (1947 – 2003).

instance of a constraint satisfaction problem is then represented as a conjunc-
tion of relation applications. We study in this paper the constraint description

problem, i.e., that of converting a constraint from a former set representation to
the latter one by means of conjunction over relations. We consider this problem
first in its general setting without any restrictions imposed on the initial set of
vectors. We continue by imposing several closure properties on the initial set,
like the closure under the minimum, maximum, median, and affine operations.
We subsequently discover that these closure properties induce the description by
Horn, dual Horn, bijunctive, and affine constraints, respectively.

The motivation to study constraint description problems is numerous. From
the artificial intelligence point of view description problems formalize the notion
of exact acquisition of knowledge from examples. This means that they formalize
situations where a system is given access to a set of examples and it is asked to
compute a constraint describing it exactly. Satisfiability poses a keystone prob-
lem in artificial intelligence, automated deduction, databases, and verification.
It is well-known that the satisfiability problem for the general constraints is an
NP-complete problem. Therefore it is important to look for restricted classes of
constraints that admit polynomial algorithms deciding satisfiability. Horn, dual
Horn, bijunctive, and affine constraints constitute exactly these tractable classes,
as it was mentioned by Schaefer [17] for the case of Boolean constraints. Thus
the description problem for these four classes can be seen as storing a specific
knowledge into a knowledge base while we are required to respect its format.
This problem is also known as structure identification, studied by Dechter with
Pearl [7] and by Hébrard with Zanuttini [11, 19], both for the Boolean case. An-
other motivation for studying description problems comes from combinatorics.
Indeed, since finding a solution for an instance of a constraint satisfaction prob-
lem is difficult in general but tractable in the four aforementioned cases, it is
important to be able to recognize constraints belonging to these tractable cases.

The study of Boolean constraint satisfaction problems, especially their com-
plexity questions, was started by Schaefer in [17], although he did not yet con-
sider constraints explicitly. During the last ten years, constraints gained consid-
erable interest in theoretical computer science. An excellent complexity classifi-
cation of existing Boolean constraint satisfaction problems can be found in the
monograph [6]. Jeavons et al. [5, 13, 14] started to study constraint satisfaction
problems from an algebraic viewpoint. Feder, Kolaitis, and Vardi [8, 16] posed a
general framework for the study of constraint satisfaction problems.

There has not been much progress done on constraint satisfaction problems
on domains with larger cardinality. Hell and Nešetřil [12] studied constraint sat-
isfaction problems by means of graph homomorphisms. Bulatov [4] made a signif-
icant breakthrough with a generalization of Schaefer’s result to a three-element
domain. On the other hand, Hähnle et al. [2, 3, 10] studied the complexity of sat-
isfiability problems for many-valued logics that present yet another viewpoint
of constraint satisfaction problems. We realized reading the previous articles on
many-valued logics that in the presence of a total order the satisfiability problem
for the Horn, dual Horn, bijunctive, and affine many-valued formulas of signed

logic are decidable in polynomial time. We saw also that Jeavons and Cooper [15]
studied some aspects of tractable constraints on finite ordered domains from an
algebraic standpoint. This lead us to the idea to look more carefully on constraint
description problems over finite totally ordered domains, developing a new for-
malism for constraints based on an already known concept of inequalities. The
purpose of our paper is manifold. We want to generalize the work of Dechter
and Pearl [7], based on the more efficient algorithms for Boolean description
problems by Hébrard and Zanuttini [11, 19]. We also want to complement the
work of Hähnle et al. on many-valued logics. We also want to pave the way for a
complete complexity classification of constraint satisfaction problems over finite
totally ordered domains5.

2 Preliminaries

Let D be a finite, totally ordered domain, say D = {0, . . . , n − 1}, and let V be
a set of variables. For x ∈ V and d ∈ D, the inequalities x ≥ d and x ≤ d are
called positive and negative literal, respectively. The set of constraints over D
and V is defined as follows: the logical constants false and true are constraints;
literals are constraints; if ϕ and ψ are constraints, then the expressions (ϕ ∧ ψ)
and (ϕ∨ψ) are constraints. We write ϕ(x1, . . . , xℓ) to indicate that constraint ϕ
contains exactly the variables x1, . . . , xℓ. For convenience, we use the following
shorthand notation, as usual: x > d means x ≥ d + 1 for d ∈ {0, . . . , n − 2},
and false otherwise; x < d means x ≤ d − 1 for d ∈ {1, . . . , n − 1}, and false

otherwise; x = d means x ≥ d ∧ x ≤ d; ¬false and ¬true mean true and false,
respectively; ¬(x ≥ d), ¬(x ≤ d), ¬(x > d), and ¬(x < d) mean x < d, x > d,
x ≤ d, and x ≥ d, respectively; ¬(x = d) and x 6= d both mean x < d ∨ x > d;
¬(ϕ∧ψ) and ¬(ϕ∨ψ) mean ¬ϕ∨¬ψ and ¬ϕ∧¬ψ, respectively. Note that x = d
and x 6= d asymptotically require the same space as their alternative notations,
i.e., O(log n). Since d is bounded by n, its binary coding has length O(log n).

A clause is a disjunction of literals. It is a Horn clause if it contains at most
one positive literal, dual Horn if it contains at most one negative literal, and bi-

junctive if it contains at most two literals. Following Schaefer [17], we extend the
notion of constraints by introducing affine clauses. An affine clause is an equa-
tion a1x1+· · ·+aℓxℓ = b (mod n) where x1, . . . , xℓ ∈ V and a1, . . . , aℓ, b ∈ D. A
constraint is in conjunctive normal form (CNF) if it is a conjunction of clauses.
It is a Horn, a dual Horn, a bijunctive, or an affine constraint if it is a conjunction
of Horn, dual Horn, bijunctive, or affine clauses, respectively.

A model for a constraint ϕ(x1, . . . , xℓ) is a mapping m : {x1, . . . , xℓ} → D
assigning a domain element m(x) to each variable x. The satisfaction relation

m |= ϕ is inductively defined as follows: m |= true and m 6|= false; m |= x ≤ d
if m(x) ≤ d, and m |= x ≥ d if m(x) ≥ d; m |= ϕ ∧ ψ if m |= ϕ and m |= ψ;
m |= ϕ ∨ ψ if m |= ϕ or m |= ψ. An affine clause is satisfied by a model m if
a1m(x1)+· · ·+aℓm(xℓ) = b (mod n). The set of all models satisfying ϕ is denoted

5 See http://www.lix.polytechnique.fr/∼hermann/publications/cdesc04.ps.gz

for the proofs, since many of them are omitted here due to lack of space.

by Sol(ϕ). If we arrange the variables in some arbitrary but fixed order, say as
a vector x = (x1, . . . , xℓ), then the models can be identified with the vectors

in Dℓ. The j-th component of a vector m, denoted by m[j], gives the value of
the j-th variable, i.e., m(xj) = m[j]. The operations of conjunction, disjunction,
addition, and median on vectors m,m′,m′′ ∈ Dℓ are defined as follows:

m ∧ m′ = (min(m[1],m′[1]), . . . ,min(m[ℓ],m′[ℓ]))

m ∨ m′ = (max(m[1],m′[1]), . . . ,max(m[ℓ],m′[ℓ]))

m + m′ = (m[1] + m′[1] (mod |D|), . . . ,m[ℓ] + m′[ℓ] (mod |D|))

med(m,m′,m′′) = (med(m[1],m′[1],m′′[1]), . . . ,med(m[ℓ],m′[ℓ],m′′[ℓ])

The ternary median operator is defined as follows: for each choice of three values
a, b, c ∈ D such that a ≤ b ≤ c, we have med(a, b, c) = b. Note that the median
can also be defined by med(a, b, c) = min(max(a, b), max(b, c), max(c, a)).

We say that a set of vectors is Horn if it is closed under conjunction, dual

Horn if it is closed under disjunction, bijunctive if it is closed under median, and
affine if it is a Cartesian product of affine spaces, i.e., of vector spaces translated
by some vector.

3 Constraints in Conjunctive Normal Form

We investigate first the description problem for arbitrary sets of vectors.

Problem: description
Input: A finite set of vectors M ⊆ Dℓ over a finite totally ordered domain D.
Output: A constraint ϕ(x1, . . . , xℓ) over D in CNF such that Sol(ϕ) = M .

The usual approach to this problem in the literature is to compute first the
complement set M̄ = Dℓ

rM , followed by a construction of a clause c(m̄) for each
vector m̄ ∈ M̄ missing from M such that m̄ is the unique vector falsifying c(m̄).
The constraint ϕ is then the conjunction of the clauses c(m̄) for all missing
vectors m̄ ∈ M̄ . However, this algorithm is essentially exponential, since the
complement set M̄ can be exponentially bigger than the original set of vectors M .
We present a new algorithm running in polynomial time and producing a CNF
constraint of polynomial length with respect to |M |, ℓ, and log |D|.

To construct the constraint ϕ we proceed in the following way. We arrange
the set M as an ordered tree TM , with branches corresponding to the vectors
in M . In case M contains all possible vectors, i.e. M = Dℓ, TM is a complete
tree of branching factor |D| and depth ℓ. Otherwise, some branches are missing,
leading to gaps in the tree. We characterize these gaps by conjunctions of literals.
Their disjunction yields a complete description of all vectors that are missing

from M . Finally, by negation and de Morgan’s law we obtain ϕ.
Let TM be an ordered tree with edges labeled by domain elements such that

each path from the root to a leaf corresponds to a vector in M . The tree TM

contains a path labeled d1. · · · .di from the root to some node if there is a vector

m ∈ M such that m[j] = dj holds for every j = 1, . . . , i. The level of a node is
its distance to the root plus 1, i.e., the root is at level 1 and a node reachable via
d1. · · · .di is at level i+1 (Fig. 1(a)). Note that all leaves are at level ℓ+1. If the
edges between a node and its children are sorted in ascending order according to
their labels, then traversing the leaves from left to right enumerates the vectors
of M in lexicographic order, say m1, . . . ,m|M |. A vector m is lexicographically
smaller than a vector m′, if there is a level i such that m[i] < m′[i] holds, and
for all j < i we have m[j] = m′[j].

�

level i

✁

i + 1

m[i] = di

(a) Level i

✂

i

✄

mk[i]
m[i]

☎

mk+1[i]

(b) Missing between

✆

i

m[i]

✝

mk+1[i]

(c) . . . left

✞

i

✟

mk[i] m[i]

(d) . . . right

Fig. 1. Tree representation of vectors

Suppose that mk and mk+1 are immediate neighbors in the lexicographic enu-
meration of M and let m be a vector lexicographically in between, thus missing
from M . There are three possibilities for the path corresponding to m. It may ei-
ther leave the tree at the fork between mk and mk+1 (Fig. 1(b)), or at the fork to
the left of mk+1 (Fig. 1(c)), or at the fork to the right of mk (Fig. 1(d)). There-
fore the missing vector m can be characterized by the constraints middle(k, i),
left(k + 1, i), and right(k, i) defined as follows.

middle(k, i) =
∧

j<i

(xj = mk[j]) ∧ (xi > mk[i]) ∧ (xi < mk+1[i])

left(k + 1, i) =
∧

j<i

(xj = mk+1[j]) ∧ (xi < mk+1[i])

right(k, i) =
∧

j<i

(xj = mk[j]) ∧ (xi > mk[i])

The situation depicted in Fig. 1 is a snapshot at level i of the tree TM . Of course,
if the situations in Fig. 1(c) or Fig. 1(d) occur at a level i, then subsequent forks
of a missing vector to the left or to the right, respectively, occur also at each
level i′ > i.

To describe all vectors missing from M we form the disjunction of the above
constraints for appropriate values of k and i. We need to determine the levels at
which neighboring models fork by means of the following function.

fork(k) =











0 for k = 0

min{i | mk[i] 6= mk+1[i]} for k = 1, . . . , |M | − 1

0 for k = |M |

The values fork(0) and fork(|M |) correspond to imaginary models m0 and m|M |+1

forking at a level above the root. They allow to write the conditions below in
a concise way at the left and right border of the tree. The three situations in
Fig. 1 can now be specified by the following conditions.

i = fork(k) ∧ mk[i] + 1 < mk+1[i] (edges missing in between)
fork(k) < i ∧ mk+1[i] > 0 (. . . to the left)
fork(k) < i ∧ mk[i] < |D| − 1 (. . . to the right)

The second condition in each line ensures that there is at least one missing edge.
It avoids that the constraints middle(k, i), left(k + 1, i), and right(k, i) evaluate
to false. The disjunction of clauses middle(k, i), left(k +1, i), and right(k, i) that
satisfy the first, second, and third condition, respectively, for all models and all
levels represent a disjunctive constraint satisfied by the models missing from M .
After applying negation and de Morgan’s law, we arrive at the constraint

ϕ(M)

=
∧

{ ¬middle(k, i) | 0 < k < |M | , i = fork(k), mk[i] + 1 < mk+1[i] }

∧
∧

{ ¬ left(k + 1, i) | 0 ≤ k < |M | , fork(k) < i ≤ ℓ, mk+1[i] > 0 }

∧
∧

{ ¬ right(k, i) | 0 < k ≤ |M | , fork(k) < i ≤ ℓ, mk[i] < |D| − 1 }.

The constraint ϕ is in conjunctive normal form and the condition Sol(ϕ) = M
holds. Note that we use negation not as an operator on the syntax level but as a
meta-notation expressing that the constraint following the negation sign has to
be replaced by its dual. Note also that the conjunct left(k + 1, i) is defined and
used with the shifted parameter k + 1. This is necessary because the conjunct
left characterizes a gap lexicographically before the vector mk+1.

It follows directly from the construction that the constraint ϕ(M) contains
at most 3 |M | ℓ clauses. Each clause contains at most 2ℓ literals, namely at
most one positive and one negative for each variable. Each literal has the length
O(log |D|), since the domain elements are written in binary notation. Hence, the

overall length of the constraint ϕ(M) is O(|M | ℓ
2
log |D|).

The vectors in M can be lexicographically sorted in time O(|M | ℓ log |D|)
using radix sort. The factor log |D| stems from the comparison of domain ele-
ments. The fork levels can also be computed in time O(|M | ℓ log |D|), in parallel
with sorting the set M . The constraint ϕ(M) is produced by two loops, where
the outer loop is going through each vector in M and the inner loop through the
variables. The clauses ¬middle(k, i), ¬ left(k + 1, i), and ¬ right(k, i) are poten-
tially written in each step inside the combined loops. This makes an algorithm
with time complexity O(|M | ℓ

2
log |D|).

Theorem 1. For each set of vectors M ⊆ Dℓ over a finite ordered domain D
there exists a constraint ϕ in conjunctive normal form such that M = Sol(ϕ). It

contains at most 3 |M | ℓ clauses and its length is O(|M | ℓ
2
log |D|). The algorithm

constructing ϕ runs in time O(|M | ℓ
2
log |D|) and space O(|M | ℓ log |D|).

4 Horn Constraints

Horn clauses and formulas constitute a frequently studied subclass. We investi-
gate in this section the description problem for a generalization of Horn formulas
to ordered finite domains, namely for sets of vectors closed under conjunction.

Problem: description[horn]
Input: A finite set of vectors M ⊆ Dℓ, closed under conjunction, over a finite
totally ordered domain D.
Output: A Horn constraint ϕ over D such that Sol(ϕ) = M .

The general construction in Section 3 does not guarantee that the final con-
straint is Horn whenever the set M is closed under conjunction. Therefore we
must shorten the clauses of the constraint ϕ, produced in Section 3, to obtain
only Horn clauses. For this, we will modify a construction proposed by Jeavons
and Cooper in [15]. Their method is exponential, since it proposes to construct
a Horn clause for each vector in the complement set Dℓ

r M . Contrary to the
method of Jeavons and Cooper, our new proposed method is polynomial with
respect to |M |, ℓ and log |D|.

Let ϕ(M) be a constraint produced by the method of Section 3 and let c be
a clause from ϕ(M). We denote by c− the disjunction of the negative literals
in c. The vectors in M satisfying a negative literal in c satisfy also the restricted
clause c−. Hence we have only to care about the vectors that satisfy a positive
literal but no negative literals in c, described by the set

Mc = {m ∈ M | m 6|= c−} .

If Mc is empty, we can replace the clause c by h(c) = c− in the constraint ϕ(M)
without changing the set of models Sol(ϕ). Otherwise, note that Mc is closed
under conjunction, since M is already closed under this operation. Indeed, if the
vectors m and m′ falsify every negative literal x ≤ d of c− then the conjunction
m∧m′ falsifies the same negative literals. Hence Mc contains a unique minimal
model m∗ =

∧

Mc. Every positive literal in c satisfied by m∗ is also satisfied by
all the vectors in Mc. Let l be a positive literal from c and satisfied by m∗. There
exists at least one such literal since otherwise m∗ would satisfy neither c− nor
any positive literal in c, hence it would not be in Mc. Then c can be replaced with
the Horn clause h(c) = l ∨ c−, without changing the set of models Sol(ϕ). We
obtain a Horn constraint h(M) for a Horn set M by replacing every non-Horn
clause c in ϕ(M) by its Horn restriction h(c).

The length of h(M) is basically the same as that of ϕ(M). The number of
clauses is the same and the length of clauses is O(ℓ log |D|) in both cases. There
are at most 2ℓ literals in each clause of ϕ(M) (one positive and one negative
literal per variable) versus ℓ + 1 literals in each clause of h(M) (one negative
literal per variable plus a single positive literal).

The construction of each Horn clause h(c) requires time O(|M | ℓ log |D|).
For every vector m ∈ M we have to evaluate at most ℓ negative literals in c
to find out whether m belongs to Mc. The evaluation of a literal takes time

O(log |D|). Hence the computation of the set Mc takes time O(|M | ℓ log |D|). To
obtain m∗ =

∧

Mc, we have to compute |Mc| − 1 conjunctions between vectors
of length ℓ, each of the ℓ conjunctions taking time O(log |D|). Therefore m∗

can also be computed in time O(|M | ℓ log |D|). Since there are at most 3 |M | ℓ
clauses in ϕ(M), the transformation of ϕ(M) into h(M) can be done in time

O(|M |
2
ℓ
2
log |D|). Hence, the whole algorithm producing the Horn constraint

h(M) from the set of vectors M runs in time O(|M |
2
ℓ
2
log |D|).

Theorem 2. For each set of vectors M ⊆ Dℓ over a finite totally ordered do-

main D that is closed under conjunction, there exists a Horn constraint ϕ such

that M = Sol(ϕ). The constraint ϕ contains at most 3 |M | ℓ clauses and its

length is O(|M | ℓ
2
log |D|). The algorithm constructing the constraint ϕ runs in

time O(|M |
2
ℓ
2
log |D|) and space O(|M | ℓ log |D|).

Note that the result of Theorem 2 is not optimal. We can indeed derive a bet-
ter algorithm with time complexity O(|M | ℓ(|M | + ℓ) log |D|) from the one for
the Boolean case presented in [11]. For that purpose, notice that the conjuncts
middle(k, i) and left(k + 1, i) behave like the first case studied in the aforemen-
tioned paper, whereas the conjunct right(k, i) can be treated by means of the
other cases, taking advantage of the following sets defined as generalizations of
the corresponding ones from [11]:

I(k, i) = {m ∈ M | m[i] > mk[i] and ∀j < i, m[j] ≥ mk[j]},

sim(k, i) = max
1≤j≤k

{j | ∃m ∈ I(k, i) such that ∀l, l < j implies m[l] ≤ mk[l]}.

Using Theorem 2, we are able to prove a generalization of a well-known
characterization of Horn sets. A related characterization in a different setting
can be found in [9].

Proposition 3. A set of vectors M over a finite totally ordered domain is closed

under conjunction if and only if there exists a Horn constraint ϕ satisfying the

identity Sol(ϕ) = M .

If we interchange conjunctions with disjunctions of models, as well as positive
and negative literals throughout Section 4, we obtain identical results for dual
Horn constraints.

Theorem 4. A set of vectors M ⊆ Dℓ over a finite ordered domain D is closed

under disjunction if and only if there exists a dual Horn constraint ϕ satisfying

the identity M = Sol(ϕ). Given M closed under disjunction, the dual Horn

constraint ϕ contains at most 3 |M | ℓ clauses and its length is O(|M | ℓ
2
log |D|).

It can be constructed in time O(|M | ℓ(|M |+ℓ) log |D|) and space O(|M | ℓ log |D|).

5 Bijunctive Constraints

Bijunctive clauses and formulas present another frequently studied subclass of
propositional formulas. We investigate in this section the description problem
for a generalization of bijunctive formulas to ordered finite domains, namely for
sets of vectors closed under the median operation.

Problem: description[bijunctive]
Input: A finite set of vectors M ⊆ Dℓ, closed under median, over a finite totally
ordered domain D.
Output: A bijunctive constraint ϕ over D such that Sol(ϕ) = M .

The general construction in Section 3 does not guarantee that the final con-
straint is bijunctive whenever the set M is closed under median. Therefore we
add a post-processing step that transforms the constraint into a bijunctive one.
Let ϕ(M) be the constraint produced by the method of Section 3 and let c
be a clause from ϕ(M). We construct a bijunctive restriction b(ϕ) by removing
appropriate literals from ϕ such that no more than two literals remain in each
clause. Since ϕ is a conjunctive normal form, any model of b(ϕ) is still a model
of ϕ. The converse does not hold in general. However, if Sol(ϕ) is closed under
median, the method presented below preserves the models, i.e., every model of ϕ
remains a model of b(ϕ). In the proof we need a simple lemma.

Lemma 5. The model med(m1,m2,m3) satisfies a literal l if and only if at least

two of the models m1, m2, and m3 satisfy l.

We say that a literal l is essential for a clause c if there is a model m ∈ M
that satisfies l, but no other literal in c; we also say that m is a justification for l.
Obviously, we may remove non-essential literals from c without losing models. It
remains to show that no clause from ϕ contains more than two essential literals.

To derive a contradiction, suppose that c is a clause from ϕ containing at
least three essential literals, say l1, l2, and l3. Let m1, m2, and m3 be their
justifications, i.e., for each i we have mi |= li and mi does not satisfy any other
literal in c. According to Lemma 5, in this case the model med(m1,m2,m3)
satisfies no literal at all. Hence med(m1,m2,m3) satisfies neither c nor ϕ, which
contradicts the assumption that Sol(ϕ) is closed under median.

The preceding discussion suggests applying the following algorithm to every
clause c of ϕ. For every literal l in c = c′∨l, check whether the remaining clause c′

is still satisfied by all models in M . If yes, the literal is not essential and can be
removed. Otherwise it is one of the two literals in the final bijunctive clause b(c).

Proposition 6. Given a finite set of vectors M ⊆ Dℓ over a finite totally or-

dered domain D, closed under median, and a constraint ϕ in conjunctive normal

form such that M = Sol(ϕ), an equivalent bijunctive constraint b(M) with the

same number of clauses can be computed in time O(d |M | ℓ log |D|) and space

O(|M | ℓ log |D|), where d is the number of clauses in ϕ.

Theorem 7. For each set of vectors M ⊆ Dℓ over a finite ordered domain D
that is closed under median, there exists a bijunctive constraint ϕ such that

M = Sol(ϕ). Its length is O(|M | ℓ(log ℓ+log |D|)) and it contains at most 3 |M | ℓ

clauses. The algorithm constructing ϕ runs in time O(|M |
2
ℓ
2
log |D|) and space

O(|M | ℓ log |D|).

Proposition 8. A set of vectors M over a finite totally ordered domain is closed

under median if and only if there exists a bijunctive constraint ϕ satisfying the

identity M = Sol(ϕ).

We wish to point out that reducing the length of clauses also allows us to
compute a Horn constraint whenever the set M is closed under conjunction. In
this case a minimal clause in a constraint ϕ with M = Sol(ϕ) is always Horn.

Contrary to the Horn case, the simplest known algorithm for the bijunctive
description problem does not seem to lift well from the Boolean to the finite do-
main. Dechter and Pearl [7] showed that in the Boolean case this problem can be

solved in time O(|M | ℓ
2
), which is better than our result even when ignoring the

unavoidable factor log |D|. Their algorithm generates first all the O(ℓ
2
) bijunc-

tive clauses built from the variables of the formula, followed by an elimination of
those falsified by a vector from M , where the bijunctive formula is the conjunc-
tion of the retained clauses. However, there are O(ℓ

2
|D|

2
) bijunctive clauses for

a finite domain D yielding an algorithm with time complexity O(|M | ℓ
2
|D|

2
),

which is exponential in the size O(log |D|) of the domain elements.
Another idea, not applicable efficiently in the finite domain case, is that of

projecting M onto each pair of variables, then computing a bijunctive constraint
for each projection. This requires time O(|M | ℓ

2
) in the Boolean case, since we

only need to compute a CNF for each projection. A CNF for a projection is
always bijunctive, thus only the general, efficient algorithm of Theorem 1 has
to be used. However, in the finite domain case, computing a constraint with the
algorithm of Theorem 1 does not necessarily yield a bijunctive one. Each clause
can contain up to four literals, a positive and a negative one for each variable.
Thus we need to use an algorithm for computing a bijunctive CNF, like that of
Theorem 7, yielding an overall time complexity of O(|M |

2
ℓ
2
log |D|).

6 Affine Constraints

Recall that a set of vectors over D is affine if it is a Cartesian product of affine
spaces (one for each prime factor of n), i.e., of vector spaces translated by some
vector. For sake of completeness this section summarizes some results from the
theory of finite fields relevant for the analysis of affine constraints. An interested
reader can find more information e.g. in the monograph [18].

The main question in the case of affine constraints and affine sets is whether
the cardinality n of the domain is prime or not. According to this, we distinguish
three cases: (1) n is prime, which will be studied in full detail; (2) n is a product of
prime factors, which will reduced by means of the Chinese Remainder Theorem
to the previous case; and (3) n is a prime power, which will be reduced by means
of Hensel lifting to the first case.

6.1 n is prime

If n is prime then the working domain D is the finite field Zn, sometimes denoted
also Fn or Z/nZ. Recall first some necessary results from linear algebra. Let
ϕ(x) be an affine constraint equivalent to the affine system Ax = b over the
finite field Zn, where A is a p × q matrix over Zn. If the system Ax = b is
consistent, i.e., it does not imply an equation a1 = a2 for two different values

a1 6= a2 from Zn, and of full row rank, then it has nq−p solutions. The solutions
of the system Ax = b form an affine space, i.e., a vector space translated by a
vector. The set of solutions M of the system Ax = b can be written as a direct
sum of the solutions M∗ of the homogeneous system Ax = 0 and a particular
solution m of the system Ax = b. The set of solutions M∗ form a vector space
and the particular solution m is the translating vector.

This section investigates the description problem for sets of vectors repre-
senting an affine space.

Problem: description[affine], n prime
Input: A finite set of vectors M ⊆ Dℓ, representing an affine space over a finite
totally ordered domain D.
Output: An affine constraint ϕ over D such that Sol(ϕ) = M .

The first point to check in an affine description problem is whether the car-
dinality of a set of vectors M over Zn is a power of n, otherwise M cannot be
an affine space. Then we choose an arbitrary vector m∗ ∈ M and form the set
M∗ = {m−m∗ | m ∈ M}. It is clear that M is an affine space if and only if M∗

is a vector space. If the cardinality of M∗ is equal to nq for some q, then there
must exist a homogeneous linear system (I B)(u v) = 0 over Zn, where I is an
(ℓ − q) × (ℓ − q) identity matrix and B is a (ℓ − q) × q matrix of full row rank
over Zn. We will concentrate on the construction of the matrix B.

The i-th row of the system (I B)(u v) = 0 is ui + b1
i v1 + · · · + bq

i vq = 0, or
ui +biv = 0, where bi is the i-th row of the matrix B. Let m be a vector from the
set M∗. We substitute m[i] for ui and m[ℓ − q + j] for vj for each j = 1, . . . , q.
This implies the equation m[i]+b1

i m[ℓ−q+1]+ · · ·+bq
i m[ℓ] = 0, or (ei bi)m = 0,

for each m ∈ M∗, where ei is the corresponding unit vector. This means that we
construct the homogeneous system Si : M∗(ei bi) = 0, where M∗ is the matrix
whose rows are the vectors of the set M∗. The system Si is an inhomogeneous
system over Zn with q variables bi, since the dot product of the unit vector ei

with each vector m ∈ M produces the constant m[i]. If M∗ is a vector space,
then the system Si has exactly one solution, which constitutes the i-th row
of the matrix B. This is because the vector space M∗ of cardinality nq has
the dimension q, i.e., each basis of M∗ contains exactly q linearly independent
vectors. If Si has no solution, then M∗ is not a vector space. The system Si

cannot have more than one solution, which follows from the cardinality of the
set M∗ and the construction of the system Si.

Once all the systems Si have been solved, we have determined the coefficients
of the matrix B in the homogeneous system (I B)(u v) = 0. To determine
the inhomogeneous system (I B)(u v) = b that describes the original set of
vectors M , we substitute the vector m∗ for the variables (u v) and derive the
values of the vector b. This implies the following result.

Theorem 9. If M ⊆ Z
ℓ
n is a set of vectors representing an affine space then

there exists an affine system Ax = b with ℓ − log |M | / log |D| rows over Zn,

such that Sol(Ax = b) = M , that can be computed in time O(|M |
mx

(ℓ log |D| +

log |M |) log |D|) and space O((|M | + ℓ)ℓ log |D| − ℓ log |M |), where mx is the

exponent in the asymptotic complexity for matrix multiplication.

Following the preceding discussion, there exists an easy way to determine
whether a set of vectors M over Zn is an affine space. Since we work in a ring,
we can also use the subtraction operation over Zn, making the characterization
more compact.

Proposition 10. A set of vectors M ⊆ Z
ℓ
n is an affine space if and only if it

is closed under the affine operation aff(x, y, z) = x − y + z (mod n), i.e., for

any choice of three not necessarily distinct vectors m,m′,m′′ ∈ M the vector

m − m′ + m′′ also belongs to M .

6.2 n is not prime

If n is not prime, then it can be written as a product of relatively prime factors
n = n1 · · ·nq. We assume that this factorization is a priori known, since it does
not make sense to factorize n every time we need to solve an affine problem
over Zn. The affine description problem is then formulated as follows.

Problem: description[affine], n composed
Input: A finite set of vectors M ⊆ Dℓ, representing a Cartesian product of affine
spaces over a finite totally ordered domain D.
Output: An affine constraint ϕ over D such that Sol(ϕ) = M .

A lot of results can be reused from the previous case, when n is prime, but
we need to use the Chinese Remainder Theorem to solve the affine systems.

Theorem 11 (Chinese Remainder Theorem). Let n1, . . . , nq be pairwise

relatively prime and n = n1 · · ·nq. Consider the mapping f : a ↔ (a1, . . . , aq),
where a ∈ Zn, ai ∈ Zni

, and ai = a mod ni, for each i ∈ {1, . . . , q}. Then the

mapping f is a bijection between Zn and the Cartesian product Zn1
× · · · ×Znq

.

The Chinese Remainder Theorem says that operations performed on the
elements of Zn can be equivalently performed on the corresponding q-tuples
by performing the operations independently in each coordinate position in the
appropriate system. Instead of working with an affine system of equations Ax = b
over Zn, we work with q affine systems Ax = b over Znk

. The factorization
n = n1 · · ·nq implies that q ≤ log n, since the inequality nk ≥ 2 holds for each k.
This means that we have only a logarithmic number of subsystems to consider.
Since the length of n is log n, this means that we have only a polynomial number
(with respect to the length of input) of systems Ax = b over Zni

to consider.
The constraint description algorithm uses the Chinese Remainder Theorem in

the other direction. In practice, we compute first the coefficients of the matrix Bk,
as in Section 6.1, modulo nk for each k = 1, . . . , q. By means of the mapping f in
the Chinese Remainder Theorem we determine from B1, . . . , Bq the matrix B of
the homogeneous system (I B)(u v) = 0. The vector b of the final inhomogeneous
system (I B)(u v) = b is determined as in Section 6.1. An application of the

Chinese Remainder Theorem requires O(im(log |D|) log log |D|) operations [18,
Theorem 10.25], where im(r) denotes the time for multiplication of two integers
of length r.

Theorem 12. If M ⊆ Z
ℓ
n is a set of vectors representing a Cartesian product of

affine spaces then there exists a system Ax = b over Zn, where Sol(Ax = b) = M .

A factor ni in the previous factorization n = n1 · · ·nq need not be prime, it
can also be a prime power. Therefore we need to consider a third case.

6.3 n is a prime power

If n = pq for some prime p and an integer exponent q > 1, then we use Hensel
lifting to solve our problem. Since the Hensel lifting is by far beyond the scope
of this paper, we only state the main result without any particular presentation
of the lifting method. An interesting reader is strongly encouraged to consult
the part on Hensel lifting in the monograph [18]. We assume that the power pq

is known to us in binary notation, therefore its length is O(q log p). We compute
first the system (I B)(u v) = b (mod p), as in Section 6.1, followed by a Hensel

lifting to the system A′x = b′ (mod p2
⌈log2 k⌉

). Each coefficient B(i, j) and bi of
the matrix B and the vector b, respectively, is lifted separately, similarly to the
application of the Chinese Remainder Theorem in Section 6.2. Finally, we cut the
result down to modulo m = pq. Usually, Hensel lifting is presented for polynomi-
als over a ring R. To adapt our approach to the usual presentation, we use the
same trick as that applied for cyclic codes: a number a = adad−1 · · · a1a0 is inter-
preted as a polynomial adX

d + ad−1X
d−1 + · · ·+ a1X + a0, where X is a formal

variable. The description problem for affine constraints is formulated as follows.

Problem: description[affine], n prime power
Input: A finite set of vectors M ⊆ Dℓ, representing a power of an affine space
over a finite totally ordered domain D.
Output: An affine constraint ϕ over D such that Sol(ϕ) = M .

Each Hensel step requires O(im(log |D|) im(log p)) operations, where im(r) is
the time for multiplying two integers of length r. There are O(log q) iterations
of the Hensel step. Hence, there exists a polynomial-time algorithm to compute
the system A′x = b′ (mod pq) from the system (I B)(u v) = b (mod p).

Theorem 13. If M ⊆ Z
ℓ
n is a set of vectors representing a power of an affine

space then there exists an affine system Ax = b over Zn, where Sol(Ax = b) = M .

7 Changing the Literals

If we change the underlying notion of literals, using x = d and x 6= d as basic
building blocks, the situation changes drastically. Former positive literal x ≥ d
becomes a shorthand for the disjunction (x = d) ∨ (x = d + 1) ∨ · · · ∨ (x =
n− 1), whereas the former negative literal x ≤ d now represents the disjunction

(x = 0) ∨ (x = 1) ∨ · · · ∨ (x = d). Even if we compress literals containing the
same variable into a bit vector, the new representation still needs n bits, i.e., its
size is O(n). Compared to the former literals of size O(log n), this amounts to
an exponential blow-up. As an immediate consequence the algorithms given in
the preceding sections become exponential, since we have to replace literals like
xi < mk[i], xi > mk[i], and xi < mk+1[i] by disjunctions of equalities.

The satisfiability problem for constraints in CNF over finite totally ordered
domains with basic operators ≤ and ≥ is defined similarly to Boolean satis-
fiability. The complexity of these problems was studied for fixed domain car-
dinalities, from the standpoint of many-valued logics, by Hähnle et al. [3, 10].
The NP-completeness proof for Boolean satisfiability generalizes uniformly to
finite ordered domains. Hähnle et al. [3, 10] proved that the satisfiability prob-
lems restricted to Horn, dual Horn, and bijunctive constraints, are decidable in
polynomial time for a fixed domain cardinality. The tractability of the affine
restriction is a consequence of Section 6.

The satisfiability of constraints in conjunctive normal form is also affected
when switching to = and 6= as basic operators. While the satisfiability problem
for general constraints remains NP-complete, the restrictions to Horn, dual Horn,
and bijunctive constraints change from polynomially solvable to NP-complete for
|D| ≥ 3. This can be shown by encoding for example the graph problem of k-
coloring [1, 5]. When we use the Horn and bijunctive clause (u 6= d ∨ v 6= d),
we can express by C(u, v) = (u 6= 0 ∨ v 6= 0) ∧ · · · ∧ (u 6= k − 1 ∨ v 6= k − 1) that
the adjacent vertices of the edge (u, v) are “colored” by different “colors”. On
the other hand, Beckert et al. [2] proved that bijunctive constraints restricted to
positive literals can be solved in linear time.

8 Concluding Remarks

The studied constraint description problems constitute a generalization of the
Boolean structure identification problems, studied by Dechter and Pearl [7], with
more efficient algorithms as a byproduct. Our paper presents a complement to
the work of Hähnle et al. [10] on the complexity of the satisfiability problems in
many-valued logics. It also completes the study of tractable constraints [5, 14,
15] by Jeavons and his group.

We have constructed efficient polynomial-time algorithms for constraint de-
scription problems over a finite totally ordered domain, where the produced
constraint is in conjunctive normal form. If the original set of vectors is closed
under the operation of conjunction, disjunction, or median, we have presented
specific algorithms that produce a Horn, a dual Horn, or a bijunctive constraint,
respectively. In all three cases, the constraint contains at most 3 |M | ℓ clauses. It
is interesting to note that the produced algorithms are compatible, with respect
to asymptotic complexity, with known algorithms for the Boolean case presented
in [11, 19]. This means that the restriction of the new algorithms presented in
our paper to domains D with cardinality |D| = 2 produces the aforementioned
algorithms for the Boolean case. However, the presented algorithms are not just

straightforward extensions of the previous ones for the Boolean case, but they
required the development of new methods.

It would be interesting to know if more efficient algorithms exist or whether
our algorithms are asymptotically optimal. Certainly a more involved lower
bound analysis is necessary to answer this open question. A possible exten-
sion of our work would be a generalization of our algorithms to partially ordered
domains and to domains with a different structure, like lattices.

References

1. C. Ansótegui and F. Manyà. New logical and complexity results for signed-SAT.
In Proc. 33rd ISMVL 2003, Tokyo (Japan), pages 181–187. 2003.

2. B. Beckert, R. Hähnle, and F. Manyà. The 2-SAT problem of regular signed CNF
formulas. In Proc. 30th ISMVL, Portland (OR, USA), pages 331–336. 2000.

3. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to
classical logic. In Proc. 31st ISMVL, Warsaw (Poland), pages 221–226. 2001.

4. A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proc. 43rd FOCS, Vancouver (BC, Canada), pages 649–658, 2002.

5. M. C. Cooper, D. A. Cohen, and P. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65(2):347–361, 1994.

6. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean
Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics
and Applications. SIAM, Philadelphia (PA), 2001.

7. R. Dechter and J. Pearl. Structure identification in relational data. Artificial
Intelligence, 58(1-3):237–270, 1992.

8. T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: a study through Datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

9. R. Hähnle. Exploiting data dependencies in many-valued logics. Journal of Applied
Non-Classical Logics, 6(1), 1996.

10. R. Hähnle. Complexity of many-valued logics. In Proc. 31st ISMVL, Warsaw
(Poland), pages 137–148. 2001.

11. J.-J. Hébrard and B. Zanuttini. An efficient algorithm for Horn description. In-
formation Processing Letters, 88(4):177–182, 2003.

12. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92–110, 1990.

13. P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200(1-2):185–204, 1998.

14. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the Association for Computing Machinery, 44(4):527–548, 1997.

15. P. Jeavons and M. C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327–339, 1995.

16. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Science, 61(2):302–332, 2000.

17. T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th STOC,
San Diego (CA, USA), pages 216–226, 1978.

18. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 1999.

19. B. Zanuttini and J.-J. Hébrard. A unified framework for structure identification.
Information Processing Letters, 81(6):335–339, 2002.

