
HAL Id: hal-00995233
https://hal.science/hal-00995233

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure Identification of Boolean Relations and Plain
Bases for co-Clones

Nadia Creignou, Phokion G. Kolaitis, Bruno Zanuttini

To cite this version:
Nadia Creignou, Phokion G. Kolaitis, Bruno Zanuttini. Structure Identification of Boolean Relations
and Plain Bases for co-Clones. Journal of Computer and System Sciences, 2008, 74 (7), pp.1103-1115.
�hal-00995233�

https://hal.science/hal-00995233
https://hal.archives-ouvertes.fr

Structure Identification of Boolean Relations

and Plain Bases for co-Clones

Nadia Creignou

LIF, UMR CNRS 6166

Université de la Méditerranée

163, avenue de Luminy

13 288 Marseille, France

creignou@lif.univ-mrs.fr

Phokion Kolaitis∗

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099, U.S.A.

kolaitis@almaden.ibm.com

Bruno Zanuttini

GREYC, UMR CNRS 6072

Université de Caen

Boulevard du Maréchal Juin

14032 Caen, France

bruno.zanuttini@info.unicaen.fr

June 21, 2007

Abstract

We give a quadratic algorithm for the following structure identification problem: given a
Boolean relation R and a finite set S of Boolean relations, can the relation R be expressed as a
conjunctive query over the relations in the set S? Our algorithm is derived by first introducing
the concept of a plain basis for a co-clone and then identifying natural plain bases for every
co-clone in Post’s lattice. In the process, we also give a quadratic algorithm for the problem of
finding the smallest co-clone containing a Boolean relation.

1 Introduction and Summary of Results

The structure identification problem [DP92] has been recognized as a basic algorithmic problem
arising in several different areas of artificial intelligence and computer science, such as knowledge
representation and computational learning theory. Informally, structure identification is the prob-
lem of determining whether a given relation can be “represented” by a formula in some logical
formalism. The given relation can be thought of as a set of observations or a state of knowledge;
thus, the structure identification problems asks whether a given set of observations coincides with
the set of models of some formula in the logical formalism under consideration.

The structure identification problem can be formalized in different ways by considering differ-
ent logical formalisms of interest. The most well-studied formalization of this problem, originally
articulated by Dechter and Pearl [DP92], has become known as the Inverse Satisfiability Problem

∗On leave from UC Santa Cruz

1

[KS98, Dal00], which here will be denoted as InvSat. The input to an instance of the InvSat prob-
lem is a relation R and a finite set S of relations over the same domain as R; the question is whether
R is the set of models of some CNF(S)-formula, i.e., a formula that is the conjunction of atomic
formulas of the form T (x1, . . . , xn), where T is a relation in the set S. In other words, the question is
whether R can be obtained from the relations in S using finite Cartesian products and identification
of variables. Clearly, CNF(S) formulas generalize Boolean formulas in conjunctive normal form.
Note that the InvSat problem has connections to both constraint satisfaction and database theory.
Indeed, from a constraint-satisfaction perspective, InvSat asks whether the relation R is the set of
solutions of a constraint network [Dec03] built from relations in S, while, from a database-theoretic
perspective, it asks whether R can be expressed as a relational join [AHV95] involving relations
from S. Over the Boolean domain, InvSat is known to be a coNP-complete problem [KS98]. As
defined above, InvSat is a uniform problem, in the sense that both a relation R and a finite set
S of relations are part of the input. By keeping the set S fixed, we obtain a family of non-uniform
decision problems InvSat(S) (one for each fixed set S) in which the input is just a relation R.
Kavvadias and Sideri [KS98] proved a dichotomy theorem that completely characterizes the com-
putational complexity of all non-uniform InvSat(S) problems over the Boolean domain, provided
the set S contains the singletons {0} and {1} as members (equivalently, the constants 0 and 1
are allowed in CNF(S)-formulas). Specifically, they showed that if the set S consists of Boolean
relations all of which are Horn1, or all of which are dual Horn, or all of which are bijunctive, or all
of which are affine, then InvSat(S) is in P; in all other cases InvSat(S) is coNP-complete.

In view of the intractability of InvSat, it is natural to ask: are there are tractable variants of the
structure identification problem in which formulas from more powerful formalisms are used? If S is a
set of relations, then the class of ∃CNF(S)-formulas consists of all expressions of the form ∃yϕ(x,y),
where ϕ(x,y) is a CNF(S)-formula and x, y are tuples of variables. This means that a relation R

is the set of models of some ∃CNF(S)-formula if and only if R can be obtained from the relations in
S using finite Cartesian products, identification of variables, and projections. In universal algebra,
∃CNF(S)-formulas are known as primitive positive formulas, and they play an important role in
the Galois connection between clones of functions and co-clones of relations [PK79, Pip97]. They
also play a crucial role in the proof of Schaefer’s Dichotomy Theorem for generalized satisfiability
Sat(S) problems [Sch78], which is the first, and arguably the most influential, dichotomy theorem
in computational complexity. In database theory, ∃CNF(S)-formulas are known as conjunctive
queries or select-project-join queries, and they constitute the most frequently asked queries in
relational database systems. In fact, conjunctive queries are directly expressed in SQL through the
Select-From-Where construct, the main building block of SQL [GMUW02].

The ∃-InvSat problem asks: given a relation R and a finite set S of relations over the same
domain, is R is the set of models of some ∃CNF(S)-formula? In other words, is R definable by a
conjunctive query with relations from S? Dalmau [Dal00, Lemma 42] showed that, over arbitrary
finite domains, ∃-InvSat is a decidable problem. Since the algorithm given in [Dal00] has a running
time of several exponentials, Dalmau raised the question of designing more efficient algorithms for
∃-InvSat or establishing lower bounds for the complexity of this problem. He also considered the
non-uniform version of this problem, that is, the family ∃-InvSat(S) of decision problems obtained
by fixing the set S of relations (thus, the input to ∃-InvSat(S) is just a relation R). Using the fact
that every Boolean clone is finitely generated, Dalmau [Dal00, Corollary 11] pointed out that, for
each fixed finite set S of Boolean relations, ∃-InvSat(S) is a polynomial-time solvable problem: the

1Dechter and Pearl [DP92] had already shown that if S is a set of Horn relations, then InvSat(S) is in P.

2

algorithm simply checks that the relation R is closed under every function in the basis for the clone
associated with the smallest co-clone containing the relations in S. The running time, however, is
bounded by a polynomial whose degree depends on the set S, and can be arbitrarily high. The
reason is that if S is a set of relations in one of the co-clones in the infinite part of Post’s lattice,
then the bases for the associated clones contain functions of arbitrarily large arity.

In this paper, we show that, over the Boolean domain, the (uniform) ∃-InvSat problem is
solvable in time quadratic in the size of the relation R and the set S. As an immediate consequence,
we have that, over the Boolean domain, each non-uniform ∃-InvSat(S) problem is also solvable
in quadratic time. This result contrasts sharply with the intractability of the InvSat problem; it
also reveals the difference that the choice of the logical formalism can make on the complexity of
the structure identification problem.

Our quadratic algorithm for the ∃-InvSat problem is designed in two stages. In the first stage,
we obtain a quadratic algorithm for the restriction of ∃-InvSat to sets S of relations in one of
the co-clones in the infinite part of Post’s lattice. This is achieved by introducing the concept of
a plain basis for a co-clone, making use of prime CNF representations of relations, and exhibiting
natural plain bases for the co-clones in the infinite part of Post’s lattice. By definition, a plain basis
for a co-clone I is a set B of relations in I such that every relation in I is the set of models of a
CNF(I)-formula. Thus, the notion of a plain basis is a strengthening of the notion of a basis for a
co-clone I, which, by definition, is a set B of relations in I such that every relation in I is definable
by an ∃CNF(I)-formula; natural bases for all Boolean co-clones have been exhibited in [BRSV05].
Note that our quadratic algorithm for the ∃-InvSat problem restricted to the co-clones in the
infinite part of Post’s lattice easily yields a cubic algorithm for the full ∃-InvSat over the Boolean
domain; this is so because the clones in the finite part of Post’s lattice have bases consisting of
functions of arities at most three. As it turns out, however, we can do better than this. Indeed, in
the second stage, we exhibit natural plain bases for all Boolean co-clones, and then use these plain
bases to derive a quadratic algorithm for the full ∃-InvSat problem over the Boolean domain.

In the process of solving the ∃-InvSat problem over the Boolean domain, we also use plain
bases to give a quadratic algorithm for the following problem, which is of independent interest:
given a Boolean relation, find the smallest co-clone to which it belongs.

2 Basic Notions and Background

This section contains the definitions of the basic notions and a minimum amount of the necessary
background material.

2.1 Boolean Formulas in Conjunctive Normal Form and Prime Implicates

A literal is either a variable x (positive literal) or a negated variable ¬x (negative literal). A clause
is a finite disjunction (ℓ1 ∨ · · · ∨ ℓk) of literals. A Boolean formula is said to be in Conjunctive
Normal Form (CNF) if it is a conjunction of clauses. We refer to formulas in conjunctive normal
form as CNF-formulas.

If V is a set of variables, then an assignment on V is a mapping from V to {0, 1}. If V is a set
of variables and ϕ is a CNF-formula over a subset of V , then a model of ϕ over V is an assignment
on V that satisfies ϕ. A formula is satisfiable if it has at least one model. If ϕ1 and ϕ2 are two
propositional formulas over sets of variables V1 and V2, respectively, then we say that ϕ1 (logically)

3

entails ϕ2 if every model of ϕ1 over V1 ∪ V2 is a model of ϕ2. We also say that ϕ1 and ϕ2 are
(logically) equivalent, denoted ϕ ≡ ϕ′, if their sets of models over V1 ∪ V2 coincide.

An n-ary Boolean relation is a set R ⊆ {0, 1}n. We will be interested in the following cor-
respondence between Boolean relations and propositional formulas. Every n-ary Boolean relation
R can be viewed as a set of assignments to the variables x1, x2, . . . , xn, i.e., we view every vector
m = (m1, . . .mn) ∈ R as the assignment of value mi to variable xi, for i ∈ {1, . . . , n}. We say
that a propositional formula ϕ over the variables x1, . . . , xn represents R if R is the set of models
of ϕ. A relation is Horn (respectively, dual Horn) if it is the set of models of some Horn formula
(respectively, dual Horn formula). A relation is bijunctive if it is the set of models of some 2CNF
formula.

An important notion that we will use repeatedly in what follows is that of a prime implicate.
Let ϕ be a propositional formula. A clause C = (ℓ1∨· · ·∨ℓk) is said to be a prime implicate of ϕ if ϕ

entails C, but it does not entail any proper subclause of C. This means that ϕ entails C, but there
is no i ∈ {1, . . . , k} such that ϕ entails the clause (ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk). A CNF-formula
ϕ is said to be prime if all its clauses are prime implicates of it. For example, the CNF-formula
(x1∨x2)∧(¬x2∨¬x3) is prime. In contrast, the CNF-formula (x1∨x2∨x3)∧(¬x1∨x2∨x4)∧(x3∨¬x4)
is not prime because it entails (x2 ∨ x3), which is a proper subclause of (x1 ∨ x2 ∨ x3). It is easy to
see that every Boolean relation is represented by some prime CNF formula.

2.2 CNF(S)-Formulas, ∃CNF(S)-Formulas, InvSat(S), and ∃-InvSat(S)

Let S be a (possibly infinite) set of Boolean relations. For every relation R in S, let R′ be a relation
symbol of the same arity as R.

• A CNF(S)-formula is a finite conjunction of expressions (sometimes called generalized clauses)
of the form T ′(x1, . . . , xk), where each T ′ is the relation symbol representing a relation T

in S, and x1, . . . , xk are Boolean variables that need not be distinct from each other (i.e.,
identification of variables is allowed).

• A ∃CNF(S)-formula is an expression of the form ∃y1 . . . ymϕ(x1, . . . , xn, y1, . . . , ym), where
ϕ(x1, . . . , xn, y1, . . . , ym) is a CNF(S)-formula.

The concepts of a model of a CNF(S)-formula and of a model of an ∃CNF(S)-formula are
defined in a standard way by assuming that the variables range over the set {0, 1} and each relation
symbol T ′ is interpreted by the corresponding relation T in S. For notational simplicity, in what
follows we will use the same symbol, say T , for both a Boolean relation T and the relation symbol
T ′ representing it.

• Sat(S) is the following decision problem: given a CNF(S)-formula ϕ, is it satisfiable (i.e.,
does it have at least one model?)?

Numerous well-known variants of Boolean satisfiability can be cast as Sat(S) problems, for
appropriately chosen sets S of logical relations. For example, the prototypical NP-complete problem
3-Sat coincides with the problem Sat(S), where S = {R0, R1, R2, R3} and R0 = {0, 1}3−{(0, 0, 0)}
(expressing the clause (x ∨ y ∨ z)), R1 = {0, 1}3 − {(1, 0, 0)}, R2 = {0, 1}3 − {(1, 1, 0)}, and
R3 = {0, 1}3 − {(1, 1, 1)} . Similarly, the well known NP-complete problem Positive-1-In-3-

Sat is precisely Sat(S), where S = {R1/3} is the singleton consisting of the relation R1/3 =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

4

Schaefer [Sch78] completely characterized the computational complexity of all Sat(S) problems,
as S ranges over finite sets of Boolean relations. Specifically, he identified all finite sets S for which
Sat(S) is in P, and showed that Sat(S) is NP-complete for all other finite sets S. In particular,
assume that S is a finite set of Boolean relations containing the singletons {0} and {1} as members.
Schaefer showed that if S is Horn2, or dual Horn, or bijunctive, or affine, then Sat(S) is in P; in all
other cases, Sat(S) is NP-complete. This is called a dichotomy theorem because Ladner [La75] has
shown that, assuming P 6= NP, there are decision problems in NP that are neither NP-complete
nor in P. Thus, Schaefer’s theorem implies that no Sat(S) problem is of the kind discovered by
Ladner.

• InvSat(S) is the following decision problem: given a Boolean relation R, is R the set of
models of some CNF(S)-formula?

InvSat(S) is a structure identification problem as it asks whether a given Boolean relation (a
set of observations) can be represented by a formula in some particular formalism. As mentioned
in Section 1, Kavvadias and Sideri [KS98] proved a dichotomy theory for Sat(S) that parallels
Schaefer’s dichotomy theorem. Specifically, assuming S is a finite set of Boolean relations containing
the singletons {0} and {1} as members, the polynomial-time cases of InvSat(S) coincide with the
polynomial-time cases of Sat(S); in all other cases, InvSat(S) is coNP-complete.

• ∃-InvSat(S) is the following decision problem: given a Boolean relation R, is R the set of
models of some ∃CNF(S)-formula?

∃-InvSat(S) is a structure identification problem that asks whether a given Boolean relation
can be represented by a formula in a certain logical formalism that is more expressive than the
logical formalism in InvSat(S). As mentioned in Section 1, Dalmau [Dal00] showed that, for every
finite set S of Boolean relations, ∃-InvSat(S) is solvable in polynomial time via an algorithm
whose running time depends on the set S. Here, we shall show that every ∃-InvSat(S) problem is
solvable in quadratic time. In fact, we shall give a quadratic algorithm for the uniform structure
identification problem ∃-InvSat, which contains all ∃-InvSat(S) problems as special cases.

• ∃-InvSat is the following decision problem: given a finite set S of Boolean relations and a
Boolean relation R, is R the set of models of some ∃CNF(S)-formula?

2.3 Post’s Lattice

An n-ary Boolean function is a function f : {0, 1}n 7→ {0, 1}. If f is an n-ary Boolean function
and g1, . . . , gn are all m-ary Boolean functions, then their composition f(g1, . . . , gn) is the m-
ary Boolean function defined by f(g1, . . . , gn)(a1, . . . , am) = f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)),
for every (a1, . . . , am) ∈ {0, 1}m. For n ≥ m ≥ 1, the projection function πn,m is defined by
πn,m(x1, . . . , xn) = xm. If f is a Boolean function, then the dual of f is the Boolean function

dual(f) defined by dual(f)(a1, . . . an) = f(a1, . . . , an).
A (Boolean) clone is a set of Boolean functions closed under composition and containing all

projections functions. Every clone has a dual clone whose members are the dual functions of the

2This means that every relation in S is the set of models of some Horn formula; the other cases are defined in a
similar manner.

5

members of the clone. Since the roles of 0 and 1 are interchangeable, properties of clones can be
transferred to their dual clones.

The clones form a lattice under set inclusion, which has become known as Post’s lattice [Pos41],
since Post was the first to give a complete description of all clones and of the inclusions between
them. Post’s lattice is depicted in Figure 1; note that we use the notation of clones developed
in [BCRV03, BCRV04] 3. The infinite part of Post’s lattice consists of the clones Sn

0 , Sn
00, Sn

01, Sn
02,

n ≥ 1, and their duals Sn
1 , Sn

10, Sn
11, Sn

12, n ≥ 1. The remaining clones form the finite part of Post’s
lattice.

A basis for a clone Cl is a subset F of Cl such that every function in Cl can be obtained from
members of F and from the projection functions via compositions. One of the main findings of Post
[Pos41] was that every (Boolean) clone has a finite basis. The clones in the finite part of Post’s
lattice have bases in which each function has arity at most 3. In contrast, the bases of the clones
in the infinite part have members of arbitrarily large arity; these bases are depicted in Table 1.

A (Boolean) co-clone is a set of Boolean relations containing the equality relation EQ = {00, 11}
and closed under finite Cartesian products, projections, and identification of variables. It has been
shown that a Galois connection holds between clones and co-clones so that each co-clone turns
out to be a maximal class of relations closed under every function in some clone. More precisely,
let R be an m-ary Boolean relation and let f be an n-ary Boolean function. We say that R is
closed under f , or that f a polymorphism of R, if whenever f is applied coordinate-wise to n (not
necessarily distinct) m-tuples in R, then the resulting m-tuple is also in R. For instance, a binary
relation R is closed under a ternary function f if whenever (a11, a12), (a21, a22), and (a31, a32) are
in R, then also (f(a11, a21, a31), f(a12, a22, a32)) is in R. We write Pol(R) to denote the set of all
polymorphisms of R. If S a set of Boolean relations, then we write Pol(S) to denote the set of all
functions that are polymorphisms of every relation in S. Thus, Pol(S) =

⋂
R∈S Pol(R). It is easy

to verify that every Pol(S) is a clone.
Conversely, if F is a set of Boolean functions, then we write Inv(F) to denote the set of all

relations that are closed under every function in F . It is easy to verify that every Inv(F) is a
co-clone. The functions Inv and Pol are inverse to each other on the lattice of clones and the
lattice of co-clones; thus, if F is a clone, then Pol(Inv(F)) = F , while if S is a co-clone, then
Inv(Pol(S)) = S (for additional information, see [Gei68, PK79, Sze86, Pip97] and also the more
recent survey [BCRV04]). In what follows, we will write ICl to denote the co-clone corresponding
to clone Cl, that is, ICl = Inv(Cl); for example, IE2 denotes the co-clone corresponding to the
clone E2 in Post’s lattice. Note that a relation R belongs to a co-clone ICl if and only if R is closed
under every member of a basis for Cl.

A basis for a co-clone ICl is a subset B of ICl such that every member of ICl is the set of
models of some ∃CNF(B)-formula. In other words, every member of ICl can be obtained from
members of B using finite Cartesian products, identification of variables, and projections. A list of
simple bases of all (Boolean) co-clones was given in [BRSV05].

We now introduce a new, stronger notion of a basis for a co-clone.

Definition 1 Let ICl be a co-clone in Post’s lattice. A subset B of ICl is called a plain basis
for ICl if every member of ICl is definable by a CNF(B)-formula. In other words, every member
of ICl can be obtained from members of B using finite Cartesian products and identification of
variables (but no projections).

3The authors are grateful to Steffen Reith who provided them with the figure.

6

R1 R0

BF

R2

M

M1 M0

M2

S2

0

S3

0

S0

S2

02

S3

02

S02

S2

01

S3

01

S01

S2

00

S3

00

S00

S2

1

S3

1

S1

S2

12

S3

12

S12

S2

11

S3

11

S11

S2

10

S3

10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 1: Lattice of all Boolean clones

7

Every plain basis for ICl is also a basis for ICl; the converse, however, need not be true.

3 The smallest co-clone problem, ∃-InvSat, and plain bases

Our goal is to give a quadratic algorithm for ∃-InvSat on the Boolean domain. This will be
achieved by first giving a quadratic algorithm for a different computational problem about Post’s
lattice, which we introduce next.

If S is a set of Boolean relations, then there is a smallest co-clone M(S) containing S as a subset.
This is so because an arbitrary intersection of co-clones is itself a co-clone, which implies that the
intersection of all co-clones containing S is the smallest co-clone containing S (as a subset).

• Min co-Clone is the following algorithmic problem: Given a finite set S of Boolean relations,
find the smallest co-clone M(S) containing S.

The following fact provides a connection between InvSat and Min co-Clone.

Fact 1 Assume that R is a Boolean relation and S is a set of Boolean relations. Then the following
statements are equivalent.

1. R is the set of models of some ∃CNF(S)-formula.

2. R belongs to the smallest co-clone M(S) containing S.

3. The smallest co-clone M({R}) containing R is a subset of the smallest co-clone M(S) con-
taining S.

The equivalence (1) ⇐⇒ (2) can be derived from the Galois connection between clones and
co-clones in Post’s lattice [PK79], while the equivalence (2) ⇐⇒ (3) follows easily from the defini-
tions. An immediate consequence of Fact 1 is that ∃-InvSat has a polynomial-time reduction to
Min co-Clone. Indeed, given R and S, we first compute M({R}) and M(S) using an algorithm
for Min co-Clone, and then inspect Post’s lattice to determine in constant time whether or not
M({R}) ⊆ M(S).

Let us, for a moment, ignore the infinite part of Post’s lattice and focus only on its finite part.
Every clone in the finite part of Post’s lattice has a basis with at most 4 elements in which every
function has arity at most 3. As mentioned in Section 2.3, a relation belongs to a co-clone ICl if
and only if it is closed under every member of a basis for Cl. Consequently, if the smallest co-clone
containing a relation is in the finite part of Post’s lattice, then this smallest co-clone can be found
in cubic time (in the size of the given relation). This approach, however, cannot be applied to the
infinite part of Post’s lattice. Indeed, though each basis is finite (and, in fact, contains at most
two functions), the arity of one of the two functions in these bases is unbounded (see Table 1); for
instance, the basis for Sn

0 contains a function of arity n. Thus, testing a relation for closure under
the functions in those bases cannot be done in polynomial time using the naive approach.

In the next section, we show how to efficiently solve the Min co-Clone problem on the infinite
part of Post’s lattice.

8

Co-clone Basis for corresponding clone Co-clone Basis for corresponding clone

ISn
0 {x → y, dual(hn)} ISn

1 {x ∧ y, hn}

IS0 {x → y} IS1 {x ∧ y}

ISn
02 {x ∨ (y ∧ z), dual(hn)} ISn

12 {x ∧ (y ∨ z), hn}

IS02 {x ∨ (y ∧ z)} IS12 {x ∧ (y ∨ z}

ISn
01 {dual(hn), c1} ISn

11 {hn, c0}

IS01 {x ∨ (y ∧ z), c1} IS11 {x ∧ (y ∨ z), c0}

ISn
00 {x ∨ (y ∧ z), dual(hn)} ISn

10 {x ∧ (y ∨ z), hn}

IS00 {x ∨ (y ∧ z)} IS10 {x ∧ (y ∨ z)}

Table 1: Co-clones in the infinite part of Post’s lattice and bases for the corresponding clones
(where, for instance, x ∨ (y ∧ z) denotes the function (x, y, z) 7→ x ∨ (y ∧ z))

3.1 Infinite part of Post’s lattice

The bases for the clones in the infinite part of Post’s lattice, as well as those for S0 and S1,
are presented in Table 1 in which, for n ≥ 1, hn denotes the (n + 1)-ary function defined by
hn(x1, . . . , xn+1) =

∨n+1
i=1 x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1, c0 denotes the 0-ary constant function

0, and c1 denotes the 0-ary constant function 1.
We shall provide plain bases for the corresponding co-clones. Every relation in one of them will

turn out to be the set of models of an implicative hitting set-bounded (IHSB) formula, which is a
restricted Horn or dual Horn formula. By taking advantage of the duality in Post’s lattice, we focus
our attention on the right side of the infinite part of Post’s lattice. Consequently, we define IHSB−
formulas, which are restricted Horn formulas; IHSB+ formulas are defined in a dual manner. The
collection of IHSB formulas consists of all IHSB− and all IHSB+ formulas.

Definition 2 (Implicative Hitting Set-Bounded− Clauses and Formulas)

• A clause is said to be IHSB− if it is of one of the following types: (xi), (¬xi1 ∨ xi2), or
(¬xi1 ∨ · · · ∨ ¬xik) for some k ≥ 1.

• For n ≥ 2, an IHSB− clause is said to be of width n, denoted by IHSB−n, if it contains at
most n literals.

• A CNF formula is said to be IHSB− (respectively, IHSB−n) if all its clauses are IHSB−
(respectively, IHSB−n).

The next proposition establishes a link between the IHSB−n formulas, n ≥ 1, and the co-clones
whose corresponding clones are in the right side of the infinite part of Post’s lattice.

Proposition 1 The following statements are true.

1. A relation is in the co-clone ISn
10 (respectively, in the co-clone IS10) if and only if every prime

CNF formula representing it is an IHSB−n formula (respectively, an IHSB− formula).

2. A relation is in the co-clone ISn
11 (respectively, in the co-clone IS11) if and only if every

prime CNF formula representing it is an IHSB−n formula (respectively, an IHSB− formula)
and contains no clause of the form (xi).

9

3. A relation is in the co-clone ISn
12 (respectively, in the co-clone IS12) if and only if, for every

prime CNF formula ϕ representing it, we have that ϕ is an IHSB−n formula (respectively,
an IHSB− formula) and for every two variables xi, xj, if ϕ contains the clause (¬xi ∨ xj),
then it entails the clause (xi ∨ ¬xj).

4. A relation is in the co-clone ISn
1 (respectively, in the co-clone IS1) if and only if, for every

prime CNF formula ϕ representing it, we have that ϕ is an IHSB−n formula (respectively, an
IHSB− formula), ϕ contains no clause of the form (xi), and for every two variables xi, xj, if
ϕ contains the clause (¬xi ∨ xj), then it entails the clause (xi ∨ ¬xj).

Proof We give the proof of the first statement only. The other statements can be proved using
similar arguments and the statements preceding them.

Böhler et al. [BRSV05] showed that the relations represented by IHSB−n clauses form a basis
of ISn

10. Hence, if a relation R is represented by some IHSB−n formula, then R must be in the
co-clone ISn

10.
For the other direction, let R be a relation in ISn

10. Since the containment E2 ⊂ Sn
10 holds in

Post’s lattice, we have that R is a Horn relation, i.e., it is the set of models of some Horn formula.
Let ϕ be a prime CNF formula representing R. Since every prime CNF formula representating a
Horn relation must be a Horn formula [ZH02, Proposition 3], each clause of ϕ must contain either
zero or exactly one positive literal. It remains to show that all these clauses are IHSB−n clauses.

Clauses containing no positive literal: Towards a contradiction, assume that ϕ contains
such a clause which is “too wide”, that is to say, a clause C of the form (¬xi1 ∨ · · · ∨ ¬xim)
with m > n. Since C is prime, for every j there is a vector mj in R which falsifies the clause
(¬xi1 ∨ · · · ∨ ¬̂xij ∨ · · · ∨ ¬xim), and since all such vectors mj satisfy C (because ϕ represents R),
we have that there are n + 1 vectors m1, . . . , mn+1 ∈ R whose projections mj ↾ {xi1 , . . . , xim} onto
{xi1 , . . . , xim} are:

xi1 xi2 xi3 . . . xin−1
xin xin+1

xin+2
. . . xim

m1 ↾ {xi1 , . . . , xim} = 0 1 1 . . . 1 1 1 1 . . . 1
m2 ↾ {xi1 , . . . , xim} = 1 0 1 . . . 1 1 1 1 . . . 1

· · ·
mn ↾ {xi1 , . . . , xim} = 1 1 1 . . . 1 0 1 1 . . . 1

mn+1 ↾ {xi1 , . . . , xim} = 1 1 1 . . . 1 1 0 1 . . . 1

If we apply the function hn coordinate-wise to these n + 1 vectors, we obtain a vector d whose
projection on {xi1 , . . . , xim} is the vector 1 . . . 1; clearly, d is is not in R because it falsifies C. It
follows that R is not closed under hn, which contradicts the hypothesis that R is in ISn

10, since hn

is in Sn
10 (see Table 1).

Clauses containing one positive literal: Again towards a contradiction, assume that ϕ

contains a clause of the form C = (xi1 ∨ ¬xi2 ∨ · · · ∨ ¬xim) with m > 2. Reasoning as above, we
obtain three vectors m1, m2, m3 in R whose projections on {xi1 , . . . , xim} are as below:

xi1 xi2 xi3 xi4 . . . xim

m1 ↾ {xi1 , . . . , xim} = 1 1 1 1 . . . 1
m2 ↾ {xi1 , . . . , xim} = 0 0 1 1 . . . 1
m3 ↾ {xi1 , . . . , xim} = 0 1 0 1 . . . 1

10

If we apply the function (x, y, z) 7→ x ∧ (y ∨ z) coordinate-wise to these three vectors, we obtain a
vector d whose projection on {xi1 , . . . , xim} is the vector 011 . . . 1; clearly, d is not in R because it
falsifies C, yielding a contradiction again since the function (x, y, z) 7→ x ∧ (y ∨ z) is in Sn

10.

Since we have shown that every clause in ϕ consists of at most n negative literals or has at most
2 literals, we conclude that ϕ is an IHSB−n formula. �

As an immediate consequence of Proposition 1, we obtain the following plain bases for co-clones
corresponding to clones in the right side of the infinite part of Post’s lattice.

Corollary 1 The following statements are true.

1. The set {(x), (¬x ∨ y), (¬x1 ∨ . . .¬xk) : k ≤ n} of all IHSB−n clauses is a plain basis for the
co-clone ISn

10.

2. The set {(¬x ∨ y), (¬x1 ∨ . . .¬xk) : k ≤ n} is a plain basis for the co-clone ISn
11.

3. The set {(x), Eq, (¬x1 ∨ . . .¬xk) : k ≤ n} is a plain basis for the co-clone ISn
11. Here, Eq is

the equality relation {00, 11} (i.e., the relation represented by the formula (x ↔ y)).

4. The set {Eq, (¬x1 ∨ . . .¬xk) : k ≤ n} is a plain basis for the co-clone ISn
1 .

By duality, results analogous to Proposition 1 and Corollary 1 can be obtained for co-clones
corresponding to clones in the left side of the infinite part of Post’s lattice; we leave it to the reader
to formulate these results.

We can now give a quadratic algorithm for the Min co-Clone problem on the infinite part of
Post’s lattice.

Proposition 2 Given a relation R in IS10, the smallest co-clone in {ISn
1 , ISn

10, ISn
12, ISn

11 | n ≥ 1}
containing R can be found in time O(k2m2), where k is the arity of R and m is the number of
elements of R. A dual result holds for a relation R in the co-clone IS00.

Proof Zanuttini and Hébrard [ZH02] showed that, given a Boolean relation R, a prime CNF
formula ϕ representing R can be computed in time O(k2m2), and that ϕ contains O(km) clauses.
By scanning ϕ once, one can find the maximum size n of its clauses in time O(k2m), and also
decide whether ϕ contains unary positive clauses. Finally, for every clause of the form (¬x ∨ y) in
ϕ one can decide whether ϕ entails (x ∨ ¬y) in time O(mn) by testing whether every vector in R

satisfies the clause (x∨¬y); since ϕ contains O(km) clauses, this requires O(k2m2) operations. Once
this information is collected, one can find the smallest co-clone in {ISn

1 , ISn
10, ISn

12, ISn
11 | n ≥ 1}

containing R immediately by referring to Proposition 1. �

Proposition 2 and the remarks preceding Section 3.1 yield the following result.

Corollary 2 The Min co-Clone problem and the ∃-InvSat problem can be solved in cubic time.

By Proposition 2, the algorithms for Min co-Clone and ∃-InvSat take quadratic time on the
infinite part of Post’s lattice; however, they take cubic time on the finite part of Post’s lattice,
since there we have to test that a Boolean relation is closed under all functions in the bases of the
corresponding clone, and the maximum arity of these functions can be 3. In the next section, we
shall give a quadratic algorithm for Min co-Clone and ∃-InvSat by first obtaining plain bases
for every Boolean co-clone and then reasoning as in the proof of Proposition 2.

11

3.2 Plain bases for co-clones and quadratic algorithms for Min co-Clone and ∃-InvSat

Table 2 gives a plain basis for every Boolean co-clone in Post’s lattice. In this table, whenever
possible, we denote relations by clauses that represent them; for example, the clause (¬x ∨ y)
denotes the binary relation {00, 01, 11}. The positive clause (x1 ∨ · · ·∨xk) of width k is denoted by
Pk; similarly, the negative clause (¬x1 ∨ · · · ∨ ¬xk) of width k is denoted by Nk. We use a similar
kind of notation for relations that are represented by linear equations; we write Eq to denote the
binary equality relation {00, 11}. Finally, Complk,ℓ denotes the (k + ℓ)-ary relation represented by
the conjunction of clauses (x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬yℓ) ∧ (¬x1 ∨ · · · ∨ ¬xk ∨ y1 ∨ · · · ∨ yℓ), i.e.,
the complementive relation {0, 1}k+ℓ \ {0 . . . 01 . . . 1, 1 . . . 10 . . . 0}. The last column gives the usual
name given to the property satisfied by each clause, equation or relation in the basis.

The next proposition asserts that Table 2 is correct.

Proposition 3 Each line in Table 2 gives a plain basis for the corresponding co-clone.

Proof The correctness of the list for co-clones in the infinite part of Post’s lattice follows from
Proposition 1 and Corollary 1. For the remaining co-clones, we proceed from the largest co-clone to
the smallest one. Since the proofs for co-clones of the form ICl, ICl0, ICl1 follow from the proofs
for co-clone ICl2 in a straightforward manner, we only consider the latter in many cases.

[II, IIc] Obviously, every relation can be represented by a CNF formula.

[IN, IN2] Obviously, every complementive relation can be represented by a CNF containing the
clause (¬x1∨· · ·∨¬xk ∨y1∨· · ·∨yℓ) as soon as it contains (x1∨· · ·∨xk ∨¬y1∨· · ·∨¬yℓ); grouping
these clauses two by two in the CNF formula yields a conjunction of Complk,ℓ relations; conversely
the set of models of such a formula is complementive.

[IE, IEc, IV, IVc, IL, ILc, ID, IDc] For the co-clones IE2, IV2, IL2, ID2, the correctness of the
plain bases follows from results in [Sch78], [DP92], and [ZH02].

[IM, IMc] The proof for IM2 follows from the inclusions IM2 ⊆ IS2
00, IS2

10 in one direction, and
from the closure of the clauses in the plain basis under and and or in the other direction.

[IRc, IBF] In one direction, the result for IR2 follows from the inclusions IR2 ⊆ IM2, ID1, because
clauses (¬x∨y) of the plain basis of IM2 are not in ID1, while unary clauses are (equation (x = 1) is
equivalent to clause (x), and equation (x = 0) is equivalent to clause (¬x)). In the other direction,
the proof follows from the closure of unary clauses under both or and (x, y, z) 7→ x∧ (y⊕ z ⊕ 1). �

Remark 1 When considering bases for mathematical objects, an important question is that of
minimality. For instance, Böhler et al. gave bases for all Boolean co-clones and showed that their
bases are of minimal order, where the order of a set of Boolean relations is the maximum arity of
the relations in the set. As listed in Table 2, our plain bases are minimal in the sense that they
are included in every other plain basis for the same co-clone, provided replicated variables in the
scope of an atom in CNF(S)-formulas are disallowed (see [CKZ05] for more details).

We are now ready to derive the main result of this paper.

Theorem 1 Given a Boolean relation R, the minimial co-clone M({R}) containing R can be found
in time O(k2m2), where k is the arity of R and m is the number of elements of R. Consequently,
the Min co-Clone problem and the ∃-InvSat problem can be solved in quadratic time.

12

Plain basis Property

IBF {Eq} only equalities
IR0 {Eq, (¬x)} neg1

IR1 {Eq, (x)} pos1

IR2 {Eq, (¬x), (x)} unary
IM {(¬x ∨ y)} implicative
IM0 {(¬x), (¬x ∨ y)} implicative or pos1

IM1 {(x), (¬x ∨ y)} implicative or neg1

IM2 {(x), (¬x), (¬x ∨ y)} implicative or unary
ISn

0
{Eq} ∪ {Pk | k ≤ n} posn

IS0 {Eq} ∪ {Pk | k ∈ N} pos.
ISn

1
{Eq} ∪ {Nk | k ≤ n} negn

IS1 {Eq} ∪ {Nk | k ∈ N} neg.
ISn

02
{Eq, (¬x)} ∪ {Pk | k ≤ n} neg1 or posn

IS02 {Eq, (¬x)} ∪ {Pk | k ∈ N} neg1 or positive
ISn

12
{Eq, (x)} ∪ {Nk | k ≤ n} pos1 or negn

IS12 {Eq, (x)} ∪ {Nk | k ∈ N} pos1 or negative
ISn

01
{(¬x ∨ y)} ∪ {Pk | k ≤ n} implicative or posn

IS01 {(¬x ∨ y)} ∪ {Pk | k ∈ N} implicative or positive
ISn

11
{(¬x ∨ y)} ∪ {Nk | k ≤ n} implicative or negn

IS11 {(¬x ∨ y)} ∪ {Nk | k ∈ N} implicative or negative
ISn

00
{(¬x), (¬x ∨ y)} ∪ {Pk | k ≤ n} IHSB+n

IS00 {(¬x), (¬x ∨ y)} ∪ {Pk | k ∈ N} IHSB+
ISn

10
{(x), (¬x ∨ y)} ∪ {Nk | k ≤ n} IHSB−n

IS10 {(x), (¬x ∨ y)} ∪ {Nk | k ∈ N} IHSB−
ID {(x ⊕ y = c) | c ∈ {0, 1}} affine of width exactly 2
ID1 {(x = c) | c ∈ {0, 1}} ∪ {(x ⊕ y = c) | c ∈ {0, 1}} affine of width 2
ID2 {(x), (¬x), (x ∨ y), (¬x ∨ y), (¬x ∨ ¬y)} bijunctive
IL {(x1 ⊕ · · · ⊕ xk = 0) | k even} even homogeneous linear equation
IL0 {(x1 ⊕ · · · ⊕ xk = 0) | k ∈ N} homogeneous linear equation
IL1 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c = k mod 2} 1-valid linear equation
IL2 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c ∈ {0, 1}} linear equation
IL3 {(x1 ⊕ · · · ⊕ xk = c) | k even, c ∈ {0, 1}} even linear equation
IV {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ≥ 1} definite dual Horn and not neg1

IV0 {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} definite dual Horn
IV1 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ≥ 1} dual Horn and not neg1

IV2 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} dual Horn
IE {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ≥ 1} definite Horn and not pos1

IE0 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ≥ 1} Horn and not pos1

IE1 {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} definite Horn
IE2 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} Horn
IN {Complk,ℓ | k, ℓ ≥ 1} complementive, 0-valid and 1-valid
IN2 {Complk,ℓ | k, ℓ ∈ N} complementive
II {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬yℓ) | k, ℓ ≥ 1} 0-valid and 1-valid
II0 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬yℓ) | k ∈ N, ℓ ≥ 1} 0-valid
II1 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬yℓ) | k ≥ 1, ℓ ∈ N} 1-valid
II2 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬yℓ) | k, ℓ ∈ N} any clause

Table 2: Plain bases for all co-clones. In this table: (i) negn means negative and containing at most
n literals, and dually for posn; (ii) definite Horn means Horn with exactly one positive literal, and
dually for definite dual Horn.

13

Proof Using the results in [ZH02] and the list of plain bases in Table 2, we design an algorithm
that extends the quadratic algorithm given in the proof of Proposition 2. Specifically, given R, first
compute a prime CNF formula ϕ representing R in time O(k2m2) using the algorithm in [ZH02];
the formula ϕ contains O(km) clauses. By the results in [ZH02], our Proposition 1 (and a similar
reasoning for other co-clones), for every co-clone ICl whose plain basis consists entirely of clauses,
we know that ϕ is over this plain basis if and only if R is in ICl. This can be decided in time
linear in the size of ϕ; actually, in time O(k2m). Thus we are left with co-clones whose plain bases
contain relations that are not equivalent to an individual clause.

For plain bases containing the relation Eq, it is easily seen that it is enough to decide whether
R entails (¬xi∨xj) as soon as (xi∨¬xj) is in ϕ. In the affirmative, (xi∨¬xj) can be replaced with
Eq(xi, xj); otherwise, R is not in the co-clone. Once again, this requires O(k2m) operations. As
shown in [ZH02], the affine co-clones can be handled in a similar manner, by essentially replacing
∨ with ⊕ in ϕ and by testing whether each vector in R satisfies the resulting affine formula,a task
that takes time O(k2m2). The reasoning for complementive co-clones is similar.

This process makes it possible to decide membership of a relation R in each co-clone in quadratic
time. The smallest co-clone M({R}) containing R can then be computed in constant time using
Post’s lattice. The Min co-Clone problem can be solved in quadratic time as follows: given a
finite set S of Boolean relation, first compute the smallest co-clone containing each member of
S and then use Post’s lattice to compute the union of these smallest co-clones. Finally, by Fact
1, the ∃-InvSat problem can be solved in quadratic time using the quadratic algorithm for the
Min co-Clone problem. �

We conclude the paper with several remarks.

• Although the Min co-Clone problem was used here as a stepping stone to solve the ∃-InvSat

problem, it is of independent interest. In particular, the quadratic algorithm for Min co-Clone

implies a quadratic algorithm for the so-called meta-problem (see [CKS01]) associated with
the classification of the complexity of a family of decision problems Γ(S), where S is a finite
set of Boolean relations, provided this classification follows the lines of Post’s lattice.

As an illustration, consider Schaefer’s Dichotomy Theorem [Sch78] which, as described in
detail in Section 2.2, asserts that, for every finite set of Boolean relations, either Sat(S) is in
P or Sat(S) is NP-complete; moreover, the tractable cases of Sat(S) are the cases in which
S is Horn, or S is dual Horn, or S is bijunctive, or every S is affine. Thus, the quadratic
algorithm for Min co-Clone implies that, given a finite set S of Boolean relations, we can
decide in quadratic time whether or not Sat(S) is in P. A similar result holds for the meta-
problem associated with the InvSat problem studied in [KS98]. Earlier known algorithms
for these meta-problems were cubic, as they relied on closure properties.

• In the vein of the previous remark, we note that an important, but not well understood, issue
is what makes the classification of the complexity of a family of problems follow Post’s lattice.
Indeed, assume a family of decision problems Γ(S), where S is a finite set of relations, is such
that the property S′ ⊆ M(S) (where S′ is a finite set of relations) does not a priori guarantee
that Γ(S′) is polynomial-time reducible to Γ(S)). Then a complexity classification for this
family cannot a priori be obtained by using Post’s lattice.

However, assume that whenever every relation in S′ can be expressed from the relations in S

using only finite Cartesian products and identification of variables, then Γ(S′) is polynomial-

14

time reducible to Γ(S) (which is true of many decision problems about formulas). Then
Schnoor and Schnoor [SS06b] show that a complexity classification for the family Γ(S) can
be obtained by Post’s lattice, provided that for every finite set of relations S and for every
finite subset B of a plain basis for M(S), Γ(B) is polynomial-time reducible to Γ(S[ext]),
where S[ext] is a particular relation which they define. Consequently, our notion of a plain
bases complements Schnoor and Schnoor’s work as a step towards a deeper understanding of
complexity classifications. For more details we refer the reader to [SS06b].

• The ∃-InvSat problem has a dual version, which asks: given a Boolean function f and a finite
set of Boolean functions F , does f belong to the clone generated by F . This problem was
shown to be solvable in polynomial time by Bergman and Slutzki [BS0]; in fact, it was shown
to be in NL. It is not clear, however, that this result can be used to derive a polynomial-time
algorithm for ∃-InvSat. The main reason is that, in the problem studied by Bergman and
Slutzki, the set F of functions is given as an input. Thus, if we wanted to take advantage
of their result, then we would have to compute a basis for the clone corresponding to the
smallest co-clone containing a given set of Boolean relations, which is exactly the difficult
part in the ∃-InvSat problem.

Along these lines, note also that, by definition, the ∃-InvSat problem could also be reformu-
lated as the problem of deciding whether a given set of Boolean relations S is a basis for {R}
(in the standard sense of a basis, as studied by Böhler et al.). It appears, however, that this
standard notion of a basis is of no help in solving ∃-InvSat efficiently, whereas the stronger
notion of a plain basis gives rise to a quadratic algorithm for ∃-InvSat

• Finally, all results presented here are special to the Boolean domain, as they depend heavily
on Post’s lattice. The ∃-InvSat problem is a perfectly meaningful, and interesting, structure
identification problem over higher domains. As mentioned earlier, Dalmau [Dal00] pointed
out that, for every finite domain, ∃-InvSat is a decidable problem. Its exact complexity,
however, is not known on any domain with more than two elements.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[BS0] C. Bergman and G. Slutzki. Complexity of some problems concerning varieties and
quasi-varieties of algebras. SIAM Journal on Computing, 30(2):359–382, 2000.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean Blocks, Part I:
Post’s Lattice with Applications to Complexity Theory. ACM-SIGACT News, 34(4),
Complexity Theory Column 42, pages 38–52, 2003.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean Blocks, Part
II: Constraint satisfaction problems. ACM-SIGACT News, 35(1), Complexity Theory
Column 43, pages 22–35, 2004.

[BRSV05] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer. Bases for Boolean co-clones. Infor-
mation Processing Letters 96:59–66, 2005

15

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of Boolean con-
straint satisfaction problems. SIAM Monographs on Discrete Mathematics and Ap-
plications, 2001.

[CKZ05] N. Creignou, Ph. G. Kolaitis, and B. Zanuttini. Preferred representations of Boolean
relations. Electronic Colloquium on Computational Complexity (ECCC), technical
report TR05-119, 2005.

[Dal00] V. Dalmau. Computational complexity of problems over generalized formulas. PhD
thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de
Catalunya, 2000.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[DP92] R. Dechter and J. Pearl. Structure identification in relational data. Artificial Intelli-
gence, 58:237–270, 1992.

[Gei68] D. Geiger. Closed systems of functions and predicates. Pac. J. Math, 27(2):228–250,
1968.

[GMUW02] H. Garcia-Molina, J.D. Ullman, and J. Widom Database Systems: The Complete
Book. Prentice Hall, 2002.

[KS98] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28(1):152–163, 1998.

[La75] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155-171, 1975.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge,
1997.

[PK79] R. Pöschel and L.A. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979.

[Pos41] E.L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathe-
matical Studies, 5:1–122, 1941.

[Sch78] T. Schaefer. The complexity of satisfiability problems. In Proc. 10th STOC, San Diego
(CA, USA), pages 216–226. Association for Computing Machinery, 1978.

[SS06b] H. Schnoor and I. Schnoor. New algebraic tools for constraint satisfaction. In Dagstuhl
seminar proceedings, 06401, 2006.

[Sze86] A. Szendrei. Clones in Universal Algebra. Séminaire de Mathématiques Supérieures,
vol. 99., Les Presses de l’Université de Montréal, Montréal, 1986.

[ZH02] B. Zanuttini and J.-J. Hébrard. A unified framework for structure identification.
Information Processing Letters, 81(6):335–339, 2002.

16

