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1 Introduction

In this report, we investigate the security aspects and challenges about computer

virtualization. In a few words, virtualization is what allows the execution of mul-

tiple operating systems on a single machine at the same time. A virtualization

component can be viewed as a layer or a container making some kind of emula-

tion, allowing to execute programs or operating systems on the virtualized layer,

for example executing Microsoft Windows and Linux on one single machine at

the same time. On one hand, as virtualization can provide a kind of isolation be-

tween users/applications/operating systems, it can address some security contain-

ment problems. But on the other hand, there exist today many security flaws and

attacks focused on such systems, as the virtualization layer controls and monitors

all virtualized applications/operating systems.

The outline of this report is the following. We first review precisely all the

various forms the virtualization layer and related components can take. And what

technical aspects it involves. Then we survey more precisely all the vulnerabilities

and exploits that currently exist or may appear in the near future. And then we

study what are the proposed security protection by actual virtualization technolo-

gies. We conclude the report with what is remaining to be done and what are the

forthcoming security challenges.

1.1 Virtualization History

Computer virtualization is not a new research field. First works about virtualization

appeared conjointly with the foundations of modern computing systems. It was

introduced to optimize the usage of expensive computing resources and isolates

users from each others, using the time-sharing technology appeared earlier in IBM

System/360 mainframes (1965), with CTSS ([CMC62]).

Virtualization firstly appeared as hardware processor instructions, in the IBM

VM/370 [IBM72] and at the same time in the DEC PDP 8 computer series. DEC

PDP-10 computer series were the first computers PDP with un-bugged virtualiza-

tion instructions. Several programs could co-exist on the same computer.

Actually, virtualization, since those time was mainly made possible using switch-

ing instructions. Those instructions, always used today, allow to save (push) the

processor context before executing another program and restore its context in or-

der to pursue the execution of the first process. Thus, each program could use a

virtual entire system, even if other programs was using it too, at the same global

time (but not with real parallelism: one instruction at a time) [Gal69].

Except in IBM VM/370 and successor mainframes ([Var97] for a complete

VM history), virtualization have been quite forgotten by the most part of computer



industry and manufacturers. But, recently, an economic explosion (with VMWare

in head) has made virtualization quite interesting for attackers, as it has widespread

the IT market.

1.2 What is Virtualization?

Today, one could define “Virtualization” as the act of presenting a software or

harware entity (i.e. a program, an operating system, a device) as being real where

actually it is not. Virtulization is a synonym of emulation.

1.2.1 Basic concepts

In the following, the virtualization layer is referred as hypervisor or the Virtual

Machine Monitor(s) (VMM). The hypervisor is a software providing an abstraction

of the underlying layer, whether it is software or hardware.

The virtualized machine(s)/operating system(s)/application are referred as VM.

They are executed on the virtual hardware provided by the hypervisor.

1.2.2 Virtualization principle

Generally, the virtualization process, from a computer architecture point of view,

can be defined as the following:

Virtualization principle. The virtualization process is the act of

abstracting the underlying layer (i.e. the hardware layer). It inserts

a layer between existing layers (hardware and operating systems/soft-

wares) to resolve problems such as the support of legacy functionality,

standard interfaces or isolated users/resources and servers consolida-

tion.

1.2.3 Virtualization requirements

The founding work of G. Popek and R. P. Goldberg ([PG73]) about virtualization

concepts introduced a set of three sufficient conditions for a computer architecture

to efficiently support system virtualization. These requirements, based on simple

assumptions, still remain accurate to determine whether a computer architecture

supports efficient virtualization or not. They also provide guidelines for the design

of virtualized computer architectures.

1. Efficiency: VM must not suffer noticeable performances degradation i.e. a

large subset of instructions must run directly on real processor without the

need to ask permission to the virtualization layer (VMM).
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2. Resource control: The hypervisor must allocate the resources when asked

by virtualized programs and cleaning them up when they are not used any-

more. A VM must not be able to interfere with other VM’s resources. Thus,

the VMM must totally control the virtualized resources.

3. Equivalence: the VMM must provide a virtual hardware abstraction layer

that allows program to be executed exactly the same way as it should be on

a real hardware.

Popek and Goldberg explain what characteristics the Instruction Set Architec-

ture (ISA) of the hosting physical machine should provide in order to run VMMs

which possess the above properties. Popek and Goldberg introduce a model of

"third generation architectures" that can be extended to classical modern machines.

This model includes a processor that operates in either system or user mode, and

has access to linear, uniformly addressable memory. Some instructions are only

available in system mode. The memory addresses are relative to a relocation regis-

ter.

Popek and R. P. Goldberg ([PG73]) also introduced two classes of instructions

based on how they affect the system state:

1. Privileged: Instructions that only trap (into kernel mode) if the processor is

in user mode.

2. Sensitive: Instructions that can attempt to change the allocation/configura-

tion of the whole system’s resources.

Their main result leads to the following formal theorem, with some security

implications that is discussed later:

Theorem 1 For any virtualizable third generation architecture, a VMM may be

constructed if the set of sensitive instructions is a subset of the set of privileged

instructions.

Intuitively, this theorem expresses that to build a hypervisor it is needed and

sufficient that all instructions that could affect the correct functioning of the hy-

pervisor (i.e. sensitive instructions) always trap and pass control to the hypervisor

itself. This guarantees that the resource control cannot be done outside of the

hypervisor, and prevent it to be corrupted. On the other hand, non-privileged in-

structions must be executed natively (i.e., efficiently).
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1.2.4 Virtualization advantages and disadvantages

Advantages. Virtualization is an architectural design of computing systems that

brings some architectural benefits.

1. Costs reducing. Virtualization allows the regroupment of applications/user-

s/operating systems on a reduced number of physical computers. A modern

term for such a design is consolidation, of servers for example. With virtual-

ization, modern industries nowadays want to limit the number of servers and

their related costs (energy, infrastructure, technical staff) with grouping ser-

vices that were previously dispersed. Following the virtualization paradigm,

the hosting model had switched from 1 service per server to n services per

server.

2. «Write once, run everywhere». In addition, it is possible to make only

one single OS/hardware specific implementation and then, using a virtual-

ization layer, it is possible to spread that implementation over all machines,

whatever the real OS/hardware of the hosting machine. This is the so-called

write once, run everywhere principle, which another way of saving money,

by saving software development time.

3. Efficiency. This property has already been seen above: it guarantees an

efficient use of hardware resources for VM.

4. Isolation. Using virtualization technologies for security was introduced by

Pr. Suart Madnick and J.J. Donovan (MIT) when working on Project MAC

in 1973 ([MD73]). Nowadays, the hypervisor is often used as a reference

monitor with the purpose to isolate the workload within a VM among other

ones, whereas OS only provide a weak isolation between processes. This

isolation capability allows the load balancing over the hosting machines.

5. Reliability. Another advantage is that one virtualized failing service does

not imply the fall of all other virtualized ones. This is a consequence of

isolation.

Disadvantages. On the other hand, these architectural aspects negatively impact

on some other points.

1. Overhead. When using virtualization, there should exist an overhead due

to the virtualization layer, which needs computing time to do its job. In

addition, in virtualization technologies that do not fully virtualize the bare

hardware, there is some overhead due to the translation of instructions into

real processors ones.
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Figure 1: Type I (a) and type II (b) hypervisors

2. Not a real efficiency. In some virtualization technologies, services/applica-

tions/OS need sometimes to be partially rewritten/patched to work, in order

to be executed in virtual environments. That can lead to unportable or diffi-

cult to upgrade versions of applications.

1.3 Types of Hypervisors

There are two main types of hypervisors (or VMM) (cf. figure 1):

• Type I hypervisors (or native, or bare-metal hypervisors) are softwares run-

ning or real host’s hardware. They act as an operating system for VM and

directly control the accesses to the real hardware (cf. figure 1.(a)).

• Type II hypervisors (or hosted hypervisors) are software running above a

conventional operating system and are simply processes running on the real

host’s OS (cf. figure 1.(b)). Another processes can co-exist at the same level.

Guest OS and VM are thus at a layer above (a third one) than the hypervisor.

1.4 Actual Virtualization architectures

As the virtualization field has widely spread in the IT market, there exist today

many architecture that implement the concept of virtualization. In a few words,

here are the most common architectures, before going into further details on each

one :

• Full virtualization provides a virtualization of the full hardware.

• Paravirtualization provides a virtualization of the almost full hardware, but

with some hardware access not virtualized in order to make them more effi-

cient.
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Figure 2: Full virtualization (a) vs Para-virtualization (b)

• Partial virtualization provides only a virtualization of only a sub part of the

system to be virtualized.

• Operating System level virtualization is mainly a server technology used

to provide multiple isolated user sessions. They all lye on the same operating

system. Each guest is a sophisticated chroot like.

1.4.1 Full virtualization

Full virtualization is a technology providing a total virtualization of the full hard-

ware. Each virtualized entity can thus run as it should be on a real hardware. That

includes operating systems. This is different than other virtualization technics, on

which only a part of the hardware is virtualized, implying that some softwares/OS

to be virtualized need to be partially rewritten. The figure 2.(a) describes the full

virtualization principle. Each VM accesses to the virtual hardware, which asks the

hypervisor to access to the real one.

The are two main families of full virtualization as described below:

• Software-assisted virtualization: is the historical first full virtualization

approach introduce with with IBM CP/CMS in 1969: all is simulated. This

means that every operating system and applications can be run without mod-

ifications. It is very expensive in terms of resources because every operations

made by the guest operating system need to be simulated. Each of these op-

eration also needs to be checked to be sure it will not interfere with others

guest operating systems and the hypervisor. VMWare introduced a method

that simulates full virtualization but is not quite it: binary translation. It
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works by modifying on-the-fly the x86 instructions. It permits nearly the

same effect than full virtualization with a reduce overhead and makes it pos-

sible for x86 architecture. There also exists a particular kind of software

assisted virtualization: application virtualization. It provides a container for

only a single application to be virtualized.

• Hardware-assisted virtualization: This method allows to run an unmodi-

fied operating system into a virtual machine. Unlike software assisted virtu-

alization, the overhead is reduced because it extends the hardware (mainly

the processor’s ones) with new instructions (known as Intel-VT or AMD-V

instructions1. Those new instructions bring new functionalities allowing to

directly access to the hardware without the need of many software traps. It

was introduced by IBM in 1972 [IBM72] but only recently in x86 architec-

tures ([AA06]) because they didn’t meet the classical virtualization defini-

tion of Popek and Goldberg ([PG73]).

1.4.2 Paravirtualization

Paravirtualization was introduced to simplify the usage of virtualization and bought

close to non-virtualized performances. The virtual machine (VM) needs to be mod-

ified and especialy its kernel to introduce the notion of hypercall. Each call to the

system (system call, or syscall) in order to access the hardware are replaced in the

source code of the application/OS to be virtualized by call to hypervisor, i.e., hy-

percalls. Hypercalls allow the guest operating system to directly send syscall to

the hypervisor without the need of complicated hardware simulation, as described

on the figure 2.(b). For some hardware access, the VM accesses to the virtual

hardware but for some para-virtualized hardware (e.g. the disks) it skip the simu-

lation layer (the v-hardware layer). By doing so, it allows greater performances. It

was firstly introduced in 1972 by IBM [IBM72] and currently, it is wide used by

Parallels Workstation and Xen [MC00].

On x86 architectures, when using a non-hardware virtualization-ready CPU,

the hypervisor run at the ring0 level2). While running at Ring0, the hypervisor will

have a full control over the VM it hosts while being protected from them.

1PDP-10 [Gal69] and Ultra SPARC workstations previously also introduced some harware as-

sisted virtualization facilities.
2Conventionally, in computer science, various privilege levels of execution, called protection

rings, are considered. This is a mechanism of data protection and operation control. Ring0 is the

most privileged and interacts more directly with the hardware while Ring3 is the less privileged one

and is used for user applications and for non-virtualized Operating Systems. Ring1 and Ring2 are

often used for device drivers. Ring1 is also used for paravirtualized virtual Machine kernels. Device

drivers need to ask Ring0 applications (i.e. the OS kernel) for hardware access. With virtualization,

new protection rings appeared, such as Ring-1 for hardware hypervisors and even Ring-2 for the
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1.4.3 Partial virtualization

With partial virtualization, the VM simulate only a part of the hardware of the

host. The virtualized entity thus needs some modifications, if using a part of the

non simulated hardware. Running an operating system under this virtual machine

is, in most of the cases, not possible. The most known implementations of this kind

of virtualization is the address space virtualization, where each process has a full

address space without needing the total amount of memory space on the hardware.

Historically, it was a first step in the virtualization field and was introduced in

CTSS and IBM M44/44X [MS70]. It helps to bring the capabilities of multi users

or/and processes on the same OS.

1.4.4 Operating system-level virtualization

The kernel acts as a hypervisor and is shared between the virtual machines known

as containers in this case. Each container acts as a fully functional real server.

It permits to share a hardware computer between multiple users without the risk

of interference between each others. This technology sometimes also includes re-

sources managements features based on quota to share each type of ressources

between the container. Another point worth noticing is that this kind of virtualiza-

tion brings nearly no overhead. Most of the well known operating systems are able

to support this kind of virtualization like OpenVZ for Linux, Jail for BSD, Zone

for Solaris, Virtuozzo for Windows, Rosetta for Mac OS X and many others.

The drawback of this virtualization solution is the impossibility to run hetero-

geneous operating systems on the same hardware.

1.5 Harware resources virtualization

One can separate the hypervisors’ policy of sharing resources into two main cate-

gories: “Pure isolation hypervisors” and “Sharing hypervisors” ([Kar05]).

With pure isolation hypervisors (see figure 3), each guest have its own dedi-

cated I/O hardware and device drivers, they are not shared between guests. Pure

isolation hypervisors are the simplest and most secure approach because devices

are located in the guest.

With sharing hypervisor, the I/O hardware and device drivers are shared. They

are two main methods to do that.

System Management Mode (SMM) which is loaded by the BIOS into a protected memory area (i.e.

the SMRAM: System Management RAM). SMM is an operating mode in which all normal execution

(including the operating system) are suspended, and a special separate software (usually a firmware

or a hardware-assisted debugger) is executed in ultra high-privileged mode.
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Figure 3: Pure hypervisor isolation

With the first method (see figure 4), the device driver are put into the hypervisor

and it only accesses to the I/O hardware.

Application

Operating System

I/O Device

Application

Operating System

Device Driver

Hypervisor
Virtual Disk Virtual Disk

Figure 4: First Sharing method

With the second method (see figure 5), a special privileged guest is created

to manage all the sharing devices for other guests through the VMM. All devices

drivers only run into this special privileged guest.

1.6 General security considerations about virtualization

Virtualization seems to increase the security of hosting multiple users/application-

s/OS on the same hardware by creating containers that help the non interference

between each others. But virtualization is not a security component. Worth, it can

increase the number of potential weaknesses in the system by bringing a complex

code. The hypervisors and others virtualization related facilities can add new attack
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Figure 5: Second Sharing method

vectors. In consequence, it is very important to not consider and use virtualization

as a security technology. Moreover, it is also essential to secure any virtualization

technology/archicture [GR05, SJV+05a].

1.6.1 General threats of virtualization

We consider the following main threat classes for virtulization:

(a) To corrupt the VM;

(b) To escape the VM and take control of the computer’s ressources;

(c) To directly or indirectly alter other VM running on the same hardware;

(d) To migrate a non-virtualized OS into a VM at run-time;

(e) To corrupt the hypervisor.

The successful usage of those threats is not new. Back in 1970s, IBM penetrates

their VM/370 system using I/O facilities’ flaws and realize the threats (b) and (c)

[]. Later, in 2006, two research groups use virtualization hardware technologies to

realize the threat (d) [KC06, Fer06]. The threat (a) has been achieved many times.

1.6.2 VM machines remain machines...

A VM can be a full operating system. In consequence, it has the same attack vec-

tors available than in any other operating system running on real hardware. Using

the same security facilities that on classical operating systems (IDS, firewalls, an-

tivirus, ...) is not always a good choice. First, some tools may not work properly
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depending on the virtualization technology used. Second, it will need an instance

of each security facility on each VM, that will bring a major overhead. Thus VM

are not so secure, this is why points (a) and (b) above are possible.

1.6.3 VM can attack other VM?

VM are not so secure, nor they are isolated from each others. Virtualizing dis-

tributed physical machines and group them inside a single one may add new se-

curity potentials as the resulting VM are not physically isolated any more. This is

why point (c) above is possible.

1.6.4 Hypervisor corruption

Running at the most privileged level, hypervisors are key elements in the trusted

computing base (TCB
3) to enforce explicit or implicit system security policies. But

they also can be the most critical security concerns.

The corruption of the hypervisor, especially in cases of type I hypervisors,

running directly on the real hardware, can lead to the most harmful exploits. In

those cases, the attacker must manage to take control of the hypervisor from inside

his VM or exploit a bug in the hypervisor and/or and simulated drivers, or both.

For type II hypervisors, it may easier to take control over the hypervisor as it

is simply a process running on the host OS. Then, it may be used to bring a nearly

invisible hypervisor with malicious purposes to replace the existing one or directly

modify it. This would allow the attacker to spy and control any VM. But the host

may be more protected than with type I hypervisors.

In the next section, we study the attacks related to the general threats discussed

above. We see what are the actual attacks and which risks can lead to other new

ones.

2 Attacks

Currently, attacks on virtualization are rare but with the growing usage of this tech-

nology, they emerge fast. Indeed, with CPU including hardware virtualization ac-

celeration, almost all operating systems may be virtualized.

3The TCB is the minimal part of the OS’s code allowing the system to run perfectly and safely.

The TCB thus needs to be trusted because its corruption can lead to many security issues. No one

should run a system he does not trust.
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In the literature, the security classification that is used for attacks, is based on

their effects on the system, in terms of security properties. They are divided into

three categories:

• Attacks on Integrity : attacks that write or modify unauthorized data;

• Attacks on Confidentiality : attacks that permit to read unauthorized data;

• Attacks on Availability : attacks that permit to disrupt the normal running

of computation.

In this section, we present the attacks vectors that permit crafted attacks on

virtualization [Fer06]. These attacks can be classified into three main categories:

• from a VM’s operating system to the hypervisor;

• from the hypervisor to a VM;

• from one VM to another.

First, we introduce “from VM to the hypervisor” attacks, then “from the hyper-

visor to VM” attacks and finally “from VM to VM” attacks.

2.1 From VM to the Hypervisor

It is possible for an attack to corrupt or interfere from a VM to the hypervisor. This

class of attacks is the worst case scenario for virtualization technology because it

allows an attacker to read and/or modify unauthorized data and programs. The

effect of such attacks is not limited to the virtual machine but also to the other ones

and the hypervisor itself.

For example, it can allow an attacker at the hypervisor level to modify the

access control of a virtual machine in order to give it higher privileges. Also, it can

allow an attacker to silently spy another virtual machine without any possibility of

detecting it from inside the spied VM.

2.1.1 Direct Memory Access

Some drivers have the ability to access the underlying hardware (i.e. the real hard-

ware). It can be done using Direct Memory Access DMA) [Mur08]. This attack

allows to read and write the entire physical memory.

As shown on figure 6, on the virtualized architecture, there are two ways to

access memory:
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Figure 6: An attack from a VM to memory through DMA

• normal way: any access to the memory is controlled by the hypervisor to

guarantee that a VM can only access to its own memory range.

• malicious way: the attacker can reach the entire physical memory exploiting

a bugged DMA driver that acts as a wrapper between the virtual network

interface (vNet) and the physical network card. The physical network card

can indirectly access to the memory through DMA without any control of the

hypervisor.

Using this attack, it is possible to corrupt both the integrity and confidentiality

of the hypervisor and all the running VM on the physical hardware. Also, it can be

used to induce deny of service (availability) that disrupt the hypervisor and all VM

e.g. by deleting the memory kernel space of a VM.

[Woj08] describes an implementation of the DMA attack using a rogue network

driver. Network drivers have the ability through loopback mode to copy data be-

tween two locations in RAM. By modifying the network driver’s code, it is possible

to read/write any part of the physical memory. As shown on the figure 7, the rogue

network driver is loaded at the kernel level in the VM. It has access to the legal net-

work driver structure. In consequence, the rogue network driver has the ability to

send DMA transfers between two locations in RAM. Thus, it can attack the integrity

and confidentiality of all the VM and the hypervisor. This modification makes pos-

sible to run any codes at any level in all the VM and even at the hypervisor’s one.
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Figure 7: Implementing a DMA attack

2.1.2 Other vectors

The previous type of attacks through DMA can not work “as is” on hardware-

assisted virtualization due to hardware protection i.e. IOMMU
4. But, new attack

vectors [Mur08] have been found in the specialized hardware instructions dedi-

cated to virtualization. For example, an instruction on Intel processors permits

memory remapping. Through this one, it is possible to migrate a part of the mem-

ory to an area where the attacker can read and write on. In consequence, it is

possible to use the same attack previously introduced based on DMA driver just by

changing the vector allowing memory modification and reading. An example of

this attack has been implemented based on a bug in DQ35JO motherboard BIOS.

The attack exploits the Intel chipset’s memory remapping feature and allows to cir-

cumvent some CPU or chipset memory protection mechanisms. That includes the

possibility to gain full access to a specially protected region of system memory,

called SMRAM (System-Management RAM) memory.

With the growing complexity of hypervisors, it is harder to validate the code

and this can bring new attack vectors. For example, if a buffer overflow in the hy-

pervisor can be exploited, it can allow to execute code with hypervisor privileges.

4An IOMMU (Input/Output Memory Management Unit) is a memory management unit (MMU).

The interesting thing for virtualization security is that some IOMMU provide memory protection from

misbehaving devices, preventing a device to read or write to memory that it should not access (i.e.

that has not mapped for it).
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2.2 From the hypervisor to VM Attacks

The purpose of this class of attacks is to disrupt, spy, steal or modify VM’s data

with malicious code running at the hypervisor level. This class of attacks is based

on injecting code in the hypervisor. Code injection can be done:

• using techniques presented in the previous section;

• by a malware running at the same level than the hypervisor.

This class of attacks are mainly known from the infamous Blue Pill attack [Rut08].

We divide this section into three subsections:

• hardware accelerated rootkits (HAR);

• high privileged virtual machines;

• hardware attacks.

2.2.1 HAR or shadow virtualization

This kind of attacks [ESZ08] can virtualize the running operating system or the

running hypervisor at run-time without being detected by it. It thus permits to have

a shadow hypervisor (i.e. not visible from the user viewpoint) that can spy and

control the whole machine. This type of rogue hypervisors are known as hardware

accelerated rootkits (HAR).

However, this kind of attacks can be done in multiple ways:

1. Build a new rogue hypervisor and make it supersede the existing OS/hyper-

visor. The following steps describe how a HAR can take control of a machine

(figure 8):

(1) the HAR starts to run on the OS by using any well known attack vector;

(2) the HAR moves its memory range at the beginning of kernel space and

remaps the kernel’s one;

(3) the HAR migrates the operating system in a virtual machine without

rebooting it. Any operation of the newly virtualized OS/hypervisor is

now controlled by the HAR.

2. Statically modify a legal hypervisor in order to make it do malicious things

(e.g. modify an open source hypervisor (i.e. Xen) to spy keystrokes). This

second form of the attack may be harder to detect.
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Figure 8: HAR taking control of an operating system

3. Dynamically modify a legal hypervisor at run-time. This can be done with

a DMA access (or other vectors allowing memory modification) to replace a

hypervisor’s module by a malicious one. This is the hardest to detect form

of the attack. At the operating system’s viewpoint, nothing in the memory or

in the CPU registry has changed during and after the migration (i.e. the virtu-

alization of the previous OS/hypervisor). This is however the most difficult

attack to achieve.

It is theoretically possible to detect all those attacks [RKK07] using latency

measures. Indeed, with the addition of a virtualization layer, the running time of

any system operation suddenly takes more time to achieve, which is possible to

observe. But the latency due to malicious code is often negligible compared to the

latency due to the legal hypervisor. Moreover all the virtualization issues can be

attributed to the legal hypervisor that has been modified, which makes those attacks

hardly detectable from the VM viewpoint.

This attack has been demonstrated several times. Operating systems virtual-

ization at run-time has already been done [Rut08] as well as modifying a legal

hypervisor or installing a rogue hypervisor at run-time. When this kind of attacks

succeed, the HAR gains full access to all the hardware and VM, i.e. the entire ma-

chine.

[KC06] implemented shadow virtualization for GNU/Linux and Microsoft Win-

dows XP operating systems. Their approach, ‘SubVirt’ as described in the figure 9,

has the purpose to virtualize an operating system without being noticeable for the

end-user. Moreover, their approach allows to run an underlying rogue operating

system as a hypervisor that hosts malicious services. The rogue operating system

has been implemented on top of Microsoft Windows XP with Virtual PC and on top

of Linux using VMWare. Installing such HAR takes only 24 seconds and 226Mb of

disk space. After the installation of the shadow virtualization, the operating system

takes only 19 seconds more to boot. Using their proposal, [KC06] implemented:
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Figure 9: SubVirt taking control of an operating system

• hidden rogue services: spam relays, botnet zombies or phishing web servers.

• services that observe data and events coming from the legal OS. Those ser-

vices can stealthy log keystrokes and network packets.

• malicious services that trap the execution of the legal OS (or applications in

it) at arbitrary instructions. One of those one traps every call to the “write”

method of the SSL library socket that permits to read the clear-text data be-

fore it is encrypted.

• services that deliberately modify the execution of the target system. The

services proposed permit to modify network communication, delete e-mail

messages or change the execution of an application in the legal OS.

Another method that leads to shadow virtualization aims at modifying a legal

hypervisor in run-time. Unlike previous ones where the hypervisor’s code is stati-

cally modified, in this case, it is modified on-the-fly. This can be done with a DMA

access (or other vectors allowing memory modification). It replaces a hypervisor’s

module by a malicious one. This attack is hardly detectable from the VM viewpoint

because:

• the latency due to malicious code is negligible compared to the latency due

to the legal hypervisor;
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Figure 10: Memory access from a highly privileged VM and from a normal one

• all the virtualization issues can be attributed to the legal hypervisor that has

been modified.

2.2.2 High privileged Virtual Machine

The purpose of this type of attacks is to disrupt a VM using a high privileged VM.

Some hypervisors (like Xen) have the possibility to run VM at different levels of

privileges in terms of allowed interactions with VM and hardware. This feature

has been introduced to allow some VM to do advanced tasks for others VM like

handling input and output of hardware devices. It permits to reduce the amount of

trusted code. Under Xen, they are two levels of privileges:

• The normal privileged VM which is called domU. It accesses the hardware

through the high privileged VM.

• The high privileged VM which is called dom0. It has the possibility to di-

rectly access the hardware. In consequence, it has the ability to read and/or

write on the memory of others VM.

This architecture allows a special VM to act for example as an anti-virus appli-

ance. In practice, the anti-virus running in the high privileged VM accesses other

VM to analyze them (i.e. inspect their memory and files). As shown in the fig-

ure 10, a normal VM is running at the user level (ring 3), a high privileged one at

the system level (ring 0) and the hypervisor at a higher privileged level (ring -1).

When the normal VM tries to interact with the RAM, it has to past through the

hypervisor that will allow or deny it. When a high privileged VM tries to interact

with the RAM, it has direct access to it and through it is not controlled by the

hypervisor.
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It is possible to use this scheme to create a rogue VM with high privileges, that

could monitor/spy other VM. Using this vector, it is possible to attack the integrity,

confidentiality and availability of any others VM and takes the control of them.

Moreover, the attack is not noticeable for a normal VM as the changes take

place outside of it. Indeed, the rogue VM is just another VM and does not modify

the current hypervisor. At least, the hypervisor can detect such attacks by looking

for a high privileged VM that inspects other VM. But, even this can be bypassed if

the rogue VM is registered as a legal security component.

2.2.3 Attack on Virtualized Hardware

The main purpose of virtualization technology is to run multiple operating systems

on a single physical computer. As multiple OS use the same hardware, it makes

possible to cause information flows between VM with a sharing hypervisor. All

shared hardware devices can be a vector of attacks:

• vHDD : virtual hard disk drive;

• vCPU : virtual CPU;

• vRAM : both RAM and video memory;

• vNet : virtual network card.

Each attacks allowed to corrupt the integrity, confidentiality and/or availability of

a VM from the hypervisor.

vHDD (Virtual Disk Storage)

A vHDD can be stored in :

• a file on a disk;

• a partition of a disk;

• a physical disk;

• a storage area network disk;

For the first three types of vHDD, it is possible for a hypervisor to modify, read

or delete the vHDD. In terms of security properties, this means that the hypervi-

sor can attack the integrity, confidentiality and availability of a vHDD. Indeed, a

vHDD is a physical resource for the hypervisor. The hypervisor can access the

vHDD as any others hardware resources. It has full control on the vHDD as it runs

at the highest level of privileges. Using other vectors like memory and network

corruption, it is even possible for a hypervisor to tamper SAN disks (see Attacks on
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Virtual Network). All those attacks are due to the fact that the hypervisor has full

control on the hardware and VM. In consequence, the only way to prevent those

attacks is to trust the hypervisor or monitor it using a trusted tier.

An example of that attack is the modification of a VM’s kernel. In this case, only

the integrity and availability are important, the confidentiality of a kernel is not an

issue. Of course, it is possible to encrypt file to protect integrity and confidentiality

but the hypervisor can access the encrypted key and decrypt all the data (unless

the key is stored in vTPM [BCG+06]). Therefore, the hypervisor can modify the

kernel directly on the disk. An integrity check detects such modifications but it

is possible to implement an attack known as time-of-check-to-time-of-use [BD96]

quicker to execute and modify thnings in order to not being detected, than the time

needed to detect it. Moreover, static verification forbids the dynamic loading of

module [MMH08] unless the hypervisor is modified to verify the integrity of each

loaded modules.

vRAM (Virtual Memory)

Both the confidentiality and integrity of physical RAM can be attack from the

hypervisor viewpoint because it has full access i.e. read and write to the whole

memory. Moreover, it is also possible for a hypervisor (and a high privileged VM)

to access memory through DMA access. Finally, hypervisor can use System Man-

agement Mode to corrupt or read the memory of video cards.

An example of attack on memory is the modification of VM’s kernel on-the-fly.

Contrary to the previous attack (on disk), this one modify the kernel when it is

loaded on the memory. The integrity check on the disk will thus be successful even

if the kernel’s binary memory segment is modified.

vCPU (Virtual Processor)

A vCPU is a virtual processor that contains, like a normal CPU, registries and

flags. Those ones can be modify or read through special hardware instructions by

a privileged process like a hypervisor. For example, an attacker can read the vCPU

registries during an integrity verification and modify them to return a successful

answer whatever the file contains. Potentially, it can allow to execute code in any

VM.

vNet (Virtual Network)

Within most of hypervisor implementations, the network cards provided to vir-

tual machines are software bridges which are connected to a physical network in-

terface. A rogue hypervisor could plug a sniffer on it and so, could attack the

confidentiality of the virtual network. Also, the software bridge can be modified

by the hypervisor to corrupt data contained in the network packets and through at-

tack the integrity of the vNet of any VM. For example, when a SAN disk is used,

the vNet can be modified to substitute the kernel, when it is loaded, to a rogue one

by modifying the content of network packets on-the-fly.
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All these attacks are due to the fact that the hypervisor is at a higher privileged

level than the VM on the physical hardware. Unless the hypervisor is controlled by

another process (a TPM or a hypervisor of hypervisors) that should act as a trusted

tier, those attacks remain possible.

2.3 From VM to other VM attacks

The purpose of this type of attack is to disrupt a VM from another VM. It targets the

main security properties of virtualization: containment. Two vectors can be found

in the literature, attacks:

• on resources i.e. modifying the hardware resources of other VM;

• using backdoors.

2.3.1 Attacks on resources

The class of VM to VM attacks through tampering resources can be done in many

ways. Almost all shared hardware devices between two VM can be used to. This

class of attacks uses the same method than DMA attacks (see section 2.1.1). Based

on DMA, a VM can access the memory of any others VM and read or write in it.

2.3.2 Backdoors

This class of attacks allows a VM to disrupt another VM. A backdoor is a special

trap in a computer program that permits to enter a system without being notice-

able. By default, a backdoor is deactivated but when some special events are sent,

it opens a hidden door in the system. In consequence, it requires that the hyper-

visor has been previously modified in order to react to some special events. For

example, the hypervisor shifts to a special mode that allows a VM to spy on other

one (or increases VM privileges) when a specially crafted packet is received on the

network interface. This packet raises an interruption that launches the backdoor.

Such method has been previously implemented and can be used to remotely attack

the integrity, confidentiality and availability of VM. For example, a backdoor is

implemented as an hypervisor module. This module is not activated by default.

It is activated when receiving a special network packet on the loopback. When

activated, the backdoor modifies the “authorized_keys” file 5 of the root account.

Moreover, the backdoor modifies the SSH configuration file to allow root login.

5The “authorized_keys” file contains all the keys that are allowed to be used to connect to the

account
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Using the backdoor, it become possible to add its ssh key to any root account on

any VM running on the hypervisor that implements the backdoor.

2.4 Conclusion

In this section, we have presented all the different attacks specialized for virtualiza-

tion technology: attacks from VM to hypervisors, between VM themselves or from

hypervisors to VM. All of these attacks are able to break the three main security

properties: integrity, confidentiality and availability. Having a proper implementa-

tion of hypervisor and security components dedicated to virtualization security, is

essential. This is the focus of the next section: what are the actual security mea-

sures proposed by virtualization researchers/vendors to address the security issues

presented above.

3 Hypervisor Security

In the previous section, we have presented the different vectors to subvert virtual-

ization technologies. In this section, we present the different security mechanisms

to increase the security of the hypervisor and the other security components that

are deployed into the hypervisor or act as modules for it.

First, we will present the protection of the hypervisor itself. We will then sur-

vey the different methods to guarantee the integrity of the VM. We will then discuss

the isolation of resources between VM and finally, we will present the access con-

trol mechanisms between VM.

3.1 Protecting the Hypervisor Layer

3.1.1 Type II Hypervisor

When the hypervisor is a process of an operating system (e.g. VMWare Worksta-

tion), the security is related to the whole OS. The protection mechanisms available

are the same as on a classical operating system like anti-virus, anti-malware, etc.

The drawback is that it is possible to use any vectors present in the OS to subvert

the hypervisor. For example, any rootkit will have at least the same (or more)

privileges than the hypervisor and can subvert it by inspecting its memory or even

modify the hypervisor virtual drivers.
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Figure 11: The three models of virtualization TCB disaggregation

3.1.2 Type I Hypervisor

When the hypervisor is directly running on the hardware (e.g. Xen), the principal

challenge is that it needs to be small in terms of lines of codes, in order to be veri-

fied and validated as safe and trusted. In this case, the hypervisor does not includes

any exploits. But, the growing number of lines in hypervisor code brings the un-

ability to verify the whole code. In consequence, others solutions for hypervisor

security have been introduced.

Classical Security Components

The first approach is to use security components previously used at operating

system level to secure the hypervisor. For example, anti-virus or anti-malware can

be used to secure the hypervisor.

The drawback is that a hypervisor is not an OS, in consequence, the same meth-

ods can not be used. Moreover, the classical security components like antivirus

have shown their limits in the latest years. Including antivirus or other malware

protections into the hypervisor to control it, can be done but is not very efficient.

Also, it includes more codes at the hypervisor level and as explained before, this

leads to code verification issues.

Reducing the TCB through Disagregation

As explained before, the less code the hypervisor is composed of, the easier it is

to verify. For example, in a classical operating system, it is required to trust at least

the kernel and often the administrative applications. The goal of disaggregation

is to reduce the size of the trusted computing based (TCB). These components are

then put into less privileged containers. For example, with Xen, the TCB [MMH08]

contains the hypervisor itself and the privileged VM that manages IO and adminis-

trative tasks (i.e. dom0). The privileged VM is a complete Linux OS and needs to

be trusted.
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component C ASM

Hypervisor 98 3

Dom0 kernel 1500 9.6

Dom0 drivers ≤ 2400 ≤ 2.6

Total number of lines ≤ 4000 ≤ 15.2

Table 1: Size of a Xen TCB (in thousands of code lines).

It is possible to reduce the TCB to what is essential: IO managers and adminis-

trative tools. Three disaggregation schemes exist (cf. figure 11):

1. The first scheme (on the left) shows the existing Xen architecture where the

TCB (gray rectangle) includes a whole operating system (i.e. Linux).

2. The second one (centered) describes a better situation [MMH08], where only

the Linux kernel and needed device drivers to be trusted and not a complete

Linux stack.

3. The third scheme (on the right) presents the best case scenario for Xen dis-

aggregation with a minimal TCB: only the device drivers need to be trusted,

in addition to the hypervisor and the wrapper. The wrapper acts as an API be-

tween hypervisor and its management tools. The wrapper permits to verify

inputs and ouputs given to the management tools. The wrapper also allows

to avoid to put the management tools in the TCB.

[MMH08] have implemented the second scheme presented in the figure 11.

They started with an existing Xen TCB which code size (cf. table 1) was 4000,000

lines of C code and 15,200 lines of ASM code.

They manage to strongly reduce the size o the TCB, as described in the table 2,

where rows beginning with + indicate where code was added to the TCB; rows

beginning with − indicate where it has been removed. 920,000 lines of C code were

removed and only 9,200 lines were added in order to support the disaggregation

scheme (-23%). They also reduced the amount of ASM code (500 lines) of the TCB

(-96%). In addition, they also reduced the size of Python code (160,000 lines), not

in the TCB but used in some services. As this middle disaggregation scheme is

not the best case scenario, there still remains a large amount of code in the TCB.

Especially, the number of code lines linked to the kernel and VM management

drivers. With ideal disaggregation, those two components could be heavily reduced

to few thousands lines. That should trend to build hypervisors as micro-kernel

architectures [HUL06].
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+/− component C ASM Python

+ DomB 9.2 0.5 −

− libc 690 15 −

− Python 220 − 140

− libxc 9.9 − −

− xend 2.4 − 17

+ Added 9.2 0.5 −

− Removed 920 15 160

Total number of lines � 3080 � 0.7 −160

Table 2: Migration to a disaggregated Xen TCB: code size (in thousands lines).

The drawback is that reducing the TCB requires multiple changes in the hyper-

visor code. Thus, knowledges about the hypervisor code, hypervisor architecture

and related coding language are essential to be able to reach the task of reducing

the TCB.

Moreover, a totally disaggregated TCB, as any other micro-kernel architecture,

increases the number of transitions between privileged and unprivileged domains.

This kind of transitions has is very costly in terms of processor interruptions. Also,

it brings many inter-process communications to permit data exchange between

each component of the hypervisor. This large number of communications increases

the overall system latency.

Integrity Verification

Another approach to guarantee the protection of the hypervisor is to verify its

integrity. For example, a footprint of the hypervisor is done when it is installed. At

each boot, before loading the hypervisor, a verification of the hypervisor is com-

puted against the footprint to verify that a modification has not been done on it.

Two different methods have been used to do the integrity check process. The first

method (software) integrates it inside the BIOS. This process can be done by spe-

cial BIOS like Sun OpenBoot [Inc97] and LinuxBIOS [MHW00]. The second one

(hardware) integrates specialized hardware instructions as Intel TXT (Trusted Ex-

ecution Technology) [UNR+05] to verify the integrity of the hypervisor [WR09].

This process uses another hardware component, the TPM to store the footprint6.

The drawback is that the hardware approach is more robust to attacks but re-

quires additional hardware equipments. The software approach can be corrupted

by a BIOS malware. Invisible Things Labs [WR09] demonstrated attacks on TXT

using the SMM. Intel is currently preparing STM (SMM Trasnfert Monitor) in or-

6There also exists an equivalent technology at AMD, which is called Presidio.
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Figure 12: GuardHype

der to solve the issue, but it is probable that actual Intel processors all suffers from

this flaw.

Micro-Kernel

Another approach of hypervisor protection is to use byzantine fault tolerant

systems [ACDA09] like micro-kernel to create a hypervisor that healths itself from

attacks. Hypervisor designed as micro-kernels [HUL06] already exist. Extending

them to support byzantine fault can be done but remains a theoretical concept for

the moment.

The drawback is that, as disaggregation, the main micro-kernel’s drawback is

a sensible increase of transitions between unprivileged and privileged contexts in

the processor, and many communications between components, leading to more

latency.

Protecting Hypervisor Layer

Another approach to protect the hypervisor is to protect the hypervisor layer

itself. It is useful to protect the hypervisor layer because it is where the hardware

accelerated rootkits are plugged (see section 2.2.1). GuardHype [CZL08] intro-

duced such protection. GuardHype is a hypervisor for hypervisors. It allows only

well known and verified hypervisors to run. Like hardware accelerated rootkits and

as shown on figure 12, it creates a complete virtualized hardware layer and allows

a legal hypervisor to run on it.

The drawback of this approach is that it is not protected against bugs in le-

gitimate hypervisors. For example, if a legitimate hypervisor like Xen includes a

buffer overflow that allows a VM to execute code as a hypervisor, it will not stop it.

HAR works by duplicating the state of the current OS into a VM. This behavior is
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detected by GuardHype because it does not allow an unknown hypervisor to load.

The approach supposes that the boot process is trusted, it can be done using TPM
7.

We have presented how can actual hypervisors be protected. The technology

evolves fastly and some new protections may appear, such as STM for the protec-

tion of the Intel TXT and AMD Presidio. In the next subsection, we will present

different approaches allowing the hypervisor to verify the integrity of virtual ma-

chines.

3.2 Integrity of VM

There exist different ways of verifying the integrity of VM from the hypervisor.

The verification process can be done using software or hardware components and

ables the hypervisor to load only sane VM into memory.

3.2.1 Software Integrity Verification for VM

Software integrity verification can be done using well-known algorithms like SHA.

Few hypervisors [QT06] include verification of critical VM components like kernel

and critical applications when a VM is started. It allows to detect any illegal modi-

fications of them. Moreover, it can be used at run-time, by inspecting the memory

containing the component. It can do the same by hooking system calls performing

modifications on filesystems and verify that none is corrupting the integrity of the

VM or its components.

The drawback is that if the hypervisor is corrupted, the footprints can be changed

and the whole integrity process bypassed.

3.2.2 Hardware Integrity Verification for VM (vTPM)

This approach uses at least a TPM component, which can be enhanced by other

hardware instructions like Intel TXT (cf. section 3.1). Some hypervisors e.g.

Xen/sHype [SVJ+05] are able to virtualize the TPM [BCG+06] into multiple in-

stances where each one is assigned to a VM. This permits to use TPM when mul-

tiple operating systems are running concurrently on the same physical hardware,

whereas a normal TPM can only supports one OS. The TPM can be used to store the

7Trusted Platform Module (TPM) is an emerging security building block offering system-wide

hardware roots of trust that the system softwares can not compromise.
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Figure 13: sHype: a Virtualized TPM

footprint of the OS’s kernel or other software of the VM to verify their integrity. As

shown in figure 13, the VTPM uses multiple components:

• a hardware TPM;

• a TPM virtual machine;

• a multiplexer (MPLEX);

• a vTPM manager;

• multiple software TPM.

The TPM VM interacts with the TPM through the hypervisor. The use of a

multiplexer ables the capability to have multiple software TPM controlled. Each

software TPM is linked to a a virtual machine through the multiplexer. Each VM has

a fully fonctionnal TPM that is separated from other software TPM. The isolation

between vTPM is made at the TPM VM level.

The drawback is that, contrarily to the software implementation, the hardware

approach can be (almost8) fully trusted but it required additional hardware devices.

3.3 Resources Isolation between VM

Until the last few years, the isolation of resources between VM was done using only

softwares. As explained in the section 2, many attacks vectors target the resources

8Except the attacks to TPM, e.g. TXT [WR09].
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isolations. But, new hardware instructions and devices permit a better isolation at

the resources level. Those instructions are primarily known as IOMMU
9 and allow

an isolation at the hardware level.

3.3.1 Without hardware protections

Disk

A VM can only read its disk partitions but a hypervisor can read all the disk

partitions. A rogue administrator at the hypervisor level can read, write and modify

data on disk partition of the VM. To be protected against such attacks, the VM needs

to use full disk encryption. But it is not enough, the keys must be stored using a

sealing functionality of a safe place like a TPM [BCG+06].

The drawback is that encryption allows to ensure the integrity and confiden-

tiality of the disk partitions related to VM but is not protected against a destructive

attacks i.e. deleting the disk partitions. In addition, as keys are store in memory

at all time, they may be read, especially using an attack against SMM, which can

access the whole system memory [WR09].

Network

All the network traffic that passes through the virtual network can be read and

modified by the hypervisor. To protect network against rogue administrators, it is

possible to use encryption scheme such as TLS or IPSEC [MTS+06]. It guarantees

the confidentiality of data. But by modifying the software bridge i.e. the virtual

network card, it is possible for the hypervisor to attack the integrity of a packet.

To protect confidentiality and integrity of the network, a virtual private networking

(VPN) software [LVBP05] in the VM is sufficient.

The drawback is that using in-deep memory inspection, it is possible to read

all the keys certificates and VPN related information. Based on those data, a rogue

administrator can connect to the VPN and spy it.

3.3.2 With hardware protections

Hardware protections (IOMMU) are known as VT-d on Intel processors [Hir07]. If

a hypervisor is designed to support IOMMU [BY06], it can address the problem of

most of the hardware backdoors. IOMMU permits to move DMA devices drivers

into a separate unprivileged driver domain. By doing so, each PCI device can be

9
IOMMU (Input/Output Memory Management Unit) are security oriented instructions aiming at

prevent drivers to access to memory range where they should not (see subsection 3.3.2 for hardware

protection using IOMMU).
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limited to DMA only to the memory region occupied by its own driver and not the

whole memory.

The network card’s micro-controller can still be used to compromise a network

card driver but not the whole memory. Assuming that only encrypted communi-

cations are passing through the network, there is not much an attack can gain by

compromising the network card driver, besides a deny of service. Similarly for the

disk drivers, if a full disk encryption is used, an attacker will not be able to retrieve

any information.

The drawback is that IOMMU are limited to DMA devices and are not applied

to CPU and memory controllers that must be trusted also.

3.4 Access Control between VM

Traditional hypervisors do not include any mechanisms to control the access of

resources from a VM to another one. With the growing number of VM and the

multiple interactions between them in virtualized networks, it becomes essential to

have a mean to regulate them. In a first time, complex access policies manually

written have been proposed. They lied on softwares like firewalls.

Nowadays, an access control mechanism is included in some hypervisors [SVJ+05]

: mandatory access control (MAC). MAC enforcement, applied to virtualization,

controls inter-VM communications, whether they are on a single physical machine

or across machines. Such MAC enforcements are both stronger than traditional VM

isolation, as even network communications are controlled. MAC is also more flex-

ible than traditional VM isolation, as local VM interactions are now enabled. Such

MAC inter-VM mechanisms promise comprehensive control of system information

flows [SJV+05b]. But they can be subverted by covert channels10.

sHype [SJV+05b] adds authorization hooks to Xen’s (overt11) communication

mechanisms to authorize inter-VM communications on the same physical computer.

It uses a Type Enforcement [BSS+96] (TE) model to describe the inter-VM com-

munications authorized in a system. TE is expressive enough to enforce security

policies such as isolation. As describe in figure 14, sHype adds two components:

• an Access Control Manager (ACM) that allows to controls the access on re-

sources shared between VM;

10In information theory, a covert channel is a parasitic communications channel that draws band-

width from another channel in order to transmit information without the authorization or knowledge

of the latter channel’s designer, owner, or operator.
11Overt channel is any communications path for the authorized data transmission within a com-

puter system or network.
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Status Name Label (type)

Subject RedV M1 red_t

Subject RedV M2 red_t

Subject BlueV M1 blue_t

Subject BlueV M2 blue_t

Subject GreenV M1 green_t

Object RedNetC2 rednet_t

Object BlueNetC1 bluenet_t

Object RedHDD1 reddisk_t

Object BlueHDD1 bluedisk_t

Object GreenHDD1 greendisk_t

Table 3: Example of sHype MAC labelling.

✞ ☎
# xm addlabel red_t dom RedVM1 .xm

# xm addlabel reddisk_t res file : / / / dev /sda

✡✝ ✆

Listing 1: "Labeling command for VM and resources"

• a Policy Manager that stores the security policy describing allowed interac-

tions between VM.

3.4.1 Access control on a single physical machine

As an example of what sHype is actually able to guarantee, let consider five VM:

RedV M1, RedV M2, BlueV M1, BlueV M2, and GreenV M1 and the following

resources: two network cards RedNetC1 and BlueNetC1, and three hard drives

RedHDD1, BlueHDD1, GreenHDD1.

The first operation is to give a label to each VM and each resource. The table 3

describes that labelling. The RedV M1 and RedV M2 VM have the label red_t.

BlueV M1 and BlueV M2 are labelled with the blue_t and GreenV M1 with

green_t. The network resource RedNetC1 has the label rednet_t and BlueNetC1

has the label bluenet_t. RedHDD1, BlueHDD1 and GreenHDD1 have re-

spectively the labels reddisk_t, bluedisk_t, greendisk_t.

The labels are set on a VM or a resource using “xm” command interface (i.e.

the command allowing the administration and management of VM and resources

under sHype). For example, the first command in the listing 1 permits to add the

label red_t to the RedV M1 virtual machine and the second command permits to

add the label reddisk_t to the RedHDD1.
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Subject (type) Object (type) Access(Action)

red_t reddisk_t * (r,w,x,a,d,m,...)

blue_t bluedisk_t *
green_t greendisk_t *

red_t rednet_t *
blue_t bluenet_t *

green_t rednet_t *
green_t bluenet_t *

Table 4: Example of sHype MAC policy.

Using those labels, sHype has the ability to apply any policy that classical MAC

mechanism can enforce.

Let consider a concrete sample policy, summarized in table 4. That policy re-

stricts the access to reddisk_t to only red_t virtual machines and apply the

same principle between, respectively blue_t and green_t VM to bluedisk_t

and greendisk_t disk resources. Moreover, RedV M1 and RedV M2 can only

use the RedNetC1 network cards. BlueV M1 and BlueV M2 can only use the

BlueNetC1 network card. GreenV M1 can use both network card.

sHype uses XML files to describe policies. The sHype XML configuration file

describing the policy given above (in table 4) is presented in the listing 2.

3.4.2 Access control on multiple physical machines

sHype is not currently able to control the access of VM running on different phys-

ical machines, but it soon will. Moreover, the access control XML DTD already

allows to express restrictions related to physical machines. For example, let con-

sider another type of distributed access control policy that permits to avoid to run

two concurrent VM on the same physical computer. This type of restriction is

called Chinese Wall. A possible example, applied to the previous policy should

be to prevent running green_t VM on the same physical computer than red_t

ones.

To apply this policy, sHype will permit to add the set of rules and permissions

described in the listing 3 at the end of the previous rules (listing 2).

The drawback is that currently, sHype does not support access control between

VM located on different physical machines. Moreover, sHype does not protect
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✄ �
<?xml version= " 1 . 0 " encoding="UTF−8"?>

<MAC_Rules id=1>

<Source_Type>red_t</Source_Type>

<Destination_Type>reddisk_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=2>

<Source_Type>blue_t</Source_Type>

<Destination_Type>bluedisk_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=3>

<Source_Type>green_t</Source_Type>

<Destination_Type>greendisk_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=4>

<Source_Type>red_t</Source_Type>

<Destination_Type>rednet_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=5>

<Source_Type>blue_t</Source_Type>

<Destination_Type>bluenet_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=6>

<Source_Type>green_t</Source_Type>

<Destination_Type>rednet_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>

<MAC_Rules id=7>

<Source_Type>green_t</Source_Type>

<Destination_Type>bluenet_t<Destination_Type>

<Action>∗</Action>

</MAC_Rules>
✝✂ ✁

Listing 2: "MAC Policy for VM and resources"

against covert channels. Another drawback is linked to Mandatory Access Control.

MAC requires to write an access control policy. The writing process of the policy

requires an overall knowledge of the virtualized architecture and the underlying

virtualization components. And as with any MAC mechanism, writing fine-grained

security policy takes much time.

4 Virtual Machine Security

VM security can be divided into two approaches:

• executing an existing security system e.g. malware detection systems into

33



✄ �
. . .

<ChineseWall id=1>

<ConflictSet>

<Conflict>

<Type>red_t</Type>

<Type>green_t</Type>

</Conflict>

</ConflictSet>
✝✂ ✁

Listing 3: "sHype MAC Policy for Chinese Wall enforcing"

Figure 14: sHype Architecture

the VM i.e. running it as an application in the virtualized OS.

• executing a security system outside of the VM.

4.1 Classic Security components

Using the existing security components of classical un-virtualized OS into virtual-

ized ones has the advantages to not need any modification in the code of virtual-

ization architectures and can work at the virtualized system level.

The drawback is that it can not use the virtualization isolation because the

security components (e.g. anti-virus and anti-malware) run directly on top of the

operating system. Thus, the security components are inside the VM and are exposed

as any components in the OS. In consequence, the security components can be

attacked and disabled like any security mechanisms (e.g. anti-virus) on a normal

un-virtualized OS.

4.2 Auditing and Monitoring

This approach resolves the issue of attacks on security systems (described in sub-

section 4.1) because it provides security components isolated from the supervised

operating system. Moreover, the attacker is not even able to see the security com-

ponents.
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Figure 15: Syscall interception from outside a VM

The drawback is that “outside” security components can only see low-level in-

formation. They can only work with memory inspections and those information

are hard to use for security purpose. But, this limitation can be overcome by ex-

tracting high-level information from these data as explained in [GR03]. Another

advantage of this approach is that it does not have to run once per VM but once for

all VM and by doing so reduces the resources consumption.

To harvest information about the state of an operating system and its softwares,

current security applications often use system calls monitoring or other logs infor-

mation. It gives high level information (from kernel to applications logs). This

approach brings good results but has a major flaw: it needs to trust the kernel and

the security applications. If one of those is compromised, the whole auditing and

monitoring process can be corrupted. In practice, it means that security compo-

nents can not be trusted as soon as a critical step of an attack has been successfully

done.

By putting out the monitoring and auditing systems from the OS, the issue is

solved. The attacker can no more see the security applications. As shown on the

figure 15, using memory inspections, the monitoring and auditing systems, when

put into a special privileged VM, are able to intercept and control the executions

invoked in the VM and control their execution [OOY08] (like any other security

systems within a VM). The interception and control is done at the hypervisor level

where each execution step of the VM is checked. While verifying the system call,

the hypervisor puts the intercepted process in hold until the hypervisor allows or

denies the system call.

Moreover, the security applications can also run at the hypervisor level. Run-

ning at the hypervisor level is always dangerous because a flaw in the security

application can lead to the corruption of the hypervisor. Running it in a special

privileged VM that can be trusted is a better solution (cf. figure 15). It is close to

micro-kernel architecture [HUL06] with privileged VM acting as services. It allows
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✞ ☎
1 traceChild : yes

2 open

3 fileEq ( 1 , " /etc /passwd " )

4 or fileEq ( 1 , " /etc /shadow " )

5 or fileEq ( 1 , " /etc /crontab " )

6 exec

7 fileEq ( 1 , "∗ " )

✡✝ ✆

Listing 4: "Policy of the monitoring component"

✞ ☎
1 traceChild : yes

2 exec

3 default : allow

4 fileEq ( 1 , " /home / ∗ /scan_ssh " )

5 deny(−1)

✡✝ ✆

Listing 5: "Policy of the control component"

better separation of tasks and so a higher isolation in case of corruption.

For example, as proposed in [OOY08], it is possible to use a policy to enable

auditing of system call of the VM by the hypervisor. An auditing policy that moni-

tors the “open” syscall when accessing sensible data (passwd,shadow,crontab)

and the “exec” syscall are described in the listing 4.

The traceChild keyword is used to monitor every syscall launched by the child

created by an “exec” syscall.

[OOY08] proposed to extend the auditing properties to be able to control syscall

from outside the VM. To implement it, they extend the language allowing to moni-

tor syscalls. For example, if one want to deny the launching of “/home/*/scan_ssh”

application at the syscall level, it is possible to write the statement shown on the

listing 5.

Those applications allowing monitoring and control increase the execution time

of each syscalls. Nonetheless, the overhead is small enough to allow this architec-

ture to be used in real world applications. As shown on table 5, the overhead is

at an average of 20% with only monitoring and 50% when controlling. But this

overhead decreases when the same sequence of syscall is made multiple times.

For example, in the table 5, the overhead almost disappears when using monitor-

ing facility and the number of requests (against an Apache server running in the

controlled VM with a Xen hypervisor) increases.

This approach of auditing an operating system from the outside can lead to new

approaches in security virtualization. Starting from the fact that a VM OS can be

corrupted and that an OS is almost impossible to be completely verified, running

critical applications on it, can lead to disrupt them. [CGL+08] showed that con-
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Number of requests 1 2 32 256 1024

Xen 1.02 0.94 0.87 0.84 0.85

Xen+Monitor 1.23 0.94 0.88 0.84 0.85

Xen+Control 1.57 1.54 1.50 1.49 1.50

Table 5: Request execution time (in seconds) against an Apache server.

trolling system calls from the outside of the VM can be used to protect applications

from disrupt OS by making the critical application directly interacts with the hyper-

visor. In this case, the hypervisor creates a double isolation barrier (cf. figure 16).

The first one is located between the VM and the hypervisor through the usage of vir-

tual hardware. The second barrier is located between the critical applications and

the virtualized operating system itself. The second barrier is based on cryptograph-

ically protected system calls between the application and the hypervisor to avoid

integrity or confidentiality corruption at the virtualized kernel level. Using this

solution, the virtualized operating system can not control the critical application.

Moreover, the virtualized OS can not inspect the memory of the critical application

because it is protected through cryptograhical algorithms. In consequence, even if

the virtualized operating system is corrupted, it does not disturb the running of the

protected critical software. This can not be done without virtualization and system

calls control from outside of the VM.

The drawback is that the API allowing Auditing and Monitoring process can

be used to create specialized malware. Moreover, those API can contain flaws (e.g.

buffer overflow) that permit to corrupt the hypervisor. And, thus, it should permit

to execute code at the hypervisor level.

4.3 Intrusion Detection System

As explained in the beginning of this section, security applications running directly

on the OS have a major flaw: if the OS kernel is corrupted, the security applications

will be too. Using virtualization, security applications can be put outside of the

VM. To leverage this new architecture capability, special intrusion detection sys-

tem (IDS) have been developed [GR03, KC05]. First, normal IDS have been put

outside the VM to monitor it using memory inspections or other means as seen in

section 4.2. Recently, new interfaces have been developped to plug IDS outside of

a VM. These interfaces are implemented inside the hypervisor. This brings the ca-

pability to have an IDS that is not resilient in the OS (as network IDS for example).

Moreover, the IDS has the same level of information of what is happening on a OS

as a host IDS. Moreover, it brings the ability to control interactions between the
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Figure 16: Hypervisor with two isolation barriers (in grey)

OS and the underlying hardware that can not be done even by HIDS. Those special

IDS combine the advantages of HIDS and NIDS with the ability to manage hardware

events. By doing so, they are able to have a very precise view of what happens in

the VM. Moreover, they are able to monitor network events and acting as network

IDS too by plugging on the software network bridges. Not only IDS can be plugged

to those security interfaces on hypervisors. Antivirus and other malware detections

systems can be used to leverage the new capacities of virtualization technologies.

For example, a virtual IDS is able to detect and block a network packet con-

taining a known malicious payload. Contrary to a network IDS that is only able to

block the network packet after it has been sent and during its travel on the network,

the virtual IDS can block the syscall. Indeed, by controlling system events, a virtual

IDS is able to parse the arguments sent to a syscall. A virtual IDS is able to read

the arguments of the “write” syscall on the “socket” and particulary the data field.

Then, it can verify if it contains a known malicious payload and if it is the case,

deny the syscall. In this case, the payload will not travel on the network. Moreover,

using this method, the virtual IDS is able to detect payload even in SSL sockets by

inspecting the data sent through the socket before it has been encrypted. Contrary

to a host IDS that is running on each operating system, the virtual IDS is able to

run one time for all the VM running on the same physical computer using special

API in the hypervisor (like VMI for VMWare). And a host IDS can not be trusted
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Figure 17: Virtual Distributed Intrusion Detection System

after the OS kernel corruption (i.e. because, in case of kernel corruption, the host

IDS can be stealthy modified) whereas a virtual IDS is isolated from the VM and its

kernel and can be trusted even after VM total corruption.

The drawback is that, like the auditing and monitoring process, the API used to

connect IDS or other security components can be used to leverage new specialized

malwares. Those malwares can be able to inspect memory of the entire computer

i.e. VM and hypervisor. Also, the API can include flaws (e.g. buffer overflow)

allowing to execute code at the hypervisor level.

4.4 Global Security Framework

With virtualization, the complexity of networks and virtual networks grows fast

with a large number of VM and hypervisors. Virtualized Distributed IDS [KC05]

(vDIDS) are becoming essential to closely monitor those large virtualization facil-

ities.

The figure 17 shows that in vDIDS, each hypervisor runs multiple IDS sensors
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in dedicated VM, and all are linked by a private virtual network. As shown on fig-

ure 17, they are not limited to one kind of sensors but use many of them to have a

global view of the virtualized information system. Moreover, some of these sen-

sors are specialized for the detection of VM interactions. Others are specialized for

the detection of illegal shared physical resources between VM. For example, they

can use classical NIDS. They can also use IDS that are specially crafted for VM

technology like IDS outside VM. Finally, virtualization brings easier and cheaper

architectures to deploy. Moreover, by using specialized and isolated network for

communication between IDS sensors with virtual networking, the monitoring net-

work can be isolated from the classical network (i.e. the monitored one) without

any expense.

The drawback is that the framework is expensive to deploy. The global security

framework requires to run a VM (at least) on each hypervisor and to setup the

virtual private network. Moreover, the framework also requires the setup of each

underlying security components (e.g. HIDS, NIDS).

4.5 Distributed Access Control

Using advanced security components like mandatory access control on system

calls like SELinux [LS01] and MAC on inter-VM interactions [SJV+05b], a global

mandatory access control has been proposed [MTS+06]. It ables to control at a

fine grained level the interactions between applications in different virtualized OS.

In practice, it is possible to control the interactions between two applications that

are located in two different VM if they use overt channels to communicate. This

could not been done without virtualization technologies. Distributed access control

grows with high-interaction VM in grid computing and other distributed architec-

tures like Cloud.

The major drawback are those of Mandatory Access Control, already men-

tioned in section 3.4.2.

4.6 Forensic

Common system loggers depend on the integrity of the underlying OS they moni-

tor. For example, syslog events can not be trusted after the corruption of the kernel

on the monitored operating system. Moreover, most of the time, the events do not

permit to replay the attacks and are not complex enough to contain deep informa-

tion. With the missing of such information, the replay mechanism misses critical

events that include non-deterministic events12 that are created during attacks. With

12Non-deterministic events are the one where loads, time, random generator or other non-

deterministic mechanisms are used.
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non-deterministic events, it becomes impossible to replay as identical a previous

program execution on VM.

The virtualization technology allows to replay the system’s execution before,

during and after the attack using checkpointing and resuming capability. This per-

mits to go back in time and observe the exact behavior of an OS from the start to the

end of an attack [DKC+02]. It can be done by logging all the input/output of a VM

at the virtualized hardware layer level. Under classical OS, it is almost impossible

to achieve the same goals because low-level hardware logging is complex to do.

Moreover, those events can be corrupted as soon as the attacker can interact with

the system.

[DKC+02] proposed the ReVirt system (“Replay Virtual machines”) that al-

lows to log at the hypervisor level every operation made in a VM. It permits to

replay an almost perfect runtime. It is particularly useful to study attacks because

it permits to replay it over and over with always the same runtime. Running the

same exploit on the same system can cause a different runtime because of multiple

parameters (e.g. time or the load of the computer). Their system has been applied

on several virtual machines:

• POV-Ray: a VM running raytracer application;

• kernel-build: a VM that recompiled its kernel continuously;

• NFS kernel-build: another VM recompiling its kernel continuously;

• SPECweb99: a VM running the SPECweb99 benchmark;

• daily use: a VM used for classical network usage (i.e. web browsing).

As shown in the table 6, the overhead of running VM with logging facility is

small: always less than 8% compared VM without logging facility. Moreover, the

overhead in term of log size is also quite small. Finally, the replay is at least as fast

as running a normal VM and at best is 97% faster.

The drawback is that the forensic framework allowing logging and replaying

of virtual machine’s runtime is not trivial to setup. It required to install the logging

facility for each VM. Moreover, the log files are large (more than 1GB per day) and

need to be stored.

4.7 Summary

In this section, we have presented all the security mechanisms and components

that are currently or will soon be provided by virtualization technologies/vendors

or studied by researchers in order to prevent attacks of section 2 and forthcoming
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Workload Runtime with logging Log growth rate Replay runtime

POV-Ray 1.00 0.04 GB/day 1.01

kernel-build 1.08 0.08 GB/day 1.02

NFS kernel-build 1.07 1.2 GB/day 1.03

SPECweb99 1.04 1.4 GB/day 0.88

daily use ≈ 1 0.2 GB/day 0.03

Table 6: Logging and replaying overheads and logs size for ReVirt.

ones to really happen on virtualized architectures. We presented what are existing

means to protect hypervisors according to whether they are type I or type II ones.

For type II hypervisors, the main security risks rely on the fact that they simply are

classical processes, like any other one, running on the host OS. It is quite simple to

take the control over it. Undoubtedly, the best way to secure type II hypervisors is

to switch to type I ones.

For type I hypervisors, the security problems remain numerous. In addition

to reduce the size of code needed to be trusted (i.e. the TCB), and the (not so

good) possibility of running classic security components, there exist some new

approaches that aim at securing the hypervisor layer itself. GuarHype protects

hypervisors, acting itself as a meta-hypervisor.

Some other approaches focus on virtual machines protection. Some aim at

guaranteeing the integrity of virtual machines (using software, hardware (TPM, or

mixed (vTPM) technics). Some other prefer to observe and control what is happen-

ing in the VM: they audit or monitor the system.

Some approaches focus on security of shared resources, again using soft or

hardware technics. The most advanced approaches try to benefit from the strong

security potential that present Access Control mechanisms, such as Mandatory ac-

cess control between VM (sHype) and even between physical hosts.

More general approaches are also appearing and propose global security frame-

works in order to supervise the virtual network, and to ensure a distibuted access

control and even to be able to provide forensics and offline attacks analysis.

5 Conclusion

No one can ignore the explosion in the computer virtualization market. Virtual-

ization appears anywhere: on desktop computers, servers, clusters, grids, mobile

phones, and in cloud computing. As virtualization groups numerous physical com-

puters into virtualized ones on only few servers, reaching high privileges on such
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architectures is very attractive for attackers. As the technology evolves fast, many

flaw appear, and security updates are (for the moment) not so often than on some

classical unvirtualized systems.

Along this report, we have presented the different known attacks on virtualiza-

tion technologies: attacks from VM to hypervisors, between VM themselves or from

hypervisors to VM. All of these attacks are able to break the three main security

properties: integrity, confidentiality and availability. That is why having a proper

implementation of hypervisors and security components dedicated to virtualization

security, is essential. We presented the actual security measures provided by ac-

tual technologies, such as protection of VM and hypervisors, and also of virtual

networks. But many things remain to be done, as many of the presented measures

are still in the stage of prototypes, sometimes even only concepts. Actually, the

reality in security is merely isolation facilities. But virtualization and isolation are

not security components. In addition, they must be secured.

Moreover, it is more than probable that first viruses for virtualization layers

arrive soon.

Virtualization vendors need thus to increase the quality of hypervisor while re-

ducing the size of their TCB. They should quickly evaluate them (or be able to

provide strong security level assertions) in order to state minimum security guar-

anties.

Futures security trends, as the size of the “virtual(ized) world” exponentially

increases, should provide strong security properties enforcement, as hypervisors

have the task of isolate OS and control accesses and interactions between VM. Of

course, security components, whether outside or inside VM, such as MAC mecha-

nisms, IDS, anti-malwares, anti-viruses, distributed IDS will be usefull to manage

globally all the virtual machines. In addition to those softwares components, pro-

cessors vendors still work hard to propose strong protection mechanisms at the

processor level. But even there, we have seen that many ways exist to bypass the

protection. However, it is possible that processors vendors soon propose on-chip

hypervisors, verified by TPM modules.

But new potential usages of virtualization may bring new flaws, that maybe

noone has even imagined.

For example, the gold age of “Cloud computing” may lead to virtual archi-

tectures with thousands or even millions of VM. Everyone has to understand that

the entire computing world seems to be going to be totally virtualized (at least the

servers and their services). If no solutions allowing strong security and easy to use

administration tools are soon provided, security in such architectures may quickly

tend to zero, and the computing world may collapse.
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