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A CLASS OF ELECTRO-MECHANICAL SYSTEMS: LINEAR
AND NONLINEAR DYNAMICS

FRANCESCO DELL'ISOLA
FABRI1Z1I0 VESTRONI
STEFANO VIDOLI

Dipartimento Ingegneria Strutturale e Geotecnica, Universitd degli Studi di Roma "La Sapienza”

e-mail: francesco.dellisola@uniromal.it

The linear and nonlinear problems of dynamics of some electro-
mechanical systems, characterized by a gyroscopic internal coupling, are
analyzed. Since the technical importance of this system lies in the po-
ssibility of damping and controlling structural vibrations, the interest
is focused on the energy exchanges between the mechanical and elec-
tric components. In order to maximize these energy transformations,
the optimal values of the system parameters and their modifications in
the nonlinear case are investigated.

Key words: electro-mechanical system, energy transformation, structural
vibration

1. Introduction

Different kind of electromechanical coupling phenomena has been used in
engineering applications. An exhaustive and detailed discussion of the founda-
tions of this part of engineering science can be found by Crandall et al. (1968)
which also includes useful references. However, because of the technological
state of art before 1990, the consideration of piezoelectric effect was limited
to some field of applications in optics and electronics.

After that date, new energy transducers based on the piezoelectric effect
became available being able to exert forces up to hundred Newtons; more-
over, they are as light as few grams and their typical dimensions are of the
order of centimeters (see for instance Near, 1996). Mathematical models de-
scribing their behavior are extensively discussed by Rogacheva (1994). How



these transducers can be used in structural mechanics is examined in Gandhi
and Thompson (1992), Culshaw (1996) and Cudney et al. (1999).

The typical electro-mechanical structure damping of mechanical vibrations
by means of an electrical and purely passive shunt is introduced by Hagood
and von Flotow (1991) and Valis et al. (1991). The electric circuit connected
to the piezoelectric transducer is resonant with a mechanical mode and its
passive impedance supplies the damping device.

The aforementioned references only partially reflect the wide interest which
has been devoted to the study of electro-mechanical coupling phenomena re-
lated to the use of piezoelectric actuators and sensors; for further details we
quote Utku (1998) and Fuller et al. (1996). We explicitly remark that both the
passive and active control methods can be used when exploiting piezoelectric
transducers. In Fuller et al. (1996) the problem of active control is addressed,
while in Hagood and von Flotow (1991) and Valis et al. (1991) only conserva-
tive devices are considered: the latter choice may be preferred when one needs
intrinsically stable systems and/or structures which show an electromechani-
cal response independent of the external excitation. However, we stress that
conservative circuital elements can be synthesized using active elements.

In this paper the attention is focused on a class of electro-mechanical sys-
tems introduced in Vidoli and dell’Isola (2000, 2001), dell’Isola et al. (2001)
and Alessandroni et al. (2001); a distributed technique for structural control
is realized connecting a set of piezoelectric actuators through electric trans-
mission lines or nets. Since the control system is designed to have the same
governing differential equations of the mechanical system, a modal resonance
is used to efficiently transduce the energy from the mechanical to the electrical
form.

A preliminary linear analysis is worked out to better investigate the condi-
tions of maximum coupling due to the gyroscopic terms: in the non-dissipative
case, a veering phenomenon of the wave-speeds allows for the selection of a
critical value of the parameters; in the dissipative case, a local maximum in
the damping ratios indicates the region where an efficient dissipation of the
mechanical energy takes place.

Here we analyze the effects, caused by the introduction of some nonlinear
terms, on the interaction between an electrical and a mechanical mode. The
nonlinearities concern the piezoelectric constitutive relation; indeed, as a result
of their ferroelectric nature, piezoelectric materials exhibit hysteresis and non-
linear saturation effects, see for instance Smith and Ounaies (1999). As a first
approximation we consider a one-to-one relation assuming a cubic dependence
between the polarization and the applied electric field.



When the nonlinearity is considered, the numerical evidence shows a de-
creasing efficiency of the system in transducing energy near the critical linear
condition; a different, but yet convenient, tuning of the electric parameters
depending on the strength of the nonlinearity may, however, be used.

Finally, the possibility of a different mechanism of energetic exchange
is investigated through the method of multiple scales. We look for a super-
harmonic resonance allowing for a relevant transformation of energy from the
mechanical to electrical form.

2. Formulation of the problem

Two common features of the control systems presently used for vibration
damping are the differentiation between the sensing and the actuation sys-
tems, and the localization of PZT actuators at a small number of specific sites
on the vibrating structure. Both features are limits to the control efficiency.
Indeed, the first one implies the need for high power in concentrated struc-
tural regions and the need for a coordinating active system that controls the
actuator action in response to the input from the sensors. The latter implies
an optimal localization problem (for both the actuators and sensors), the so-
lutions of which actually depend on the particular mechanical vibration mode
under consideration.

In order to bypass these problems in Vidoli and dell’Tsola (2000, 2001),
the concept of parallelism between mechanical structures and electric control
systems is introduced: a structure is controlled by means of a uniform distribu-
tion of actuators connected through an electric transmission net. An internal
resonance phenomenon between structural modes and electric modes is then
exploited to optimize the control efficiency. A suitable tuning of the net im-
pedance turns out to be the tap for the electro-mechanical coupling and for
efficient energy transfer. These control systems allow for a strong control ac-
tion and shorter energy transfer times between the electrical and mechanical
forms. Moreover, net-control systems avoid the problems of the optimum po-
sitioning (of actuators and sensors) being able to manage all the mechanical
modes through the same distributed configuration of its collocated actuators.

In dell’Isola et al. (2001) and Alessandroni et al. (2001), the electric ana-
logs for the Elastica and the Kirchhoff-Love plate are synthesized and linear
coupled electromechanical vibrations are studied. As forecast in Vidoli and
dell’Isola (2001), the piezoelectric coupling of a structure with its electric ana-
log is proven (in Alessandroni et al., [2]) to be able to efficiently control every



mechanical mode with the same choice of the electrical transmission impe-
dance.

2.1. Description of the systems

We consider as a mechanical structure, to be controlled, the plate drawn
in Figure 1, where the darker rectangular patches represent the piezoelectric
actuators to be suitably interconnected via an electric circuit. We call 2h the
thickness of the plate, £ and b its sides, and d <« £ — the diameter of the
influence region for each patch. When the ratio /¢ < 1, and b ~ d, the plate
can be modelled as a beam.

Fig. 1. Dimensions of the considered structures

The considered topologies of the electric interconnections will be those spe-
cified in the following Figures 2, 3, 4 and 5. In all the considered networks,
the two-port capacitive elements represent the impedance of piezoelectric ac-
tuators, as the equivalent electrical circuit of a piezoelectric transducer is in
a wide range of circumstances given by the parallel connection of a capacitor
and a deformation — driven current generator; for a detailed discussion of this
topic refer to Zelenka (1986).

The homogenized governing equations of the sketched networks respecti-
vely are:

e for Figure 2 the damped d’Alembert equation (Vidoli and dell'lsola,
2001);

o for Figure 3 the damped Elastica equation (Alessandroni et al., [2]);



Fig. 2. Standard second order transmission line

e for Figure 4 the damped membrane equation (Vidoli and dell’lsola,
2001);

o for Figure 5 the damped Kirchhoff-Love plate equation (Alessandroni et
al., [2]).

Remark that the circuits in Fig.3 and Fig.5, although governed by con-
servative equations, are constituted by some active elements, i.e. the negative
inductances. These latter can be synthesized for instance using gyrators or the
Auntoniou circuit. However, the stability of the considered electric networks is
assured once the employed active elements (which in general will be operatio-
nal amplifiers) behave linearly.

Here we investigate those situations, occurring in the presence of high pola-
rization voltages, in which the piezoelectric actuators could show a nonlinear
or eventually hysteretic behavior (Smith and Ounaies, 1999). Therefore the
evolution equations for the proposed electro-mechanical systems become non-
linear. In the performed analysis we limit our attention to a cubic nonlinear
electric constitutive relation between the applied voltage qb and the polariza-
tion P in the piezoelectric elements

P =C1¢ - Cs¢® Cy >0 C3>0 (2.1)

as a consequence, the constitutive relation for the piezoelectric bending actu-

ators becomes
_ kmm  Kme X _ 0
-k me Cl Qb 03 (?53

where M and x are the bending moment and curvature, respectively. Other
nonlinearities will be addressed in subsequent investigations, for instance fol-
lowing the ideas discussed in Richard et al. (1999).

M
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Fig. 4. Second order transmission net



Fig. 5. Fourth order transmission net

2.2. Modal analysis

The introduced electromechanical system needs to be designed in order to
optimize its mechanical damping performances. Indeed, the concept on which
it is based consists in a multiple internal electromechanical resonance. Such
an optimization procedure becomes arduous if the analysis is attempted for
a lumped electric network connected to a continuous structural member; in
this case one should use a numerical solution for a system of coupled PDEs
with a set of Lagrangian ODEs in a wide range of electrical parameters and
initial data. Instead we have chosen to homogenize the governing equations of
the electric network and perform a quasi-analytical optimization for a set of
coupled PDEs. This is a standard approximate analysis often used in structural
mechanics (Wozniak, 1993).

All the considered net-control systems are governed by partial differential
equations of the following type



A(u) +ii — C(¢) = 0
(2.2)

B(¢) + ¢+ C* (1) + D = edp”

Here u and ¢ stand for the mechanical displacement and an electric potential
time-integral, respectively. Thus the operators A, B and C physically mean
the mechanical operator (accounting for the structural mass and stiffness), the
electrical operator (accounting for the net inductance and capacitance) and
the coupling operator (accounting for the piezoelectric effect). From a mathe-
matical point of view, A and B are linear self-adjoint and positive definite
operators, while C is required to be simply linear. Finally D and ¢ are scalars
representing the net resistance and nonlinearity coefficient respectively, and a
superscript * 1s used to indicate the adjoint operator.

In the following table the corresponding operators are associated to the
electrical networks and underlying structures.

A(u) B(¢) C(¢)
Flg 9 uﬂ/ ¢‘H ¢H
Fig. 3 ’u,”/ ¢IV éﬂ
Fig.4 | AAu A A
Fig.5 | Adu AA¢p A

Eqgs (2.2) are projected on a basis of eigenfunctions ¢; and x; for the
operators A and B. If

<C(Xj)1'¢i> = (Xja C*(%)) LF ]

are negligible', then it is possible to study, instead of (2.2), a sequence of
ODEs of the type

Aju; + u; + C;‘f;.‘)g‘ = ()
(2.3)
Bidi + ¢i — Cyti; + Diy + CiDiu; + Z eijikdbididr, = 0
where
€ijtk = {XjX1Xk» Xi)

and no sum over the repeated index 7 is understood. In what follows we will
omit the index 7 and limit our attention to the study of the influence on

'As proven in Vidoli and dell’Isola (2001) such a condition can be verified suitably
choosing the boundary conditions for the electric net.



the ith mode of the nonlinearity arising from €;;;; only, postponing a more
detailed analysis to further investigations. The performed analysis will be well-
grounded when the frequencies w; & w; & w;, are not resonant with w;, being
wy, = /By, for h = 3,1, k,1.

The eigenbases used to get the coefficients in (2.3) will be

Yi(z) = xi(z) = V2sin(irz) z € [0,1] (2.4)
for the beam, and
9 .
’%‘(:L‘, y) = Xa’(m: y) = ﬁ Sin(h,‘fﬂ) sin %‘U
(2.5)
b
z € [0,1] y € [0,7] =

for the plate. The indices h; and k; which determine the modal forms are
defined according to the following table

Modes labeling

i=1[2]3]4]5]6][7]8]9
hi 111221 21313
ki 1{2]1/23/1/3|21]3

The following tables will allow for the identification of the parameters

appearing in (2.3) for all the considered PEM structures:

B C
Second order ; deM 2gmed b
line (Fig. 2) mLC1Dp "N CiDp
Fourth order ; 4 d*M 20 4 b
line (Fig. 3) (LC\Dp Ime®\| ¢ D
Second order ‘ d2¢M ) 1
h2 + k22| (B2 + k? R} + k) gmed
net (Fig_ 4) ( 1 + 2 ) ( 2 + 2 ) Tr2bL01DP ( 1 1 )gme Cl DP
Fourth order . d*M 1
he+ k)| (B + k) Wi + k) gmed
I]_et (Fig 5) ( ”z + 1 ) ( 1 + 1 EbLClDP ( 1 + ] )gme CIDP




D €

Second order 2 \/7 9 74Cs3d*Dp
line (Fig.2) | ™RC1V Dpt |2 CH%
Fourth order 22 \/W 9 74C3d Dp
line (Fig.3) | m™RC\V Dpt | 2 C%

Second order |  £2 \/T 81 74 Csd*Dp
net (Fig.4) |7°RC\V Dpth|4n C3!
Fourth order | ¢2 M |8171C3d*Dp
net (Fig.5) |m2RC1\ Dptb |4y  C3!

=

The meanings of the symbols are specified by:

Symbol | Name

Ome piezoelectric coupling coefficient [N/V)

M beam or plate mass [Kg]

Dg, Dp | beam, plate bending stiffnesses [Nm?, Nm]
n aspect ratio of the plate [b//]

L inductance [H]

R resistance (]

Ci capacitance [F|

Cs capacitance [F/V?

The displacement was made dimensionless with respect to d and the time-
integral ¢ of the electric potential with respect to d?,/M/(C1£b).

The parameter B can be electrically tuned and it is actually used to get the
maximum dynamical coupling between the modes (suggestive animations sho-
wing this tuning procedure can be found at http://www.disg.uniromal.it/ncs).
Incidentally, high values of the parameter B are preferable, since the produc-
tion of high inductances is of a high technological cost.

Finally note that the ratio B/A for the fourth-order line and net (Fig.3
and Fig.5) is independent of the mode number; this means that a unique
tuning of the electric parameters in B allows to control all the modes of the
continuum structure (beam or plate).



3. Linear spectral properties

3.1. Non-dissipative case: eigenfrequencies

The linear problem is obtained in the limit for ¢ — 0. First of all we
analyze the non-dissipative case when the parameter D vanishes

Au+ii+Cd=0
(3.1)

B¢+ ¢—Cu=0

For A and B being real positive numbers, the system is conservative. Thus
the roots of the characteristic polynomial

s2C? + (s> + A)(s>+ B) =0 (3.2)

are pairs of conjugate imaginary numbers s = fw;

wlz\/%[(02+A+B)+6] w2=\/%[(02+A+B)~6] (3.3)

where

6§ =+/(C?+ A+ B)? - 4AB

when C — 0 then w; = v/A and wy — v/B.

Figure 6 shows the two eigenfrequencies w; as functions of the ratio B/A
and for the fixed value C = ,/A/50 of the coupling coefficient; the colors
(yellow and blue) mean the nature of the associated eigenvector (mechanical
and electrical respectively). The m, e and em subscripts are also used to
indicate the same fact. In Fig. 6 the dashed lines represent the eigenfrequencies
computed for a vanishing value of the coupling parameter C; in this case, the
two loci of frequencies cross each other and do not interact.

There is a range of the ratio B/A (namely around 1) where all the eige-
nvectors have components of comparable energy: in this range there is no wave
purely mechanical or purely electrical. This is a typical behavior of systems
characterized by veering phenomena in the eigenfrequencies curves (Perkins
and Mote, 1986; Vidoli and Vestroni [20]).

In Figure 7 both the eigenfrequencies w; and the eigenvectors are plot-
ted as functions of the parameter B; the dashed curves refer to the unco-
upled case (C = 0). It is evident how the, initially mechanical, eigenvector
{u1,u2}|B=0 =~ {1,0} continuously transforms into the electric eigenvector
{u1,u2}|Boc = {0,1} and vice versa; the region in which all the eigenvector
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Fig. 6. Veering of eigenfrequencies

components have comparable values is called veering region and labeled by
the letter ¢. In Vidoli and Vestroni [20] the length ¢ is estimated by means of
the analytical representation of the eigenvectors for different kinds of coupling,
namely elastic, gyroscopic and inertial.

Thus when B ~ A, the electro-mechanical coupling is maximum; a time-
evolution problem starting from purely mechanical initial data leads to a back
and forth exchange of energy between the mechanical and electrical forms as
shown in Figure 8. Four different kinds of energies are involved: the mecha-
nical elastic energy (Au?/2), the kinetic energy (#2/2), the electric inductive
energy (B¢?/2) and the electric capacitive energy (¢ /2). The total energy is
constant since we are considering the non-dissipative case. The time interval
T = 7/|w; — wy| represents the time elapsed for a complete transfer of energy
between the mechanical and electrical forms.

3.1.1.  Diagonalization

In order to perform a nonlinear analysis of Eqs (2.3) we find it useful to
diagonalize its linear part. Due to the presence of the gyroscopic terms, the
linear isomorphism Y : (u, ¢) — (71,72) that transforms the linear part of the
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Fig. 8. Time evolution of mechanical and electric energies (non-dissipative case)



system (2.3) with D vanishing, in the standard diagonal form
i + win; =0 i=1,2

necessarily involves the time-derivative operator. Thus the system can be dia-
gonalized only in the state-space through the linear transformation

- T - [ 0 c1 €y 0 17 u |
T2 _ 0 c3 —cg 0 q‘) (3 4)
?:}1 —A(,‘2 0 0 Cy4 m
where
. _B(-A+B+C+9) . _C
LT TS(A+ B+ C240) 2=
B(—-A+ B+C?%-5%) . )
“T T T5(A+ B+ CE ) “ = §(A-B-C7+3) (35)
2AC?
Cs

T 3(—A+B+C2+9)

3.2. Dissipative case: damping ratios

When the net resistance D does not vanish, the system is dissipative; the
characteristic polynomial is

s?C%* 4+ (s> + A)(s* +sD+B) =0 (3.6)

the complex roots of this polynomial physically represent the damping ratios
(real parts) and the pulsations (imaginary parts) of the waves.

In Figure 9 the damping ratios are drawn as functions of the ratio D/C for
B = A; again we use the colors and the letters m and e to indicate the nature
of the associated eigenvectors. The presence of a maximum value for the lower
branch of the damping ratios is evident, the electric dissipation (namely the
resistance parameter D) should be large enough to dissipate energy but small
enough to allow for the electro-mechanical transduction. The dashed line is
the locus of points {D/C,D/4C}; thus the maximum mechanical damping
ratio of about 0.5C is attained when D =~ 2C.

Once the optimal values for the parameters are chosen, the time-evolution
from a mechanical initial data shows an efficient energy dissipation, Fig. 10.
Indeed, the part of mechanical energy transformed into the electric form is
damped and can not return anymore in the mechanical system.



Darping ratics

e

Fig. 9. Damping ratios versus D/C for B = A

4. Nonlinear analysis

4.1. Numerical evidence

The effects of the nonlinearity on the energy exchange between electrical
and mechanical forms have been analyzed integrating numerically Eqs (2.3).

For fixed values of the coupling coefficient (C = 1/A/50) and of the net
resistance (D = C/2), the dissipation of total energy after a time period
T = 7/|w) — wa|, which is the time elapsed for a complete transfer of energy
in the linear non-dissipative case, has been computed for a wide range of the
parameters € and B/A: the results are shown in Figure 11.

As expected, the optimal value of the electric parameter B/A is different
and depends on the intensity of the nonlinearity . In Figure 11 the dashed cu-
rve represents this optimal value B/A as a function of ¢, evaluated numerically
for a vanishing value of the electric dissipation D. The monotonic increase of
this optimal curve with respect to the strength of the nonlinearity ¢ is a conve-
nient situation, since it involves lower values of the optimal inductance. Also
note that for high values of the nonlinearity, the level of dissipated energy tends
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Fig. 10. Time evolution of mechanical and electric energies (dissipative case)

to be low; indeed, as Figure 12 also shows, there exists a nonlinearity threshold
beyond which the complete energy transfer is not possible anymore: again more
details and animations can be found at http://www.disg.uniromal.it/ncs.

In the first column of Figure 12 the time histories of the energies are
computed in the non-dissipative case; the darker regions represent the amount
of mechanical, both kinetic and potential, energy. The time intervals elapsed
for a complete transformation of the energy are longer than in the linear
case, but these transformations are achieved through lower values of the net
inductance.

Also the optimal value of net resistance, that maximizes the energy dis-
sipation, increases with respect to the intensity of the nonlinearity; indeed,
in Figure 11b the darkness is proportional to the energy dissipation. From a
technological point of view, this is a favorable situation since the production
of inductances with low associated resistances is of a high technological cost.

In the second column of Figure 12 the time histories of the energies in the
dissipative case confirm the aforementioned conclusions: the time needed to
damp the vibration is sensibly larger even if it is obtained through a more
favorable tuning of the electric parameters.

4.2. Multiple scales approximation

Since, in the linear case, the energy transduction is essentially based on
an internal resonance phenomenon w; =~ w9, the cubic nonlinearity, affecting
the electric frequency, progressively destroys the resonance condition. Thus for
high values of the parameter ¢, the energy transduction is negligible and it is
preferable to seek for a different mechanism of energetic exchange. To this end,
led by the cubic nature of the nonlinearity, we investigate by an asymptotic
method the case of a three-to-one internal resonance.
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Fig. 11. Energy dissipation as function of (a) B/A and ¢; (b) D/C and e. In the
darker regions the dissipation is higher
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First of all, by means of the linear transformation (3.4) the nonlinear sys-
tem is transformed into

i+ wim = 3eca(in + 72)? (7 + 7i2) )

it + wane = 3ecs (M + 72)? (i1 + 7i2)

The solution is found using the method of multiple scales (Nayfeh, 1981),
1.e.

To =1t T, := €t
(4.2)

ni(t,€) =\ (To, ) + enS(To, Th) + ...

for 7 = 1,2. The three-to-one resonance condition is achieved when w; =~ 3ws.

3 ﬁ i _,,,.--»-—---_-'-_—_-_-_-:_-_--‘_‘:_-_—_ﬂ._ _______ -. o™ = __'_

-
-

Low mduciances

B

0 A 5A 10A
Fig. 13. Solutions for the three-to-one resonance in terms of inductance

For every choice of A and C' this condition is verified by two possible values
for B; refer to the following table and Figure 13 (computed for A = 472 and
different values of C)

C = \/AJ50 B=8995A or B=0116A4
C =+/AJ5 B=85434, or B=0169A
C = /A2 B=7824A, or B=02884

Incidentally note that, from Eqgs (3.3), the condition ws ~ 3w; can not be
achieved by any choice of the parameters.



The modulation equations for the amplitudes a; and phases 3; of the
first-order solution

ngl)(Tg, T)) = ai(Th) cos|w;Ty + Bi(Th)] (4.3)

are found as follows

cqwd o
a\ (T)) = - 8:01 a3 siny
3 -2
ab(Ty) = cstwl(Swl w2)u%al Sin -y (4.4)
9(2¢q4 — c5)wi 2Tcsa900a caad
Y (T) = o + (2¢4 . 5) 2 o2 ( 582 1 ;af)wgcos’}“’f‘
81(cq — 2¢5)wi o

8 o

where v = 31 — 302 + ¢7| and we have introduced a detuning parameter o
such that w; = 3ws+e€0. Two stationary solutions of the modulation equations
(4.4) are analytically found

siny=0 = +y=n7w

_— 9(2¢4 — c5)wi a2t 2705wga1a2 n 4w o+ 81(cq — 2¢5)ws 02 =0
8 8(51 8
(4.5)
ay = 0
1(cs — 2¢5)w3
8 (C4 5 85)(.:)2 a% =0

While Eq. (4.5)2 represents a unimodal solution and, as a consequence, it
does not involve energetic exchanges, the solution (4.5); is satisfied by non-
vanishing values of both the amplitudes a; and a3. In Figure 14 the solutions
relative to Eqs (4.5); are plotted for different values of the coupling parame-
ter C and for the corresponding values of B < A leading to a three-to-one
resonance; the white (black) regions represent the regions of stable (instable)
solutions.

Increasing the coupling parameter C, two new branches of solutions arise.
This is shown in detail in Figure 15 where the gray and black branches respec-
tively, represent unstable and stable solutions.

When the three-to-one resonance is achieved with values of B greater than
A, the stationary solutions given by Eqs (4.5); are depicted in Figure 16. In



0 B

RV
T O e,
e .
Mageo,

g 0
e Iﬁ ' o i,
40 - 20 ) 20 £
s

Fig. 14. Regions of instability (black) and stationary solutions (for B < A)

this case, for every value of the coupling parameter the only stationary solution
is almost unimodal: the ratio between the amplitudes a; /a9 is, in fact, about
1/20.

Since stationary solutions of the modulation equations correspond to pe-
riodic solutions of Eqs (4.1) that do not involve exchanges of energy, we are
interested in stable solutions that are far from the stationary solutions. It is
easy to verify that the choice of a point P := (a;p,asp) in the plane of the
amplitudes, corresponds to a choice of the initial conditions for u(t) and ¢(2)
that satisfy

! 1 d(m -1
Egz—A—B—}-C‘z-i-—(«Ll] m = tan —* (4.6)
oo 2C m+ 1 asp

In Figure 17 the time-history of the mechanical displacement u and of the
electric potential time-integral ¢ is shown; the initial conditions are relative
to the point P in Figure 14.
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Fig. 15. Bifurcation of periodic solutiion (gray means an unstable solution)

We note that a relevant energy exchange takes place; also the time period of
the energy transformation is sensibly shorter than in the linear case. However,
we must remark a technological difficulty to realize this dynamical condition;
in fact, the available piezoelectric actuators are characterized by a coupling
coefficient C/+/A in the range 0.01 < 0.05, while the new branch of sensibly
coupled periodic solutions arises when C/ VA ~0.7.
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Fig. 16. Regions of instability (black) and stationary solutions (for B > A)
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Fig. 17. Time evolution of u and ¢ with initial conditions in P (C = /A/2,
B = 0.288A4)

5. Conclusions

The dynamics of a coupled electro-mechanical system has been analyzed
in order to find optimal values of its electrical parameters and increase its
efficiency to control mechanical vibrations. Some effects of a cubic nonlinearity
in the constitutive relation of the piezoelectric actuators have been considered.

An efficient transfer of energy is obtained, in the linear range, through a
veering phenomenon (w9 ~ wi). Under the same conditions, a purely electric
dissipation damps the mechanical vibration.

The introduction of the cubic nonlinearity apparently decreases the system
performances in terms of the dissipated energy and also increases the time
interval needed for a complete energy transformation. On the other hand, it
allows for a more convenient tuning of the net inductance and net resistance.

Moreover, the nonlinearity allows for a different mechanism of energetic
transformation in the range of a super-harmonic resonance (namely w; ~ 3w,),
which has been investigated by the method of multiple scales. It is found that
a relevant energetic transformation can be obtained only with high values of
the piezoelectric coupling coefficient, technologically unavailable today, and
with a tuning of the net inductance about four times larger than in the linear
case.



Although the previous considerations could be valid for a wider class of
electromechanical systems, in particular for those in which the electric network
is analogous to the structural member (Alessandroni et al., [2]), we postpone
any conclusions concerning this problem to further investigations.
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Klasa ukladéw elektromechanicznych: dynamika liniowa i nieliniowa

Streszczenie

W pracy przedstawiono analize liniowego i nieliniowego zagadnienia dynamiki
ukladow elektromechanicznych, charakteryzujacych sie wewnetrznym sprzezeniem zy-
roskopowym. Ze wzgledu na techniczng warto$¢ problemu tlumienia i sterowania drga-
niami, gléwny nacisk polozono na procesy wymiany energii miedzy podzespolami
mechanicznymi i elektrycznymi. W celu zmaksymalizowania przeplywu i transforma-

c¢ji energii okre§lono optymalne parametry ukladu i ich modyfikacje w przypadkku
nieliniowym.



