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VOGAN CLASSES AND CELLS IN THE UNEQUAL
PARAMETER CASE

by

CEDRIC BONNAFE

Abstract. — Kazhdan and Lusztig proved that Vogan classes are unions of cells in
the equal parameter case. We extend this result in two directions: we extend it to the
unequal parameter case and, even in the equal parameter case, we refine the partition
into Vogan classes.

Let (W,S) be a Coxeter system and let ¢ : S — Z. be a weight function. To this da-
tum is associated a partition of W into left, right and two-sided cells. Determining
these partitions is a difficult problem, with deep connections (wWhenever W is a fi-
nite or an affine Weyl group) with representations of reductive groups, singularities
of Schubert cells, geometry of unipotent classes.

In their original paper, Kazhdan and Lusztig described completely this partition
whenever W is the symmetric group in terms of the Robinson-Schensted correspon-
dence. Their main tool is the so-called *-operation. It is defined in any Coxeter
group (whenever there exists s, t € S such that st has order 3): they proved that it
provides some extra-properties of cells, whenever ¢ is constant.

There has been some attempt to extend this result for general ¢ (see for in-
stance [Xi]), but it provides only partial results. Our aim in this paper is to prove
that Kazhdan-Lusztig result relating cells and the *-operation holds in full gen-
erality. Even in the case where ¢ is contant, our results provide an extension of
Kazhdan-Lusztig result, by defining a generalization of the *-operation.

Commentary. In [Bon], the author used improperly the *-operation in the unequal
parameter context. The present paper justifies a posteriori what was, at that time, a
big mistake!

The author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT).



2 C. BONNAFE

Notation. We fix in this paper a Coxeter system (W,S) and a totally ordered abelian
group I'. We use an exponential notation for the group algebra A=Z[I']:

A= & Zv7,
rer

with v = v+ for all y, y’ €T. If yo €T, we set
Iepo=lr el ly =7}

Iy ={r€l' |y >7o}
As.,. = @ Zv7,
= Yo r =10

Asyy= @ ZV7
r>70

and similarly for I'<,,, I'<;,, A<y, and A.,,. We denote by ~ : A — A the involutive
automorphism such that v' =v-7.

1. Preliminaries

Hypothesis and notation. In this section, and only in this section,
we fix an A-module ./ and we assume that:

(P1) A admits an A-basis (my)cex, where X is a poset. We set
Mo = DrexAsoMy.
(P2) ./ admits a semilinear involution — : M — M. We set
Mgew={m e M | m+m =0}.
(P3) If x € X, then m, = m, mod ( ® Amy)

y<x

(P4) If x € X, then the set {y € X | y < x} is finite.

Proposition 1.1. — The Z-linear map

M > skew
m — m-m

is an isomorphism.

Proof. — First, note that the corresponding result for the A-module A itself holds.
In other words,

(1.2) The map A-o — Asew, @ — a — a is an isomorphism.

Indeed, if a € Agyey, Write a = Zyer r,v?, with r, € R. Now, if we set ay =Y,
then a = a, —a... This shows the surjectivity, while the injectivity is trivial.

>0 Iy vr,
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Now, let A : M-y — Moyew, m — m —m. For Z C X, we set M* = D Am, and
ML = BreqAsom,. Assume that, for all x € 27 and all y € X such that y < x, then
y € Z. By hypothesis, .#* is stabilized by the involution ~. Since X is the union
of such finite 2" (by hypothesis), it shows that we may, and we will, assume that
X is finite. Let us write X = {x¢,x1,...,X,} in such a way that, if x; <x;, then i <j
(this is always possible). For simplifying notation, we set m,, = m;. Note that, by
hypothesis,

(%) ﬁiemi+( & .Amj).
0<j<i
In particular, my = m,.

Now, let m € _#-, be such that m = m and assume that m # 0. Write m =
Z;:o a;m;, withr <n, a; €A,y and a, #0. Then, by hypothesis,
m=a,m;, mod( @ .Amj).

0<j<i
Since m = m, this forces a, = a,, which is impossible (because a, € A., and a, #0).
So A is injective.

Let us now show that A is surjective. So, let m € A gew, and assume that m # 0 (for
otherwise there is nothing to prove). Write m = Z;:o a;my, with r<n, a; € A and
a, #0. We shall prove by induction on r that there exists u € .# such that m =u—p.
If r =0, then the result follows from (1.2) and the fact that 71y = m,. So assume that
r > 0. By hypothesis,

m+m=(a,+a,)m, mod. #*,

where Z; = {x¢,x1,...,x;}. Since m +m =0, this forces a, € Agew. SO, by (1.2), there
exists a € A.y such that a—a=a,. Now, let m’"=m —am,+am,. Then m’+m’ =0
and m’ € ®,< j,Am;. So, by the induction hypothesis, there exists u’ € .#-, such
that m’ = ' —u'. Now, set u=am, +p’. Then u € #-y and m = y—u = A(u), as
desired. O

Corollary 1.3. — Let m € /. Then there exists a unique M € ./ such that

M=M,
M=m mod .#-,.

Proof. — Setting M = m + u, the problem is equivalent to find u € .#-, such that
m+u = m+ u. This is equivalent to find u € .#., such that y —pu =m — m: since
M — M € Maew, this problem admits a unique solution, thanks to Theorem 1.1. [

The Corollary 1.3 can be applied to the A-module A itself. However, in this case,
its proof becomes obvious: if a, =3  a,v7, thena=>, _ a,v7+3, ja_,v7is the
unique element of A such that @=a and a =a. mod A.,.
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Corollary 1.4. — Let & be a subset of X such that, if x <y and y € X, then x € . Let
M e _# be such that M=M and M€ #* + M~y. Then M€ M* .

Proof. — Let My € .#* be such that M = M, mod .#-,. From the existence state-
ment of Corollary 1.3 applied to ./ %, there exists M’ € .#* such that M = M’ and
M’ = M, mod .#%,. The fact that M = M’ € .#* now follows from the uniquenes
statement of Corollary 1.3. O

Corollary 1.5. — Let x € X. Then there exists a unique element M, € ./ such that

Mx =M,,
M, =m, mod .#-.

Moreover, M, € my +®y<, Asom,, and (M)yex is an A-basis of M .

Proof. — The existence and uniqueness of M, follow from Corollary 1.3. The state-
ment about the base change follows by applying this existence and uniqueness to
MX<, where X, ={yeX |y <x}.

Finally, the fact that (M,).ex is an A-basis of ./ follows from the fact that the base
change from (11, )cex to (My)yex is unitriangular. O

Corollary 1.5 gathers in a single general statement the argument given by
Lusztig [Lus1] for the construction of the Kazhdan-Lusztig basis of a Hecke algebra
(which is different from the argument contained in the original paper by Kazhdan
and Lusztig [KaLu]) and the construction, still due to Lusztig [Lus2, Theorem 3.2],
of the canonical basis associated with quantum groups.

2. The main result

2.A. Kazhdan-Lusztig basis. — We fix in this paper a weight function ¢ : S — I,
(i.e. p(s)= p(t) whenever s and ¢ are conjugate in W). We denote by .# the Hecke
algebra associated with (W, S, ¢): as an A-module, £ admits an A-basis (T;,)wew and
the multiplication is completely determined by the following rules:

TwTw = Ty if l(ww’)=L(w)+L(w),
(T, — v¢O) T, +v=¥H)=0, ifseSs.

Here, {: W — Z ; denote the length function on W.
We denote by ™ : s —  the involutive antilinear automorphism of .# such that

T,=T7".
w
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The triple (A,(Ty)wew, ) satisfies the properties (P1), (P2), (P3) and (P4) of the pre-
vious section. Therefore, if w € W, there exists a unique element C,, € # such that

C,=T, modiA&,

(see Corollary 1.5) and (Cy)wew is an A-basis of # (see Corollary 1.4), called the
Kazhdan-Lusztig basis.

2.B. Cells. — In this context, we define the preorders <;, <z, <.z and the equiv-
alence relations ~;, ~; and ~;r as in [KaLu] or [Lus3]. If C is a left cell (i.e. an
equivalence class for ~;) of W, we set

A= & ACy, A= & AC,

w<C w<C

and M(C)= #51C ) 701,

By the very definition of the preorder <;, #<:¢ and <:€ are left ideals of 2, so
M(C) inherits a structure of #-module. If w € C, we denote by c,, the image of C,
in M(C): then (¢, )wec is an A-basis of M(C).

2.C. Parabolic subgroups. — If I C S, we set W; = (I): it is a standard parabolic
subgroup of W and (W, I) is a Coxeter system. We also set
= @& AT,.

weWy

It is a subalgebra of 7, naturally isomorphic to the Hecke algera associated with
(W, 1,¢1), where ¢;: I — Z., denotes the restriction of ¢.

We denote by X; the set of elements x € W which have minimal length in xW}: it
is well-known that the map X; — W/W;, x — x W is bijective and that

X = {xeW;|Vsel, l(xs)>L(x)}
= {xeW | YweW, l(xw)=L{(x)+{(w)}.
As a consequence, the right #-module % is free (hence flat) with basis (Ty)rex,.

This remark has the following consequence (in the next lemma, if E is a subset of
7€, then S E denotes the left ideal generated by E):

Lemma 2.1. — If 3 and ¥’ are left ideals of ¢ such that 3 C¥, then:

(a) %,J = GBXGX] T;C,J'
(b) The natural map A ® 5, I — #'J is an isomorphism of F-modules.
(c) The natural map 5 ® y, (3 /3)— HV' | AT is an isomorphism.
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We will now recall results from Geck [Ge3] about the parabolic induction of cells.
First, it is clear that (Cy )wen; is the Kazhdan-Lusztig basis of ;. We can then define
a preorder <! and its associated equivalence class ~} on W in the same way as <y
and ~, are defined for W. If w € W, then there exists a unique x € X; and a unique
w’ € W; such that w = xw’: we then set

Gl =T,Cy.

Finally, if C is a left cell in W}, then we define the left #;-module M(C) similarly as
M(C’) was defined for left cells C’ of W.

Theorem 2.2 (Geck). — Let E be a subset of W; such that, if x € E and if y € W} is such
that y <! x, then y € E. Let 3=@®,,cgA C,,. Then

HI= & AGl= & AC,.

weXr-E weXr-E
Moreover, the transition matrix between the A-basis (Cy)wex,.r and the A-basis (G!)yex,.5
is unitriangular (for the Bruhat order) and its non-diagonal entries belong to A~.

Corollary 2.3 (Geck). — We have:

(a) <} and ~! are just the restriction of <; and ~; to W; (and so we will use only the
notation <; and ~).
(b) If C is a left cell in W;, then X; - C is a union of left cells of W.

3. Generalized *-operation

Hypothesis and notation. We fix in this section, and only in this
section, a subset I of S, two left cells Cy and C, of W;, and we assume
that:

(V1) There exists a bijection o : C; — C, such that the A-linear map
M(Cy) = M!(Cy), ¢y — Cow) Is in fact 7 -linear.
(V2) If {i,j}=1{1,2}, then fw e W, | we C;and w <, C;} =@.
Weset Ey={weW |w <, Corw<;C}, E;=X,UC; forie
11,2} and
A= o AC,

wekE;

for ie{0,1,2}.

REMARK - If W is finite and if we assume that Lusztig’s Conjectures [Lus3, Conjec-
tures P1 to P15] hold for (W}, I, ¢;), then (V2) is a consequence of (V1). B
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Note that %”,m is a left #7-module for i € {0,1,2}. By (V2), %(i)/ﬁﬁm) is a left -
module isomorphic to M!(C;) (for i € {1,2}) so it admits an A-basis (cy)wec,. By (V1),
the map o induces an isomorphism of .#;-modules

Let ol :X;-C, — X;-C, denote the bijection induced by o (i.e. ol(xw)=xo(w) if
x €X; and w € C;). By Lemma 2.1 and Theorem 2.2,

) #w#"= @& AGl= @ AC,.

weXr-E; weXr-E;

Now, if i € {1,2} and w € X; - C;, we denote by g! (respectively c,) the image of G/
(respectively C,) in the quotient #.#"/# #”. By Lemma 2.1, the isomorphism
(&) induces an isomorphism of -modules

Oy %E%}(l)/%jfl(o) -, %%(2)/%%(0)
which is defined by

for all w € X;- C;. The key result of this section if the following one:

Theorem 3.1. — If w € X;- Cy, then o.(cy) = CoL(w).

Proof. — Let i € {1,2}. For simplification, we set M[i] = .,/ #. By (),
(81 Jwex,.c; and (cy)wex,.c; are both A-bases of M[i]. We set
Mlil.o= & Aso gf,,-
weX;-C;

By Geck’s Theorem,
Q) ¢, =g mod Mlilso.

Moreover, the antilinear involution ~ on # stabilizes 7.7 and #.#° so it in-
duces an antilinear involution, still denoted by —, on M[i]. It is also clear that the
isomorphism o, : M[1] — M[2], gl — géL(w) satisfies o.(m)=o0.(m) and o.(M[1]sy) =
M]|2]so. Therefore, it follows from (V) that, if w € X; - C;, then

U*(cw) = U*(cw);

o.(Cw) = gl mod M[2]o.

But it follows again from Geck’s Theorem that the datum (M{[i],(g! )wex,c;» ) sat-
isfies the properties (P1), (P2), (P3) and (P4) of §1. So o.(cw) = ¢, by Corol-
lary 1.5. O
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We can now state the main consequence of Theorem 3.1. We first need a notation:
if C, # C, (which is the interesting case...), we extend o’ to an involution of the set
W, by setting

w fweX;-CiUX;-Cy,
ol(w)=1 ol(w) ifweX;-C,
()Y w) ifweX;-C,.

Note that oL : W — W is an involution.

Theorem 3.2. — Let w, w’ € W. Then w ~ w’ if and only if oY (w)~ o*(w’).

Proof. — First, let us write
Cx Cy = Z hx,y,z C.,

zeW
where h, , . €A.

Now, assume that w ~; w’. According to Corollary 2.3(b), there exists a unique
cell C in W; such that w, w’ € X;-C. If C €{C,,C,}, then c(w)=w and ocX(w’)=w’,
so o (w) ~; oX(w’). So we may assume that C € {C;, C,}. Since o’ is involutive, we
may assume that C = C,;. Therefore, w, w’ € X;-C;.

By the definition of <; and ~;, there exists four sequences xi,..., Xn, Y1,--., Yn,

Wi..., Wy, Wy,..., w, such that:

"
w,=w,w,, =w’,
wi=w',w,=w,
Vie{l,2,....m—1}, hy, w0, 70,
Vijef{l,2,....,n—=1}, hy .  #0.

P s
Therefore, w = w1 <  w, <+ S wp =w' =w] <L wy <+ S wy, =w and so w =
Wy~ Wy g~ Wy =W = W] ~p wy~p -+~ w, =w. Again by Corollary 2.3(b),
wi, w; € X; - Cy. So it follows from Theorem 3.1 that hy o) otwis) = Pxwiwi, and
hx,a-L(w;)yo.L(w]/_Jrl) = hyj,w;,w];l for all x € W. Therefore,

Vie {1,2, , m — 1}, hXi,Ul‘(Wi),Ul‘(Wi+1) 7é 0,
v ] € {1,2, o= 1}; hyj,cr"(w]’.),al‘(w]’.Jrl) 7é 0.
It then follows that
ol w)=o"(w) < oM (we) < -+ < ot (wp) =t (w) =o' (w) < ot (w) <y - < ot(w)) = oM (w),

and so oX(w) ~; ot(w’), as expected. O

Corollary 3.3. — Let C be a left cell of W. Then o'(C) is a left cell of W and the A-linear
map M(C)— M(a(C)), ¢\ — Coiw) is an isomorphism of s-modules.
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Proof. — This follows immediately from Theorems 3.1 and 3.2. O

4. Generalized Vogan classes

4.A. Dihedral parabolic subgroups. — Let &, denote the set of pairs (s, t) of ele-
ments of S such that one of the following holds:

(O) st has odd order > 3; or
(E) p(s)<¢(t)and st has even order > 4.

We fix in this subsection a pair (s, ) € §,. Let w;,, denote the longest element of W} ;.
We then set:

Ri={weW,,; | {(ws)<l(w)and {(wt)>L(w)} =W, NX,)\ X,

and Ri={fweW,, | l(ws)>l(w)and L(wt)<l(w)} =W, NX,)\ X,.
If we are in the case (O), we then set
I's=R; and I')=R,
while, if we are in the case (E), we set
I's =R\ {s} Iy =R, \ {ws,s}.

Finally, if we are in the case (O), we %, :I's = T';, w — w;,w while, in the case (E),
we set %, :I's = I';, w— ws. Then, by [Lus3, §7], we have:

Lemma 4.1. — If (s,t)€ &, then I's and ', are two left cells of W, and %, :I's—T, isa
bijection which satisfies the properties (V1) and (V2) of §2.

So %, induces a bijection *fy ,: W— W and, according to Theorem 3.2, the fol-
lowing holds:

Corollary 4.2. — If (s,t) € &, and if C is a left cell of W, then C" =% ~,(C) is also a left
cell and the map M(C)— M(C’), ¢, — CxL,(w) is an isomorphism of #-modules.

REMARK - The bijection %, is called the *-operation and is usually denoted by
w—m*. 1
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4.B. Generalized Vogan classes. — Let ¥, be the group of bijections of W gener-
ated by all the %[, where (s, ) runs over &,. We will call it the left Vogan group
(associated with ¢). Let 2(S) denotes the set of subsets of S and, if w € W, we set

R(w)=4{seS|lL(ws)<l(w)}.

It is called the right descent set of w. It is well-known that the map % : W — 2(S) is
constant on left cells [Lus3, Lemma 8.6].

Now, let Maps(¥,,, 2 (S)) denote the set of maps ¥, — Z(S). Then, to each w e W,
we associate the map 77, € Maps(¥,,, 2 (S)) which is defined by

77 (0)=Z(0(w))

for all o € ¥,. The fiber of the map ¥ : W — Maps(¥,,, 2 (S)) are called the general-
ized Vogan left classes. In other words, two elements x and y of W lie in the same
generalized Vogan left class if and only if

Voe¥, Z(ox)=2%(0(y)).
It follows from Corollary 4.2 that:

Theorem 4.3. — Generalized Vogan left classes are unions of left cells.

REMARK - If we replace &, by the set &; of pairs (s, t) of elements of S such that
st has order 3, and 7, is replaced by the group 73 generated by the %/, for (s, )
running over &3, then one can define 73: W — Maps(7,2(S)) in a similar way. Then
the fibers of 73 are by definition exactly the classical Vogan left classes [Vog]. It was
proved in [KaLu, Corollary 4.3] that Vogan left classes are unions of left cells when-
ever ¢ is constant. So Theorem 4.3 generalises Kazhdan-Lusztig Theorem in two
directions:

e It holds in the unequal parameter case.

e The partition into generalized Vogan left classes refines the partition into left
Vogan classes (even in the equal parameter case). B

4.C. Knuth classes. — Let s €S. We now define a permutation x{ of W as follows:

sw if there exists t e Ssuch that tw <w <sw < tsw and ¢(s) < (1),
k?(w)=1 sw if there exists r €S such that tsw <sw <w <tw and p(s) < ¢(1),
w  otherwise.

Then &7 is an involution of W. We denote by ¢, the group of permutations of W
generated by the k!, for s €S. A Knuth left class is an orbit for the group #,. The
following result is well-known [Lus1]:
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Proposition 4.4. — Every left cell is a union of Knuth left classes.

4.D. Knuth classes and Vogan classes. — If w € W, we set
ZL(w)=4{seS | l(sw)<l(w)}.

It is called the left descent set of w. If o € ¥, then

(4.5) Z(o(w))=<2L(w).

Proof. — We only need to prove the result whenever o = %/, for some (s,1) € &,.
Now, write w = xw’ with w € X, and w’ € W, and let u €S. Then o(w) = xo(w’).
By Deodhar’s Lemma, two cases may occur:

o If ux € X;, then u € £(w) (or £(o(w))) if and only if u € £(x). So u € £(w) if
and only if u € Z(o(w)), as desired.

o If ux ¢ X;, then ux = xv, for some v € {s,t}. Therefore, u € £(w) (respectively
u € £(w)) if and only if v € Z(w’) (respectively v € £(o(w’))). But it is easy to check
directly in the dihedral group W;, that £ (w’)=%(o(w’)). So again u € ¥ (w) if and
only if u € £(o(w)), as desired. O

Proposition 4.6. — If C is a Knuth left class and if o € ¥,,, then o(C) is also a Knuth left
class.

Proof. — It is sufficient to show that, if s €S, if (#,u) € §, and if w € W, then *tL,u(w)
and *tfu(Kf(w)) are in the same Knuth left class. If x7(w) = w, then this is obvious.
So we may (and we will) assume that x (w) # w. Therefore, there exists s’ € S such
that s'w < w <sw < s’sw or s’sw <sw < w < s’w, and ¢(s) < p(s’). So k¢ (w)=sw
and, by replacing if necessary w by sw, we may assume that s'w <w <sw < s’sw.
We write o = *tfu and w = xw’, with w’ € W;. Two cases may occur:

First case: assume that sx € X;. Then o(sw)=so(w). By (4.5), we have
sow)<ow)<so(w)=o(sw)<s'o(sw)=s"so(w).
So ks(o(w))=0o(sw), so o(w) and o(x?(w)) are in the same Knuth left class.

Second case: assume that sx ¢ X;. Then sx =xt’ with t’ € {t,u} by Deodhar’s Lemma.
Therefore,

s'xw' <xw <xt'w <s'xt'w’.
This shows that w’ < t'w’ and s’x & X;. Therefore, again by Deodhar’s Lemma, we
have s’x =xu’ for some u’ € {t,u}. Hence

uw' <w' <t’'w <u't'w’
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and ¢’ # u’. So {t,u} = {t’,u’}. Moreover, p(s) = p(t’) and ¢(s’) = ¢(u’). In this
situation, two cases may occur:

e Assume that ru has odd order. In this case, ¢(t') = ¢(u’) and so ¢(s) = @(s’).
Moreover,

ocw)=xw,,w’ and osw)=xw, ,t'w =xu'w,,w =s"o(w).

Therefore,

so(w)<o(w)<sow)=oc(sw)<ss'o(w),
and so o (k¥ (w)) =« (w) since ¢(s) = ¢(s’). This shows again that o(w) and o (7 (w))
are in the same Knuth left cell.

e Assume that tu has even order. Since {t/,u’} = {t,u}, ¢(t) < ¢(u) and (') =
w(s) < ¢(s’)=p(u’), we have t'=t and u’=u. In particular,
uw' <w' <tw' <utw’.
This shows that w’, tw’ €T’ UT,, so o(w’)=w’t and o(tw’)=tw’t = to(w’). Again,
by (4.5),
uo(w)<ow)<tow)=octw)<uto(w’)

and so

sow)<ow)<so(w)=oc(sw)< s'so(w)

and so o(sw) =« (o(w)), as desired. O

5. Examples

5.A. Example: type H;. — We assume here that W is of type H; and we write
S={s,t,u} in such a way that the Coxeter diagram of (W,S) is

S 5 t u

o——0—=0
Then ¢ is necessarily constant (we can therefore assume that I'=7 and ¢(s)=1 for
all s€S) and

&, =1(s,1),(t,u)}.

It can be checked easily (for instance by using computer computations in GAP) that
the group ¢ has 60 elements (it is a semidirect product of the form (Z/27Z x Z/27Z) x
Z/15Z), that the partition into left Vogan classes does not coincide with the partition
into left cells. However:

Proposition 5.1. — If W is of type Hs, then generalized left Vogan classes coincide with
left cells.
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5.B. Example: type H,. — We assume here that W is of type H, and we write
S={s,t,u,v} in such a way that the Coxeter diagram of (W, S) is

s 5 t u u
o—O0—O0—=0

Then ¢ is necessarily constant (we can therefore assume that I'=7 and ¢(s)=1 for
all seS) and

Ep =1(s,1),(t, u),(u, v)}.
It can be checked by using computer computations in GAP that

|,| =2%.3%0.5%.7*.117,
whereas |¥5| = 6. Also, there are 26 classical Vogan classes, whereas
(5.2) There are 124 generalized Vogan left classes.

This shows that, even in the equal parameter case, Theorem 4.3 refines considerably
the usual partition into usual Vogan classes. The left cells have been computed by
Alvis [Alv]. In particular, we get:

Proposition 5.3. — There are 206 left cells in W so the partition into left cells does not
coincide with the partition into generalized Vogan left classes. However, the left cells con-
tained in the two-sided cell of cardinality 9144 are generalized Vogan left cells.

6. Commentaries

6.A. Since the map W — W, w — w~! exchanges left cells and right cells, and ex-
changes left descent sets and right descent sets, all the results of this paper can be
transposed to results about right cells.

6.B. As it has been seen in Type H,, the group ¥, can become enormous, even
in small rank, so it is not reasonable to compute generalized Vogan left classes by
computing completely the map 7¢. Computation can be performed by imitating
the inductive definition of classical Vogan left classes. With our point-of-view, this
amounts to start with the partition given by the fibers of the map 2 : W — 2(S),
and to refine it successively using the action of the generators of ¥, and to stop
whenever the partition does not refine any more.

More precisely, let ¥,(k) denote the set of elements of ¥, which can be expressed
as the product of at most k involutions of the form %/, for (s, 1) € 6, and let 7¢(k):
W — Maps(¥,,(k), 2 (S)) be the map obtained in a similar way as 7%. This map can be
easily computed inductively for small values of k, and gives rise to a partition %(k)
of W which is a priori coarser than the partition into generalized Vogan left classes.
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However, when ¢ (k)= ¢ (k + 1), this means that (k) coincides with the partition
into generalized Vogan left classes.
For instance, in type Hjy, this algorithm stops at k =5. Computing the generators

of ¥, takes less than 4 minutes on a very basic computer, while the deduction of
Vogan classes is then almost immediate.
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