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BLOCKS OF THE GROTHENDIECK RING

OF EQUIVARIANT BUNDLES ON A FINITE GROUP

by

CÉDRIC BONNAFÉ

Abstract. — If G is a finite group, the Grothendieck group KG (G ) of the category of
G -equivariant C-vector bundles on G (for the action of G on itself by conjugation) is
endowed with a structure of (commutative) ring. If K is a sufficiently large extension
of Qp and O denotes the integral closure of Zp in K , the K -algebra K KG (G ) = K ⊗ZKG (G )

is split semisimple. The aim of this paper is to describe the O -blocks of the O -algebra
OKG (G ).

1. Notation, introduction

1.A. Groups. — We fix in this paper a finite group G , a prime number p and a
finite extension K of the p -adic field Qp such that K H is split for all subgroups H

of G . We denote by O the integral closure of Zp in K , by p the maximal ideal of O ,
by k the residue field of O (i.e. k = O /p) We denote by Irr(K G ) the set of irreducible
characters of G (over K ).

A p -element (respectively p ′-element) of G is an element whose order is a power of
p (respectively prime to p ). If g ∈G , we denote by g p and g p ′ the unique elements
of G such that g = g p g p ′ = g p ′g p , g p is a p -element and g p ′ is a p ′-element. The set
of p -elements (respectively p ′-elements) of G is denoted by Gp (respectively Gp ′).

If X is a G -set (i.e. a set endowed with a left G -action), we denote by [G \X ] a set
of representatives of G -orbits in X . The reader can check that we will use formulas
like

∑

x∈[G \X ]

f (x )

(or families like ( f (x ))x∈[G \X ]) only whenever f (x ) does not depend on the choice of
the representative x in its G -orbit. If X is a set-G (i.e. a set endowed with a right
G -action), we define similarly [X/G ] and will use it according to the same principles.
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1.B. Blocks. — A block idempotent of kG (respectively OG ) is a primitive idem-
potent of the center Z(kG ) (respectively Z(OG )) de OG . We denote by Blocks(kG )

(respectively Blocks(OG ) the set of block idempotents of kG (respectively OG ). Re-
duction modulo p induces a bijection Blocks(OG )

∼
−→Blocks(kG ), e 7→ ē (and whose

inverse is denoted by e 7→ ẽ ).
A p -block of G is a subset B of Irr(G ) such that B = Irr(K G e ), for some block

idempotent e of OG .

1.C. Fourier coefficients. — Let

IrrPairs(G ) = {(g ,γ) | g ∈G and γ ∈ Irr(K CG (g ))}

and BlPairsp (G ) = {(s , e ) | s ∈Gp ′ and e ∈Blocks(OCG (s ))}.

The group G acts (on the left) on these two sets by conjugation. We set

M (G ) = [G \IrrPairs(G )] and M p (G ) = [G \BlPairs(G )].

If (g ,γ), (h ,η)∈ IrrPairs(G ), we define, following Lusztig [Lu, 2.5(a)],

�

(g ,γ), (h ,η)
	

=
1

|CG (g )| · |CG (h)|

∑

x∈G
x hx−1∈CG (g )

γ(x hx−1)η(x−1 g −1x ).

Note that
�

(g ,γ), (h ,η)
	

depends only on the G -orbit of (g ,γ) and on the G -orbit of
(h ,η).

1.D. Vector bundles. — Except from Proposition 2.3 below, all the definitions, all
the results in this subsection can be found in [Lu, §2]. We denote by BunG (G )

the category of G -equivariant finite dimensional K -vector bundles on G (for the
action of G by conjugation). Its Grothendieck group KG (G ) is endowed with a ring
structure. For each (g ,γ) ∈M (G ), let Vg ,γ be the isomorphism class (in KG (G )) of the
simple object in BunG (G ) associated with (g ,γ), as in [Lu, §2.5] (it is denoted Ug ,γ

there). Then
KG (G ) =
⊕

(g ,γ)∈M (G )

ZVg ,γ.

The K -algebra K KG (G ) = K ⊗ZKG (G ) is split semisimple and commutative. Its simple
modules (which have dimension one) are also parametrized by M (G ): if (g ,γ) ∈

M (G ), the K -linear map
Ψg ,γ : K KG (G )−→ K

defined by

Ψg ,γ(Vh ,η) =
|CG (g )|

γ(1)
·
�

(h−1,η), (g ,γ)
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is a morphism of K -algebras and all morphisms of K -algebras K KG (G ) −→ K are
obtained in this way.

We define similarly block idempotents of k KG (G ) and OKG (G ), as well as p -blocks

ofM (G )
∼
←→ Irr(K KG (G )).

1.E. Brauer maps. — Let Λ denote one of the two rings O or k . If g ∈G (and if we
set s = g p ′), we denote by BrΛ

g
the Λ-linear map

BrΛ
g

:ΛCG (s )−→ΛCG (g )

such that

BrΛ
g
(h) =

(

h if h ∈CG (g ),

0 if h 6∈CG (g ),

for all h ∈CG (s ). Recall [Is, Lemma 15.32] that

(1.1) Brk
g

induces a morphism of algebras Z(k CG (s ))→ Z(k CG (g )).

Therefore, if e ∈ Blocks(OCG (s )), then Brk
g
(e ) is an idempotent of Z(k CG (g )) (possibly

equal to zero) and we can write it a sum Brk
g
(e ) = e1 + · · ·+ en , where e1,. . . , en are

pairwise distinct block idempotents of k CG (g ). We then set

βO
g
(e ) =

n
∑

i=1

ẽ i .

It is an idempotent (possibly equal to zero, possibly non-primitive) of Z(OCG (g )).

1.F. The main result. — In order to state more easily our main result, it will be
more convenient (though it is not strictly necessary) to fix a particular set of repre-
sentatives of conjugacy classes of G .

Hypothesis and notation. From now on, and until the end
of this paper, we denote by:

• [Gp ′/∼] a set of representatives of conjugacy classes of
p ′-elements in G .
• [G /∼] a set of representatives of conjugacy classes of ele-

ments of G such that, for all g ∈ [G /∼], g p ′ ∈ [Gp ′/∼].

We also assume that, if (g ,γ) ∈M (G ) or (s , e ) ∈M p (G ), then
g ∈ [G /∼] and s ∈ [Gp ′/∼].

If (s , e ) ∈M p (G ), we define BG (s , e ) to be the set of pairs
(g ,γ) ∈M (G ) such that:

(1) g p ′ = s .
(2) γ ∈ Irr(K CG (g )βOg (e )).
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Théorème 1.2. — The map (s , e ) 7→BG (s , e ) induces a bijection betweenM p (G ) to the set

of p -blocks ofM (G ).

2. Proof of Theorem 1.2

2.A. Central characters and congruences. — If (g ,γ) ∈ IrrPairs(G ), we denote by
ωg ,γ : Z(K G )→ K the central character associated with γ (if z ∈ Z(K G ), then ωg ,γ(z ) is
the scalar through which z acts on an irreducible K G -module affording the char-
acter γ). It is a morphism of algebras: when restricted to Z(OG ), it has values in
O .

If h ∈CG (g ), we denote by Σg (h) conjugacy class of h in CG (g ) and we set

Σ̂g (h) =
∑

v∈Σg (h)

v ∈ Z(OG ).

We have

(2.1) ωg ,γ

�

Σ̂g (h)
�

=
|Σg (h)| ·γ(h)

γ(1)
.

We also recall the following classical results:

Proposition 2.2. — If g ∈G and γ, γ′ are two irreducible characters of CG (g ), then γ and

γ′ lie in the same p -block of CG (g ) if and only if

ωg ,γ(Σ̂g (h))≡ωg ,γ′ (Σ̂g (h)) mod p

for all h ∈CG (g ).

Proposition 2.3. — Let (g ,γ) and (g ′,γ′) be two elements ofM (G ). Then (g ,γ) and (g ′,γ′)

belong to the same p -block ofM (G ) if and only if

Ψg ,γ(Vh ,η)≡Ψg ′,γ′(Vh ,η) mod p

for all (h ,η)∈M (G ).

2.B. Around the Brauer map. — As Brauer maps are morphisms of algebras, we
have

∑

e∈Blocks(kCG (g p ′ ))

Brp
g
(e ) = 1,

and so

(2.4) The family
�

BG (g , e )
�

(g ,e )∈M p (G ) is a partition ofM (G ).
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Now, let (g ,γ) ∈ M (G ) and let s = g p ′ . If e ∈ Blocks(OCG (s )) is such that γ ∈
Irr(K CG (g )βOg (e )), and if σ ∈ Irr(K CG (s )e ), then [Is, Lemma 15.44]

(2.5) ωs ,σ(z )≡ωg ,γ

�

BrO
g
(z )
�

mod p

for all z ∈ Z(OCG (s )).

2.C. Rearranging the formula for Ψg ,γ. — If (g ,γ), (h ,η) ∈ IrrPairs(g ) then

(2.6) Ψg ,γ(Vh ,η) =
∑

x∈[CG (g )\G /CG (h)]

x hx−1∈CG (g )

η(x−1 g x )ωg ,γ

�

Σ̂(x hx−1)
�

.

Proof. — By definition,

Ψg ,γ(Vh ,η) =
1

γ(1) · |CG (h)|

∑

x∈G
x hx−1∈CG (g )

η(x−1 g x )γ(x hx−1) =
1

γ(1)

∑

x∈[G /CG (h)]
x hx−1∈CG (g )

η(x−1 g x )γ(x hx−1).

Now, if x ∈G is such that x hx−1 ∈CG (g ) and if u ∈CG (g ), then

η
�

(u x )−1g (u x )
�

γ
�

(u x )h(u x )x−1
�

.

So we can gather the terms in the last sum according to their CG (g )-orbit. We get

Ψg ,γ(Vh ,η) =
∑

x∈[CG (g )\G /CG (h)]

x hx−1∈CG (g )

η(x−1 g x )
|CG (g )|

|CG (g )∩xCG (h)x−1|
·
γ(x hx−1)

γ(1)
.

But, for x in G such that x hx−1 ∈CG (g ),

|CG (g )|

|CG (g )∩xCG (h)x−1|
= |Σg (x hx−1)|,

so the result follows from 2.1.

Corollaire 2.7. — Let g ∈ [G /∼] and let γ, γ′ ∈ Irr(K CG (g )) lying in the same p -block of

CG (g ). Then (g ,γ) and (g ,γ′) lie in the same p -block ofM (G ).

Proof. — This follows from 2.6 and Proposition 2.3.
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2.D. p ′-part. — Fix (g ,γ) ∈M (G ). Then it follows from 2.6 that, for all χ ∈ Irr(K G ),

(2.8) Ψg ,γ(V1,χ ) =χ(g ).

Proposition 2.9. — Let (g ,γ) and (h ,η) be two elements in M (G ) which lie in the same

p -block. Then g p ′ = hp ′ .

Proof. — By Proposition 2.3 and Equality 2.8, it follows from the hypothesis that

χ(g )≡χ(h) mod p

for all χ ∈ Irr(K G ). Hence g p ′ and hp ′ are conjugate in G (see [Bo, Proposition 2.14]),
so they are equal according to our conventions explained in §1.F.

Proposition 2.10. — Let s ∈Gp ′ and let σ, σ′ ∈ Irr(K CG (s )). Then (s ,σ) and (s ,σ′) lie in

the same p -block if and only if σ and σ′ lie in the same p -block of CG (s ).

Proof. — The if part has been proved in Corollary 2.7. Conversely, assume that
(s ,σ) and (s ,σ′) lie in the same p -block. Fix h ∈ CG (s ). Then s ∈ CG (h). Let ηs ,h :

CG (h)→ K be the class function on CG (h) defined by:

ηs ,h(g ) =

(

1 if g p ′ and s are conjugate in CG (h),
0 otherwise.

It follows from [Bo, Proposition 2.20] that ηs ,h ∈ O Irr(K CG (h)). Therefore, by 2.6 and
Proposition 2.3,

(#)
∑

x∈[CG (s )\G /CG (h)]
x hx−1∈CG (s )

ηs ,h(x
−1s x )
�

ωs ,σ(x hx−1)−ωs ,σ′(x hx−1)
�

≡ 0 mod p.

Now, let x ∈ G be such that x hx−1 ∈ CG (s ). Since x−1s x is also a p ′-element,
ηs ,h(x−1s x ) = 1 if and only if s and x−1s x are conjugate in CG (h) that is, if and only if
x ∈CG (s )CG (h). So it follows from (#) that

ωs ,σ(h)≡ωs ,σ′(h) mod p

for all h ∈CG (s ). This shows that σ and σ′ lie in the same p -block of CG (s ).
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2.E. Last step. — We shall prove here the last intermediate result:

Proposition 2.11. — Let (s , e ) ∈M p (G ) and let (g ,γ), (g ′,γ′)∈BG (s , e ). Then (g ,γ) and

(g ′,γ′) are in the same p -block ofM (G ).

Proof. — We fix σ ∈ Irr(K CG (s )e ). It is sufficient to show that (g ,γ) and (s ,σ) are in
the same p -block of M (G ). For this, let (h ,η) ∈M (G ). By Proposition 2.9, we have
g p ′ = s , so CG (g )⊂CG (s ). So 2.6 can be rewritten:

Ψg ,γ(Eh ,η) =
∑

x∈[CG (s )\G /CG (h)]

∑

y∈[CG (g )\CG (s )xCG (h)/CG (h)]
y hy −1∈CG (g )

η(y −1 g y )ωg ,γ(Σ̂g (y hy −1)).

Now, let x ∈ [CG (s )\G /CG (h)] and y ∈ [CG (g )\CG (s )xCG (h)/CG (h)] be such that y hy −1 ∈

CG (g ). Then y hy −1 ∈ CG (s ) and so x hx−1 ∈ CG (s ). Moreover y −1s y is conjugate to
x−1s x in CG (h). Finally, it is well-known And easy) that η(y −1hy )≡ η(y −1s y ) mod p

(see for instance [Bo, Proposition 2.14]. Therefore:

(♦) Ψg ,γ(Eh ,η)≡
∑

x∈[CG (s )\G /CG (h)]
x hx−1∈CG (s )

η(x−1s x ) ωg ,γ

� ∑

y∈[CG (g )\CG (s )xCG (h)/CG (h)]

y hy −1∈CG (g )

Σ̂g (y hy −1)
�

mod p.

Now, let x ∈ [CG (s )\G /CG (h)] be such that x hx−1 ∈ CG (s ). Then, by definition of the
Brauer map,

(♥) BrO
g
(Σ̂s (x hx−1)) =

∑

z∈[CG (g )\CG (s )/(CG (s )∩CG (x hx−1))]

z (x hx−1)z−1∈CG (g )

Σ̂g ((z x )h(z x )−1).

But (z x )z∈[CG (g )\CG (s )/(CG (s )∩CG (x hx−1))] is a set of representatives of double classes in
CG (g )\CG (s )xCG (h)/CG (h). So it follows from (♦) and (♥) that

Ψg ,h(Eh ,η)≡
∑

x∈[CG (s )\G /CG (h)]
x hx−1∈CG (s )

η(x−1s x ) ωg ,γ

�

BrO
g
(x hx−1)
�

.

Using now 2.5 and 2.6, we obtain that

Ψg ,h(Eh ,η)≡Ψs ,σ(Eh ,η) mod p,

as desired.

Proof of Theorem 1.2. — Let (s , e ) and (s ′, e ′) be two elements of M p (G ) such that
BG (s , e ) and BG (s ′, e ′) are contained in the same p -block of M (G ) (see Proposi-
tion 2.11). Let σ ∈ Irr

�

K CG (s )e
�

and σ′ ∈ Irr
�

K CG (s ′)e ′
�

.
Then (s ,σ) and (s ′,σ′) are in the same p -block, so it follows from Proposition 2.9

that s = s ′ and it follows from Proposition 2.10 that γ and γ′ are in the same p -block
of CG (s ), that is e = e ′. This completes the proof of Theorem 1.2.
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