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A nonlinear model of opinion formation on the sphere

Marco Caponigro∗, Anna Chiara Lai†, Benedetto Piccoli‡

Abstract

In this paper we present a model for opinion dynamics on the d-dimensional sphere based
on classical consensus algorithms. The choice of the model is motivated by the analysis of the
comprehensive literature on the subject, both from the mathematical and the sociological point of
views. The resulting dynamics is highly nonlinear and therefore presents a rich structure. Equilibria
and asymptotic behaviour are then analysed and sufficient condition for consensus are established.

1 Introduction

Studying the complex laws governing the evolution of opinions in social networks is a challenge that
has attracted an increasing attention from researchers in the last decades. The problem is to find
the interaction rules between nodes of a network, or agents, generating the emergence of complex
patterns observed in reality. A wide literature has been developed for the mathematical description
of the dynamical evolution of opinions, represented e.g. by colors, in a network of interacting agents.
This question is an aspect of the wider challenge of modeling and analysis of emergent behaviors in
multi-agents systems. Several models have been proposed in the last years, among the most widely
used we cite the Sznajd model (SM), Deffuant model (DM), Hegelsmann–Krause Model (HKM), the
classical Voter model (VM). We briefly highlight the main features of the above mentioned models
to gather useful informations for the design of a new model. This list is far from exhaustive but a
complete review of the problem of modeling opinion formations is beyond the scope of this work.

The Sznajd model (SM), see [SWS00], is based on the Ising model for ferromagnetism in statistical
mechanics. In this model opinions are discrete variables xi taking value ±1. The interactions are gov-
erned by two basic rules: the “ferromagnetic” interaction (that is, if xi = xi+1 then at the next step
adjacent agents will satisfy with a given probability xi−1 = xi = xi+1 = xi+2) and the “antiferromag-
netic” interaction (if xi = −xi+1 then an antisymmetric pattern forms −xi−1 = xi = −xi+1 = xi+2).
The model has been extended to higher dimensional opinion and complex network topologies. The
motivation for this model comes form the postulate that “agreement generates agreement”, that is,
if two agents reach a consensus then all agents directly connected to them are induced to agree. In
other words, in Sznajd model, the opinion flows out from a group of agreeing agents.

In [HK02] Hegselmann and Krause presented a model (HKM) of herding of opinions in a N -agents
system in which the position xi of the agent i, representing its opinion and taking values in an interval
of R, changes according to the distance from other agents xj , j 6= i rescaled by an interaction coefficient
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Italy. (anna.lai@sbai.uniroma1.it)

‡Rutgers University, Department of Mathematics, Business & Science Building Room 325 Camden, NJ 08102, USA
(piccoli@camden.rutgers.edu).

1



aij accounting for the weight given to the opinion of agent j by agent i. With these notations the
opinion formation of agent i evolves according to

xi(t+ 1) = ai1x1(t) + ai2x2(t) + · · ·+ aiNxN (t).

The model has been widely studied also in its continuous-time analogue where the evolution of the
opinion of agent i is governed by

ẋi =
∑

|xi−xj |<1

aij(xj − xi).

Such a model with an interaction that is zero when mutual distances are above a certain threshold
is called a model with “bounded confidence”. The rationale for the bounded confidence is that it is
unlikely that one agent would be influenced by another agent whose opinion is too far from its own.
This kind of interaction gives rise to clusters of opinions (see for instance [BHT10]).

The idea of opinions varying in a continuous fashion has been used also in the Deffuant Model
(DM), see [DNAW00]. The interacting agents are chosen randomly and if the difference between their
opinions, say x1 and x2, is smaller in magnitude than a certain threshold (bounded confidence) then
the agents re-adjust their opinion according to the law

x1(t+ 1) = x1(t) + µ(x2(t)− x1(t)) and x2(t+ 1) = x2(t) + µ(x1(t)− x2(t)),

for a given interation parameter µ ≥ 0.
The Voter Model is a widely studied classical model of opinion formation with discrete opinions

and stochastic interactions, that can be seen, in some cases, as a generalization of the Sznajd model
([BS03]).

All these models present very interesting features but also lack of connections with real life exam-
ples. This issue has been throughly addressed in [Sob09]. It is very difficult to describe the complex
interactions between individuals with simple mathematical rules. Nevertheless the models above show
features that are good starting points to develop more complete models. Below, we present an analysis
of strengths and weaknesses of the mentioned models divided in three topics.

Discrete vs Continuous opinions: One of the main difficulties in modeling opinion formations is
the lack of good measurements of the opinions. A classical problem in sociology is to design
interviews not affecting opinions, i.e. questions not influencing answers. Purely open questions
do not exist and, moreover, it is very hard to collect data from open answers. On the other
hand, closed questions induce quantization on the answers: opinions collapse on discrete sets
representing the possible answers to a closed question. It is therefore natural to set the initial and
final opinion, in an opinion formation process, on a discrete set (as in SM and VM). Nevertheless
opinions do not jump instantly but follow a continuous, possibly very slow-varying, evolution.
The time evolution is therefore better modeled by continuous dynamics.

Stochastic vs Deterministic evolutions: There are several models based on stochastic interac-
tions between agents (SM, DM) and many convincing numerical simulations have been provided
to validate these models. Nevertheless these models neglect the fact that the evolution of the
opinion of one agent is the deterministic result of complex interactions with other agents. While
the choice of the interacting agent could be random, the opinion formation should be influenced
by an averaging of the opinions of the interacting agents in the spirit, for instance, of the HKM.

Interactions: One of the main challenges of the present days is represented by the study the in-
teraction network, or social network. The problem is twofold: on the one hand the problem
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is to study the interaction between two agents, on the other hand the problem is to study the
topology of the network and, possibly, its evolution.

Interactions between agents should weighted in different way for different agents, the interacting
factor between agents 1 and 2 can be different from the one between agents 2 and 3. Several
models consider a weight aij in the interaction between two agents i and j (for instance HKM)
and these coefficients can be exploited to model the different natures of relations. For instance,
a relation could be attractive (aij > 0) or repulsive (aij < 0). From an economical point of view,
we can see the attraction as cooperation and the repulsion as competition. In this framework, it
could be interesting to introduce in the model concepts as “far cooperation vs local competition”
or vice-versa, by including a dependence on the “position” x of the coefficients aij . Similarly,
HKM and DM include the idea of “bounded confidence” (see [Lor07] for a survey).

Asymmetries on the interaction matrix (aij)
N
i,j=1 could be used to model the hierarchy in the

network, for example, if aij >> aji then i is more likely to influence j than the converse, meaning
that agent i is an opinion leader, at least from the point of view of agent j.

As mentioned, in many models (e.g. SM and DM) pairs of interacting agents are chosen ran-
domly. Although this approach is realistic in large networks, the deterministic nature of inter-
actions should not be neglected. Moreover, there also exist social interactions that are strong,
or constant in time. This could be modeled by introducing random switching topologies also
including unbreakable subnetworks.

To conclude, modeling such complex phenomena is a challenging task. Thanks to a wide literature
on the problem it is possible to find interesting features with strong sociological motivations. Here we
propose a preliminary model including as many of these features as possible.

The paper is organized as follows. In Section 2 we introduce a new model of opinion formation
taking into account above analysis. Section 3 is devoted to a qualitative study of the model: we
investigate the equilibria of the associated dynamical system and its asymptotic behaviour. In Section 4
a distributed control, modeling the effect of mass media on public opinion, is introduced. Section 5
contains several numerical experiments simulating the asymptotic behaviour of the system and of
related quantities.

2 Building a model

We consider a system of N interacting agents. The opinion of the i-th agent is represented by the
vector xi of the sphere S

d.
The choice of a d-dimensional vector opinion, instead of a scalar opinion, is motivated by a seek

of higher fidelity in the the model. Indeed opinions on different topics are usually interconnected:
economic policy attitudes and candidate choice in political elections; opinion formation and economical
condition [NBL91]; opinion on research funding and religious and ideological beliefs – see for instance
[Nis05] for a study on the relations between worldview and opinions on stem cell research and [SL05]
for a study on opinions about nanotechnology research.

The rationale for using the sphere Sd instead of the Euclidean space is that, as mentioned, opinion
are subjected to a quantization phenomenon when measured. We can imagine that at the moment
of measurement (elections, polls, interviews, etc.) opinions take only two values (yes/no, left/right,
Demcratic/Republican, liberal/conservative, for/against, etc.) so every component of the vector xi =

(x
(1)
i , . . . , x

(d+1)
i ) takes a positive or a negative value. In particular xi belongs to S

d. The manifold
S
d is a mathematical abstraction to describe the dynamical evolution of the opinions on a continuous

(i.e. non-discrete) set.
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The influence of the opinion xi on the one of agent xj is weighted with an interaction factor aij .
The interaction could be attractive aij > 0, repulsive aij < 0, or neutral aij = 0. Every agent tends
to agree with another one if there is an attractive interaction and to disagree in presence of repulsive
interaction. In the spirit of HKM, the result of all influences is the averaging of all the distances on
S
d weighted by aij . The time evolution of the opinion xi of agent i is governed by

ẋi =
N
∑

j=1

aij(xj − 〈xi, xj〉xi), xi ∈ S
d, i = 1, . . . , N. (1)

The RHS is the projection of the vector xj on the orthogonal to xi. We can write

xj − 〈xi, xj〉xi.
In this paper we will consider constant coefficient aij with no assumptions on the symmetries of the
network: we will study symmetric interactions aij = aji, antisymmetric interactions aij = −aji as well
as general coefficients.

As mentioned in the introduction, a realistic model should include many different kind of interac-
tions. It is possible to increase the complexity of the model, in order to represent opinion formation
processes closer to the reality, by adapting the coefficients aij to this purpose. For example the switch-
ing topology can be represented by introducing a (stochastic or deterministic) dependence of aij on
the time t. By introducing a dependence on the state x, one may model bounded confidence (e.g.
aij(x) = 0 if |xi − xj | ≥ 1), local cooperation and far competition (e.g. aij(x) = a(|xi − xj |) with
a(0) > 0 and a decreasing), or local competition and far cooperation (e.g. aij(x) = a(|xi − xj |) with
a(0) < 0 and a increasing), as well as unbreakable subnetworks (e.g. families), the arising of opinion
leaders, clusters of opinions, and so on.

Models of consensus on manifolds has been throughly studied in the last years. We cite the
Kuramuto model [Kur84] on the sphere S

1 who attracted a wide interest of researchers over the
last 30 years, motivated by its connection with the problem of syncronizing a large population of
harmonic oscillators - see [Str00] for a survey. Other possible applications can be found in [VCBJ+95]
and [Hop82]. Lately, adapted versions of the Kuramoto model were extesively studied in a opinion
formation perspective. In [SS09] Sarlette and Sepulchre studied opinion dynamics on a wider class
of manifolds including, among others, the special orthogonal group SO(n), the Grassmann manifold,
and S

1, see also [Sar09]. We refer to [Sep11] for a survey on this topic. These results rely on consensus
algorithms for linear systems who have been developed by several authors, including Tsitsiklis [Tsi84],
Jadbabaie, Lin, and Morse [JLM03], Moreau [Mor04, Mor05], Blondel, Hendrickx, Olshevsky and
Tsitsiklis [BHT10], Olfati-Saber and Murray [OSFM07].

The novelty of our model relies in the intrinsic nonlinear nature of its dynamics which constitutes
an obstruction to the direct application of these powerful tools and, on the other hand, yields a rich
structure.

3 Model Analysis

System (1) can be rewritten in matrix form as

ẋ = Lx+D(x)x (2)

where

L = (lij) :=

{

aij if i 6= j

−
∑n

k=1 aik otherwise
,

and D(x) = (dij(x)) is a diagonal matrix with dii(x) =
∑N

j=1 aij(1− 〈xj , xi)〉.
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Remark 1. The time-continuous version of HKM reads ẋ = Lx. Then the dynamics of (1) can
be seen as the classical HKM plus a non-linear diagonal term D(x)x, representing the projection of
the velocities Lx on the tangent space of S

d. The matrix L is called Laplacian of the matrix of
A = (aij)

N
i,j=1. The spectral properties of the Laplacian matrix are among the main topics in algebraic

graph theory, expecially in the case that A is a non-negative symmetric matrix. The applications of such
properties in the framework of opinion formation models and consensus algorithms were investigated,
among many others, in [OSM04].

We can also see the dynamics from the point of view of agent i. Consider the influence on agent i
of all other agents, that is

αi =
∑

j 6=i

aijxj ,

then, with this notation, system (1) reads

ẋi = αi − 〈αi, xi〉xi, i = 1, . . . , N. (3)

3.1 Equilibria

System (1) presents three kind of equilibria: consensus, antipodal, and polygonal. Consensus corre-
sponds to the case in which all opinion are equal. Antipodal equilibria are the ones in which for every
j = 2, . . . , N , either xj = x1 or xj = −x1. Every other equilibrium is said polygonal and it depends in
principle on the interacting matrix A, unlike consensus and antipodal equilibria.

One of the main differences between the present model and consensus model on Euclidean spaces
(as HKM) is represented by the rich nature of equilibria. Indeed while in HKM the only equilibrium is
the consensus, here the model allows also the disagreement as possible (stable) equilibrium. Consider
two agents (N = 2) with one opinion (d = 1) and with repulsive interaction a12 < 0, a21 < 0, in this
case the antipodal position of the two opinions is a stable equilibrium.

Another interesting feature of our model is that given any configuration of opinions it is possible
to find an interaction matrix for which this configuration is an equilibrium. Indeed consider any
configuration of opinions x̄ = (x̄1, . . . , x̄N ) then x̄ is an equilibrium if and only if

d

dt
x̄i =

N
∑

j=1

aij x̄j − 〈x̄i, x̄j〉x̄i = 0, for all i = 1, . . . , N,

which is a system of Nd equations in the N2 − N unknowns aij (being the diagonal aii set to 0 for
every i = 1, . . . , N). So if N > d+ 1 there exists a nontrivial choice of the interaction coefficients for
which x̄ is an equilibrium.

By definition an equilibrium for systems (1) is a point x ∈ (Sd)N such that

αi − 〈αi, xi〉xi = 0 for every i = 1, . . . , N.

In other words, an equilibrium is a vector x ∈ (Sd)N such that the influence αi is collinear with xi for
every i = 1, . . . , N . We identify three cases:

(i) αi = cixi, for ci > 0,

(ii) αi = −cixi, for ci > 0,

(iii) αi = 0.
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In case (i) the equilibrium is stable with respect to xi. Indeed consider the system for xi and let
us linearize the dynamics of xi perturbing with respect to xi only, namely consider the linearization
of system

ẋ = α− 〈α, x〉x, x ∈ S
d

in the equilibrium α = cx for c > 0, which calculated in v ∈ S
d reads

−〈α, x〉v − 〈α, v〉x = −c(v + 〈x, v〉x).

Now for every x ∈ S
d the linear operator on S

d

v 7→ v + 〈v, x〉x

has positive eigenvalues. Indeed the equation

v + 〈v, x〉x = λv

is satisfied either by λ = 1 and v ⊥ x either by v = ±x and λ = 2.
Similarly it is possible to prove that in case (ii) the equilibrium is unstable with respect to xi.
The equilibrium is stable (tout court), in the classical sense, if αi = cixi with ci > 0 for every

i = 1, . . . , N , that is, if it is stable with respect every xi, i = 1, . . . , N .

3.2 Dancing equilibria

Beyond the complex nature of equilibria, model (1) shows another interesting kind of configuration
which is the dancing equilibrium.

Consider the scalar products 〈xi, xj〉, i, j = 1, . . . , N between the components of x ∈ (Sd)N . These
quantities are, in some sense, a measure of the mutual distance between the xi’s. Indeed ‖xi−xj‖2 =
1− 〈xi, xj〉. Moreover the evolution of the mutual distances is governed by the system of ODEs

d

dt
〈xi, xj〉 =

∑

k 6=i

aik (〈xk, xj〉 − 〈xk, xi〉〈xi, xj〉)

+
∑

k 6=j

ajk (〈xk, xi〉 − 〈xk, xj〉〈xi, xj〉) , (4)

for i, j = 1, . . . , N . An equilibrium of system (4) is a configuration in which all mutual distances
between agents are constant.

Definition 1. A steady configuration of system (4) is called dancing equilibrium for system (1).

The name “dancing equilibrium” is motivated by the fact that opinions are crystalized since the
mutual distances are in equilibrium while the whole configuration may evolve.

For the system in matrix form (2), D(x) is constant in presence of a dancing equilibrium. Conse-
quently the evolution is linear.

We define the kinetic energy of the system as the quantity

E(t) :=
1

2

n
∑

i=1

||ẋi(t)||2. (5)

A system in dancing equilibrium has constant kinetic energy.
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Lemma 1. If for every i, j ∈ {1, . . . , N},

d

dt
〈xi(t), xj(t)〉|t=0 = 0,

then E(t) is constant for every t ≥ 0.

Proof. First of all notice that by assumption and by (4) we have d
dt
〈xi(t), xj(t)〉 = 0 for every t ≥ 0

and for every i, j ∈ {1, . . . , N}. In particular d
dt
〈xj(t), αi(t)〉 = 0 and d

dt
〈αj(t), αi(t)〉 = 0 for every

i, j ∈ {1, . . . , N}.
Then, we derive the kinetic energy with respect to time to get

d

dt
E(t) =

1

2

d

dt

n
∑

i=1

||ẋi(t)||2 =
1

2

d

dt

N
∑

i=1

〈αi, ẋi〉 =
1

2

N
∑

i=1

d

dt

(

‖αi‖2 − 〈αi, xi〉2
)

= 0,

for every t ≥ 0.

Dancing equilibrium is a configuration not arising in other models and it can be seen an the
mathematical formalization of the cyclicality of opinions.

Example 1. Consider the 2-agent system with antisymmetric interaction matrix

A =

(

0 a
−a 0

)

a 6= 0, so that
ẋ1 = a(x2 − 〈x1, x2〉x1)

and
ẋ2 = −a(x1 − 〈x1, x2〉x2).

A direct computation gives

d

dt
〈x1, x2〉 = 〈ẋ1, x2〉+ 〈x1, ẋ2〉 = a(1− 〈x1, x2〉2)− a(1− 〈x1, x2〉2) = 0.

Note that in Euclidean models, as HKM, an antisymmetric interaction generates the divergence to
infinity of two opinions.

Example 2. Dancing equilibria emerge also in the case in which all interactions have attractive nature
(i.e. aij > 0), provided that there are at least 3 agents. Indeed, consider

A =





0 1 2
2 0 1
1 2 0





with three agents along the vertices of a equilateral triangle and assume 〈xi(0), v〉 = 0 for some v ∈
R
d+1 so that

〈x1, x2〉 = 〈x1, x3〉 = 〈x2, x3〉 = −1

2

We have by direct computation
d

dt
〈xi, xj〉 = 0,

for every i 6= j, i, j = 1, . . . , N , hence this configuration is a dancing equilibrium.
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3.3 Asymptotic behaviour

Theorem 1. If the interaction matrix A is positive, namely, aij > 0 for every i, j = 1, . . . , N and if
there exists w ∈ S

d such that the initial condition satisfies

〈xi, w〉 > 0, for every i = 1, . . . , N.

then the system tends to consensus.

Proof. For every t ≥ 0 and y ∈ S
d let

ρ(y, t) = max
i=1,...,N

1− 〈xi, y〉

and
r(t) = min

{

ρ(y, t) | y ∈ S
d
}

.

Notice that, by assumption, r(0) < 1. Now let v(t) be such that 1 − 〈xi(t), v(t)〉 ≤ r(t) for every
i = 1, . . . , N .

Let v0 = v(0). Let Λ0 be a set of indexes such that 〈xi(0), v0〉 is minimal for every i ∈ Λ0, that
is 〈xi(0), v0〉 < 〈xj(0), v0〉 for every j /∈ Λ0. Let i0 be the smallest index among the latest to loose
minimality, namely, let si for i ∈ Λ0 be

s0i = inf{t ≥ 0 | ∃j 6= i : 〈xi(t), v0〉 > 〈xj(t), v0〉}

let t1 = maxi∈Λ0
s0i and i0 = min{i ∈ Λ0 : s0i = t1}. Note that t1 can be infinity. If this is not the

case consider v1 = v(t1) and construct

Λ1 = {i ∈ {1, . . . , N} | 〈xi(t1), v1〉 ≤ 〈xj(t1), v1〉 , ∀j ∈ {1, . . . , N}},

again we set for every i ∈ Λ1,

s1i = inf{t ≥ t1 | ∃j 6= i : 〈xi(t), v1〉 > 〈xj(t), v1〉},

t2 = maxi∈Λ1
s1i , and i1 = min{i ∈ Λ1 : s1i = t2}.

Iterating we find an increasing sequence of times 0 = t0 < t1 < t2 < · · · < tk and a sequence of
indexes i0, i1, . . . , ik ∈ {1, . . . , N}. Let T ∈ (0,+∞] be the limit of tk as k → ∞. For every t ∈ [0, T )
there exists k ≥ 0 such that tk ≤ t < tk+1 and ik such that 〈xik(t), vk〉 ≥ 〈xj(t), vk〉 for every j, where
vk = v(tk). Therefore for every t ∈ [tk, tk+1),

d

dt
(1− 〈xik(t), vk〉) = −〈ẋik(t), vk〉 < 0

indeed, by contradiction, if 〈ẋik(t), vk〉 ≤ 0 then

∑

j 6=ik

aikj (〈xj , vk〉 − 〈xj , xik〉〈xik , vk〉) ≤ 0

which implies the existence of j 6= ik such that 〈xj , vk〉 ≤ 〈xj , xik〉〈xik , vk〉 < 〈xik , vk〉, in contradiction
with the minimality of 〈xik , vk〉.

We have that r(t) is decreasing for every t ∈ [0, T ) and it is bounded from below by 0, hence, by
compactness there exists a sequence (tn)n∈N, tn → T such that there exists limn→∞ r(tn) =: r̄ ≥ 0,
limn→∞ v(tn) = v̄, and limn→∞ xi(tn) = x̄i for i = 1, . . . , N . Let us prove that r̄ = 0. Notice that
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r̄ ≤ r(0) < 1. By definition of r, 〈x̄j , v̄〉 ≥ 1− r̄ for every j = 1, . . . , N and there exists i ∈ {1, . . . , N}
such that 〈x̄i, v̄〉 = 1− r̄. Then

0 = lim
n→∞

d

dt
〈xi(tn), v̄〉 =

∑

j 6=i

aij (〈v̄, x̄j〉 − 〈x̄i, x̄j〉〈x̄i, v̄〉)

≥ (1− r̄)
∑

j 6=i

aij (1− 〈x̄i, x̄j〉) ,

which implies
x̄1 = x̄2 = · · · = x̄N . (6)

Therefore r̄ = 0. Note that (6) also implies that an equilibrium is reached in time T and, consequently,
T = ∞ by uniqueness of solutions. Thus the arguments above are valid for every t ≥ 0.

Finally the system tends to consensus since for every i, j = 1, . . . , N ,

1− lim
t→∞

〈xi(t), xj(t)〉 = lim
t→∞

1

2
‖xi(t)− xj(t)‖

≤ lim
t→∞

1

2
‖xi(t)− v(t)‖+ lim

t→∞

1

2
‖v(t)− xj(t)‖

≤ lim
t→∞

1− 〈xi(t), v(t)〉+ lim
t→∞

1− 〈v(t), xj(t)〉

≤ lim
t→∞

2r(t) = 0,

this concludes the proof.

For a numerical example of the application of Theorem 1 see Figure 1. Example 2 shows the
necessity of the condition 〈xi, w〉 > 0 for every i = 1, . . . , N for some w ∈ S

d, indeed we present a
configuration of dancing equilibrium not veryfing this assumption.

Next result establishes sufficient conditions to have E(t) → 0 as t → ∞.

Theorem 2. If the interaction matrix A is symmetric then

lim
t→∞

E(t) = 0.

Proof. Define F (t) :=
∑N

i=1〈xi, αi〉. Using the symmetry of A, we have

d

dt
F (t) = 4E(t). (7)

Indeed

d

dt
F (t) =

N
∑

i=1

〈ẋi, αi〉+ 〈xi, α̇i〉

=

N
∑

i=1



〈ẋi, αi〉+
N
∑

j=1

aij〈xi, ẋj〉





=

N
∑

i=1

〈ẋi, αi〉+
N
∑

j=1

〈
N
∑

i=1

ajixi, ẋj〉

= 2
N
∑

i=1

〈ẋi, αi〉

= 4E(t).
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(a) (b)

(c) (d)

Figure 1: 15 agents tending to consensus in dynamics with positive adjacency matrix, as in Theorem 1.
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As E(t) ≥ 0 for every t ≥ 0, F (t) is a non-decreasing function. Moreover F (t) is bounded, indeed for
every t ≥ 0

| F (t) |=|
N
∑

i=1

〈xi, αi〉 |=|
N
∑

i=1

N
∑

j=1

aij〈xi, xj〉 |≤
N
∑

i,j=1

| aij | .

Hence F (t) ↑ ℓ as t → ∞ for some ℓ ≤
∑N

i,j=1 |aij | and, consequently, d
dt
F (t) → 0 as t → ∞. The

claim hence follows by (7).

4 Distributed Control

Once sufficient conditions for consensus are established, as in Theorem 1, it is natural to study whether
is possible to create or induce consensus with an external intervention. There are several ways to
model the external action of an agent. Here we address the problem of describing the action of a mass
media, or communication enterprises, on the system. Media are opinion leaders whose opinion is not
influenced by the others, at least not for small periods of times. We can represent media by an agent
whose opinion xM is constant. Therefore the dynamics of agent xi ∈ S

d for i = 1, . . . , N is

ẋi =
N
∑

j=1

aij(xj − 〈xi, xj〉xi) + u(t)(xM − 〈xi, xM 〉xi) (8)

where the scalar function of time u(t) with value in [0, δ] represents the strength of communication
of media. The positive bound δ represents the maximal strength of communication of the media. We
can consider then the problem of steering the opinion of all other agents to the media’s opinion xM .
Since consensus to xM is an equilibrium for system (8) this problem can be seen as a asymptotic
stabilization problem.

A very simple strategy to stabilize the system is given by setting u(t) = δ for every t ≥ 0, possibly
perturbing u in order to break the symmetries and avoid polygonal equilibria. If the maximal strength
δ of the control is sufficiently large, say δ ≥ N |aij | for every i, j = 1, . . . , N , then the action of the
control is stronger than every other possible influence on each agent and the system tends to the
consensus xM .

The estimate on the minimal δ for which this simple control strategy lead to consensus can be
refined. Empirical observations lead to the conjecture that δ ∼

√
N in the symmetric case - see

Figure 2.
The strategy itself is very rough. We believe that feedback control strategies, in which opinion xM

changes according to the opinion of other agents, may ensure consensus under milder assumptions on
the size of δ. This kind of analysis is however beyond the scope of this paper and we plan to address
the controllability problem in future works.

5 Numerical simulations

In this section we show numerical simulations of the evolution of system (1). Interaction matrices and
initial positions are chosen randomly, the associated trajectories are approximated by the Runge–Kutta
scheme. We present the simulations arranged according to the different natures the interactions.

Note that in general kinetic energy as defined in (5) has a non-monotonic behavior (see Figure 3),
in contrast with the linear case (HKM in R

N ). However it is possible to observe, in simulations, a
decreasing trend of the energy.

Another observable of the system accounting for the distance to consensus is the centroid (see
also [SS09]).
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Figure 2: The result of the application of the constant control u(t) = δ as a function of the number
of agents N and of the magnitude δ. Every dot represents the result of 10 trials with random initial
condition and random symmetric interaction matrices (with uniformly bounded max norm). The color
of the dots ranges from blue to red in function of the number of trials the system reached the consensus
xM . Blue represents consensus in all 10 trials and red the non-consensus in all trials.

(a) 10 agents (b) 50 agents

Figure 3: Energy evolution for randomly generated interaction matrices.
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(a) (b)

Figure 4: Energy decay for a randomly generated symmetric interaction matrices for 10 agents. In
(b) data are reported in logarithmic scale

Definition 2. The centroid is the unweighted barycenter of the system, that is the point

C(t) :=

N
∑

i=1

xi(t).

Note that in general the centroid does not belong to the state-space S
d. The squared modulus of

C(t) reads

||C(t)||2 =
N
∑

i,j=1

〈xi(t), xj(t)〉,

The quantity N2 − ||C(t)||2 provides an estimate of the distance from consensus. Indeed in general
||C(t)||2 ∈ [0, N2] and ||C(t)||2 = N2 if and only if consensus is reached.

5.1 Symmetric case

In Theorem 2 we proved that if A is symmetric then the kinetic energy tends to zero.
Figure 4 shows the energy decay for a randomly generated symmetric interaction matrices for 10

agents. A recurring pattern in our tests in the symmetric cases is a possible initial increase of the
energy and an apparently exponential convergence to zero.

We can see this pattern explicitly in the simple case of 2 agents with positive interaction coefficient
a. Indeed if the initial state is not an (antipodal) equilibrium, then conditions of Theorem 1 are
satisfied and the system tends to consensus. In particular the function θ(t) = 〈x1(t), x2(t)〉 tends to
1. Moreover the convergence is monotone since

d

dt
θ(t) = 2

E(t)

a
> 0.

Thus, for every 0 < c < 1 there exists Tc > 0 such that θ(t) ≥ c for every t ≥ Tc. The time derivative
of the energy reads

d

dt
E(t) = −4θ(t)E(t) ≤ −4cE(t),

for every t > Tc. The exponential decay of E(t) hence follows by Gronwall’s Lemma.
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Figure 5: Energy decay for a randomly generated sign-symmetric interaction matrix for 10 agents.

5.2 Sign-symmetric case

In our tests we also considered the case of sign-symmetric matrices, modeling dynamics where every
pair of agents is either mutually attracted or mutually repulsed. Obviously the symmetric case is a
particular case of sign-symmetric case and this reflects on the behavior of the energy: it yet converges
as time tends to infinity, but possibly to a non-zero constant, see Figure 5.

In Figure 6 and Figure 7 the energy tends to a positive constant and the system converges to
periodic orbits preserving the scalar product between agents, i.e., a dancing equilibrium.

5.3 Positive case

In the positive case, namely when aij > 0 for every i, j = 1, . . . , N , Theorem 1 ensures consensus
provided that agents are in an open semi-sphere. In Example 2 we present a case of dancing equi-
libria emerging in this kind of systems. However experimental data suggest that the evolutions not
converging to consensus are particular (and unlikely) cases. In other words it seems that consensus
may be reached for generic initial data.

The kinetic energy of a system with positive interaction matrix is in general non-monotone. How-
ever it seems that, in the positive case, if the system tends to consensus then the modulus of the
centroid is a monotonically increasing quantity, see Figure 8.

5.4 General case

We ran some tests in the general case, namely when no symmetry or sign constrains are applied to the
adjacency matrix. In some cases, especially when the number of agents is small, some of the equilibria
described in the present paper are reached, for instance the antipodal equilibrium and the dancing
equilibrium - see Figure 9. Another interesting phenomenon that we found only in the general case is
dumping oscillations in kinetic energy. In the example showed in Figure 10 this effect is particularly
evident in the centroid evolution.
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Figure 6: In (a) and (b) the trajectories of 10 agents with a randomly generated sign-symmetric
matrices starting from t = 0 and t = 20, respectively. The energy and the squared modulus of
centroid are displayed in (c) and (d), respectively. The system tends to a dancing equilibrium on the
equator of the sphere.
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Figure 7: In (a) and (b) the trajectories of 25 agents with a randomly generated sign-symmetric matri-
ces starting from t = 0 and t = 50, respectively. The evolutions of energy and of the squared modulus
of centroid are displayed in (c) and (d), respectively. The system tends to a dancing equilibrium.

(a) E(t) (b) ||C(t)||2

Figure 8: Energy decay and evolution of the squared modulus of centroid for a randomly generated
positive interaction matrix for 10 agents.
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(a) (b)

Figure 9: An antipodal (a) and a dancing (b) equilibrium reached by two systems with general
adjacency matrices and 15 and 10 agents, respectively.
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Figure 10: In (a) and (b) are represented the trajectories of 10 agents with a randomly general matrix
starting from t = 0 and t = 20, respectively. The related evolutions of energy and of squared modulus
of centroid are displayed in (c) and (d), respectively.

17



6 Conclusions and perspectives

We presented a nonlinear model of opinion dynamics. The system is very versatile and several ex-
tensions are possible in order to describe more elaborate interactions. The nonlinearity yields a rich
structure making this system suitable for modeling complex behaviors. New features arise in the
analysis of the nonlinear dynamics leading to new mathematical challenges.

We highlighted the existence of three kind of equilibria. While consensus is well-known, other
configurations like antipodal, polygonal, and dancing equilibria are peculiar of this model. We plan
to characterize these configurations and to deepen the stability analysis.

We provided a sufficient condition, Theorem 1, for consensus in the positive interaction case and in
the symmetric case, we showed that the kinetic energy of the system tends to zero, Theorem 2. Possible
extensions of these results to more general cases can be achieved by adapting classical consensus
algorithm of Moreau type to this nonlinear system.

We presented a first step in the study of the controllability of this system, i.e. the ability to force
consensus using an external intervention, accounting for the influence, for instance, of mass media. We
believe that feedback control strategies may be more effective to address the controllability problem.

Simulations provide several hints on the asymptotic behavior of the system: the energy, although
non-monotonically, tends to stabilize. We believe that the non-monotonicity of the energy and yet
its decreasing trend are the result of a trade-off between stabilizing symmetries of the systems and of
non-symmetric components steering the system towards a non-steady dancing equilibrium.
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