
HAL Id: hal-00995131
https://hal.science/hal-00995131

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Top-Down Approach to Managing Variability in
Robotics Algorithms.

Selma Kchir, Tewfik Ziadi, Mikal Ziane, Serge Stinckwich

To cite this version:
Selma Kchir, Tewfik Ziadi, Mikal Ziane, Serge Stinckwich. A Top-Down Approach to Managing
Variability in Robotics Algorithms.. Fourth International Workshop on Domain-Specific Languages
and Models for Robotic Systems (DSLRob 2013), Nov 2013, Tokyo, Japan. pp.6. �hal-00995131�

https://hal.science/hal-00995131
https://hal.archives-ouvertes.fr

A Top-Down Approach to Managing Variability in Robotics Algorithms

Selma Kchir, Tewfik Ziadi, Mikal Ziane

UMR CNRS 7606 LIP6-MoVe

Université Pierre et Marie Curie, France

Email: firstname.lastname@lip6.fr

Serge Stinckwich

UMI UMMISCO 209 IRD/UPMC

Université de Caen-Basse Normandie, France

Email: serge.stinckwich@ird.fr

Abstract— One of the defining features of the field of robotics
is its breadth and heterogeneity. Unfortunately, despite the
availability of several robotics middleware services, robotics
software still fails to smoothly handle at least two kinds of
variability: algorithmic variability and lower-level variability.
The consequence is that implementations of algorithms are hard
to understand and impacted by changes to lower-level details
such as the choice or configuration of sensors or actuators.
Moreover, when several algorithms or algorithmic variants are
available it is difficult to compare and combine them.

In order to alleviate these problems we propose a top-down
approach to express and implement robotics algorithms and
families of algorithms so that they are both less dependent
on lower-level details and easier to understand and combine.
This approach goes top-down from the algorithms and shields
them from lower-level details by introducing very high level
abstractions atop the intermediate abstractions of robotics
middleware. This approach is illustrated on 7 variants of the
Bug family that were implemented using both laser and infra-
red sensors.

I. INTRODUCTION

The development of robotics software must deal with a

large amount of variability from at least two sources. First,

robots are very different from each other: ”They have differ-

ent locomotion mechanisms, different onboard computational

hardware, different sensor systems, and different sizes and

shapes.” [1]. Second, robots are used for very different tasks

with varying constraints which leads to a large variety of

algorithms.

Robotics middleware, among other improvements, has

been a significant attempt at addressing the first kind of

variability by decoupling robotics application from lower

levels details. ”It is designed to manage the heterogeneity of

the hardware, [...] simplify software design [...]. A developer

needs only to build the logic or algorithm as a component”

[2].

The task is huge however, as well explained by W.D.

Smart who considers the hypothetical case of middleware

providing an obstacle-avoidance routine for a mobile robot

[1]. According to him ”writing a generic obstacle avoider that

will work for all locomotion mechanisms, using input from

all possible sensors is a daunting task”. It is not surprising

then that, a few years later, middleware services are still far

from solving this decoupling problem.

Consequently, robotics algorithms are still

• difficult to understand,

• difficult to adapt or combine,

• impacted by changes in lower-level details.

Even with the very simplified assumptions such as those

of the Bug family of navigation algorithms [3] it is far from

obvious in which case such or such variant is best suited to go

from one point to another while avoiding obstacles [4]. In this

paper we propose a top-down approach to complement the

bottom-up middleware approach. The input of this approach

is a robotic task and either a family of algorithms or at

least enough knowledge to produce algorithms to solve it.

Its output is twofold:

• a set of algorithmic, sensory or action abstractions,

• a configurable generic algorithm.

The produced algorithm can be configured by providing

the values of a series of parameters to be adapted to different

hypotheses, say on the environment. Furthermore it is generic

in two other ways. First, it is decoupled from low-level

details on sensors and actuators and second, the algorithmic

variability which cannot be resolved statically by specifying

configuration parameters is managed by dynamically linking

the actions abstractions to executable routines.

This rest of this paper is organized as follows. Section II

describes our approach and illustrates it on Bug algorithms.

Section III deals with the problem of organizing reusable

implementations of the abstractions. Section IV discusses the

approach. Section V presents preliminary validation results

while section VI compares our approach to related work.

II. RATIONAL

In this section, we propose our approach to provide a

generic algorithm for a family of algorithms for mobile

robots. All the algorithms of the family are assumed to

achieve the same task. It is further assumed that there is a

significant plan aspect in the algorithms: they are not merely

reactive. The generic algorithm can then be seen as a planner

specialized to the considered task.

Our approach is to be performed by a human robotics ex-

pert with a strong background in programming. The input to

the approach is a description of the task to be accomplished

and a series of algorithmic descriptions in whatever format

the expert understands (code, pseudo-code ...). The approach

consists in defining a generic algorithm while extracting

two kinds of abstractions to shield it from respectively

ar
X

iv
:1

31
2.

75
72

v1
 [

cs
.R

O
]

 2
9

D
ec

 2
01

3

low-level and algorithmic sources of variability. These two

steps are performed concurrently. In a third subsequent step,

the generic algorithm is implemented using the Template

Method design pattern which delegates (similarly to the

Bridge design pattern) sensing and actuation to so-called

virtual sensors and actuators whose implementations can then

vary independently from the algorithmic variants.

Figure 1 depicts the main steps of our approach (the first

two steps are preformed concurrently):

1) Abstractions Identification

• Definition: Abstractions are a set of methods

which allows to encapsulate specific data or to

abstract specific methods by extracting a general

signature from specific ones.

• Description: If we consider a family of algorithms

where variants propose different strategies to per-

form the same task, we should handle this variabil-

ity. Therefore, abstractions must gather hardware

and what we call algorithmic variability. One of

the possible approaches to define abstractions is

a goal directed approach. In our point of view,

defining hardware abstractions does not require

specific knowledge of specific robots sensors or

actuators but a global description of the needed

data types of the handled task. Regarding algo-

rithmic abstractions they relie on a comprehensive

study of algorithms variants whence the needed

intervention of a robotic expert. Invariant parts

among algorithms of the same family can then be

written in terms of these abstractions.

2) Generic Algorithm Definition

• Definition: A generic algorithm is a sequence

of instructions written in terms of hardware and

algorithmic abstractions.

• Decription: At this level, the robotic expert com-

bine the abstractions identified previsouly in order

to write the algorithm or to design a state machine

corresponding to a specific robotic task. In this

way, there is no specific detail related to a partic-

ular algorithms variant and the defined algorithm

is completely independent from low level details

and from specific algorithms variants.

3) Organising Implementation

• Definition: Organising implementation means im-

plementing variants of a family of algorithms

starting from the generic algorithm.

• Description: In this step, we implement the in-

variant parts of the algorithm in terms of ab-

stractions. To do so, the Template Method (TM)

design pattern [5] allows the definition of an al-

gorithm skeleton in an abstract class as a template

method. This method is the generic algorithm

identified previsouly. It defines the basic step

of the algorithm as ”placeholders” methods (or

hook methods), that are different in each subclass.

Invariants parts of the algorithm are represented

once in the abstract class as concrete methods.

Abstract methods will be used to represent needed

operations that are different in each subclass. The

main idea is to represent the variants of the al-

gorithm as subclasses that implement these ab-

stract methods. Thus, algorithmic abstractions will

be implemented in these subclasses. Concerning

hardware abstractions, they are not implemented

in subclasses like algorithmic abstractions but del-

egated to adaptors which implement them. We

define one adapter per physical sensor. Adaptors

implement these operations to extract physical data

and convert them to the needed abstractions. Then,

the specification of the physical sensor used in the

algorithm is done at the deployment level.

Fig. 1. Generic algorithm: from identification to implementation

In the next section, we illustrate our approach on the Bug

family of navigation algorithms.

III. CASE STUDY: BUG ALGORITHMS

It is symptomatic that even with the very simplified

assumptions underlying these algorithms it is still difficult:

• to understand the differences among the algorithmic

variants,

• to choose one variant over another,

• to share development efforts among variants.

A. Bug algorithms overview

The Bug algorithms attempt to solve the navigation prob-

lem in an unknown two-dimensional environment with fixed

obstacles and a known goal position. Over 19 versions of

Bug algorithms have been defined in the literature. Among

them, 7 variants are considered in this paper.

Bug algorithms share the following assumptions [3] : 1)

The environment is unknown and a finite number of fixed

obstacles are placed arbitrarily. 2) The robot is considered as

a point (i.e. without body). It has perfect sensors (for obstacle

detection) and a perfect localization ability (e.g. to compute

its distance to its goal).

In Bug family, the robot has a local knowledge and a

global goal. In other words, the inputs of Bug algorithms

are the robot’s start position and the target position. At the

end of the algorithm’s execution, the robot must indicate if

its goal is reached or if the goal is unreachable. Most of

the Bug algorithms can be programmed on any mobile robot

using tactile or distance sensing and a localization method

while some require distance sensing.

B. Abstractions identification

In the litterature, as far as we know, Bug algorithms are

only published with an informal description. Bug algorithms

are very similar fundamentally but differ in some points

of interest. Their principle is the following: (1) The robot

motion to its goal until an obstacle is detected on its

way. (2) From the point where the obstacle were encountered

(called hit point), the robot looks for a point (called leave

point) around the encountered obstacle to be able to move

to its goal again. (3) When a leave point is identified, the

robot moves to it and leaves the obstacle. Steps (1), (2) and

(3) are repeated until the goal is reached or until the robot

indicates that the goal is unreachable. This description of

Bug hides hardware and algorithmic variability. Hardware

variability impacts on obstacle detection and localisation

tasks because of their dependency of the robot actual sensors.

Algorithmic variability is related to the leave point identifi-

cation task. Following a goal directed approach and based on

a comprehensive study of Bug algorithms, we have identified

the following abstractions (described here as methods):

• Motion to goal: the robot needs to face its goal and to

be able to go ahead it: FACEGOAL(POINT GOALPOSI-

TION), GOAHEAD().

• Obstacle on the robot’s way: BOOL OBSTACLEIN-

FRONTOFTHEROBOT()

• Current position: POINT GETPOSITION()

• Get around the encountered obstacle consists in per-

forming clockwise or anticlockwise circumnavigation

while maintaining a safety distance from the obstacle:

WALLFOLLOWING(DIRECTION)

– DOUBLE GETSAFEDISTANCE()

– BOOL OBSTACLEONTHERIGHT(), BOOL OBSTA-

CLEONTHELEFT(): Depending if we follow the

wall on the right or the left.

– DOUBLE GETRIGHTDISTANCE(), DOUBLE

GETLEFTDISTANCE(): To keep a safety distance

from a wall, we need to know the distance to the

wall from the right and the distance from the left.

• Look for a leave point: IDENTIFYLEAVEPOINT(BOOL

DIRECTION, POINT ROBOTPOSITION, POINT GOAL-

POSITION) which consists in wall following while

looking for a leave point. This could be a local de-

cision (choose the first leave point which satisfies the

algorithm condition) or a global decision (choose the

best leave point after visiting all the points around the

obstacle). The following conditions are examples of

decisions that the algorithm defines to find a leave point:

– The closest point around obstacle boundary

condition. It consists on recording the closest point

to the goal among all the points ever visited by the

robot while performing boundary following[3][6].

– The m-line detection condition. It is a straight line

between the starting point and the target which aims

at providing a set of prededefined leave points. The

robot must leave only on these points[6][7].

– The local minimum condition. Using its distance

sensors, the robot can detect discontinuity points[8]

on obstacles on its way with respect to the target.

– The disabling segment condition. A disabling

segment occurs when the robot cannot move to its

goal from all points in a segment while perfoming

boundary following.

– The step method. The robot uses its distance

sensors to detect a point which is STEP[9] closer

to the target than any point already visited.

Thus, we have identified the method FINDLEAVE-

POINT(POINT ROBOTPOSITION, POINT HITPOINT,

POINT GOALPOSITION) which will be applied to each

point around the obstacle and which is specific to each

algorithm variant to hide all low level details. The code

of IDENTIFYLEAVEPOINT is given by the algorithm 1.

• Leave point identified: BOOL ISLEAVEPOINTFOUND()

• RESEARCHCOMPLETE: In case of a local decision

of leave point identification, the research complete

is equivalent to the condition leave point identified.

In case of a global decision, the research complete

decision is equivalent to a complete cycle around

the obstacle: RESEARCHCOMPLETE(POINT ROBOTPO-

SITION, POINT HITPOINT, POINT GOALPOSITION).

• Move to the leave point: Once the leave point identified,

the robot goes to it. This is a variability point because

the robot can go to the leave point following the shorter

distance or other strategies: GOTOLEAVEPOINT(POINT

LEAVEPOINT).

• GOAL UNREACHABLE: This condition is checked if

there is no leave point identified after perform-

ing an entire cycle around the obstacle: BOOL

COMPLETECYCLEAROUNDOBSTACLE(POINT ROBOT-

POSITION,POINT HITPOINT) AND NOT ISLEAVE-

POINTFOUND()

• goal reached: Depending on the algorithm objective, we

define an error margin which indicates if the robot must

reach its goal or stops before arriving to it: BOOL GOAL-

REACHED(POINT ROBOTPOSITION, POINT GOALPO-

SITION, DOUBLE ERR)

Algorithm 1: Identify leave method algorithm

function IDENTIFYLEAVE-

POINT(Bool direction, Point robotPos, Point goalPos)

computeData(robotPos);

wallFollowing(direction);

findLeavePoint(robotPos, hitPoint);

After identifying these abstractions, we classify them into

hardware abstractions and algorithmic abstractions.

1) Hardware abstractions:

GETPOSITION(), GETSAFEDISTANCE(), OBSTA-

CLEONTHELEFT(), OBSTACLEONTHERIGHT(),

GETRIGHTDISTANCE(), GETLEFTDISTANCE(),

OBSTACLEINFRONTOFTHEROBOT(),

2) Algorithmic abstractions:

FINDLEAVEPOINT(POINT ROBOTPOSITION,

POINT HITPOINT, POINT GOALPOSITION),

IDENTIFYLEAVEPOINT(BOOL DIRECTION, POINT

ROBOTPOSITION, POINT GOALPOSITION),

BOOL GOALREACHED(POINT ROBOTPOSITION,

POINT GOALPOSITION, DOUBLE ERR),

COMPLETECYCLEAROUNDOBSTACLE(POINT

ROBOTPOSITION,POINT HITPOINT), BOOL

ISLEAVEPOINTFOUND(), GOTOLEAVEPOINT(POINT

LEAVEPOINT).

C. Generic Bug algorithm definition

The generic algorithm is a combination of the previ-

ously defined abstractions as a sequence of instructions. Our

generic algorithm is given in 2.

Algorithm 2: Bug generic algorithm

Sensors : A perfect localization method.

An obstacle detection sensor

input : Position of Start (qstart), Position of

Target (qgoal)

Initialisation: robotPos ← getPosition();

direction ← getDirection();

if goalReached(robotPos) then
EXIT SUCCESS;

end

else if obstacleInFrontOfTheRobot() == true

then
identifyLeavePoint (direction, robotPos,

goalPos);

if leavePointFound() &&

researchComplete(robotPos, getHitPoint(),

goalPosition) then

goToLeavePoint(getLeavePoint());

faceGoal()();

end

else if

completeCycleAroundObstacle(robotPos,

getHitPoint()) && !leavePointFound() then
EXIT FAILURE;

end

end

else
motionToGoal();

end

D. Implementation: Template Method design pattern

As we said previously, the Template Method deals with

variability problem by proposing to define the basic step

of the algorithm as a template method written in terms of

abstractions which will be implemented in subclasses. Define

a subclass for each algorithm without handling sensors and

actuators variability cause a combinatorial explosion. Conse-

quently, we dealed with this problem by delegating hardware

variability to what we call virtual sensors or adaptors. Virtual

sensors convert specific data from the physical sensors to

the needed data in the algorithm. They implement a set of

interface abstract operations. For instance, the method OB-

STACLEINFRONTOFTHEROBOT() is different in each sensor

adaptor. We have defined an adaptor per sensor. In case of

multiple physical sensors use, their adaptors are combined

together to provide the needed data for the algorithm. The

architecture of our implementation is presented in Figure 2.

To perform wall following, right hand and left hand

algorithms are written in terms of sensors abstractions (i.e.

OBSTACLEONTHELEFT() and OBSTACLEONTHERIGHT())

E. Discussion

The hierarchy of classes defined by our approach can lead

to a combinatorial explosion if we add additional variants

of Bug family. It is then much cheaper to build operations

of the algorithm as components and to assemble desired

family members from them. This is our main motivation for

using an alternate solution based on Software Product Lines

(SPL). SPL are easy to use, compact and generate only a

configuration which interests the user. This constitutes an

immediate topic for a future work.

IV. RESULTS AND VALIDATION

Several performance comparison studies[4] were realized

on the Bug family. In this section, we do not intend to

perform a comparison between Bug family but to prove

that each algorithm of the Bug family fits with our generic

algorithm.

We demonstrate the capabilities of our generic algorithm

in the OROCOS-RTT framework through 7 variants of

Bug: Bug1 [3], Bug2 [6], Alg1 [7], Alg2 [10], Dist-

Bug [9],TangentBug [8] and Rev1 [11].

Simulation was performed using Stage-ROS with 2

configurations.

The first tested configuration was done with a laser scanner

with 180 degrees scanning angle and a detection range

which varies from 0.02 meters to approximately 4 meters

and a GPS for localization. The robot does not have any

knowledge about its environment except its start position

and the goal position.

The second configuration was done using 3 infrared range

sensors placed on the front, on the left and on the right

compared to the central axis of the robot with a field of

view equals to 26 degrees and a range which detects until

2 meters.

To demonstrate that any algorithm of the ones studied

here fits with our generic algorithm, we have tested both

configurations in 3 different environments for all algorithms.

We defined the first environment (see figure 3) to validate the

target reachability condition. In all implemented algorithms,

Fig. 2. Bug algorithms class diagram (extract)

the robot returns failure because it can not achieve its

goal. The second environment shown in figure 4 is a

simple simulation environment with one obstacle. Some

algorithms behave similarly in this environment despite

their different obstacle avoidance strategies. For instance,

Alg1 and Bug2 rely on the M-line detection condition

but behave differently when they encounter an already

traversed point. In other words, Alg1 was defined above

Bug2 to overcome situations where the robot can find itself

in an overlasting loop around obstacle. For this reason,

we defined the third environment, presented in figure 5,

to validate the encountered points condition (i.e. when the

robot encounters an already traversed point), particularly

used in the algorithms Alg1 and Alg2.

Fig. 3. Environment with un-
reachable target

Fig. 4. Basic Simulation Environ-
ment

Fig. 5. Environment to validate
the encountered points condition

The trajectory of the robot could depend on the com-

putation time of sensors information. Since most of the

algorithms treatments are reactive, we had to define the

period of execution time which allow us to get as much real-

time information as possible and to optimize the execution

time and the robot’s path. Consequently, we set the execution

period of the algorithm to 0.5 seconds.

Alll the code of Bugs algorithm variants1 and simulations

results2 are available on GitHub.

V. RELATED WORK

Several software engineering technologies and methods

aim at improving software design and reusability. In robotics,

reusability is obtained after handling variability which could

be related to the robot hardware or to the robot’s capabil-

ities (e.g. different strategies for obstacle avoidance, etc).

Robotics software like Robot Operating System (ROS)[12],

RISCWare framework [13], Player [14] propose a hardware

abstraction layer to encapsulate the sensors that gather infor-

mation about the environment and provide a set of predefined

intefaces. These middlewares rely on a bottom up approach

which consists on classifying the most used physical sensors

(or actuators), analysing the potential data they are able to

provide and then define interfaces.

Unlike these middlewares, we use a top-down approach

which consists in analysing the needed data in a particular

application, defining abstractions and then writing the appli-

cation in terms of these abstractions (possibly provided by

middlewares).

In our approach, we have applied the Template Method

design pattern to implement variants of a generic algorithm.

They are several proposals that try to apply design patterns

in robotics to handle variabilities. CLARATy authors [15]

say they used many well-know techniques developed by the

software community including design patterns but without

being much more explicit about them. MARIE [16], a

1 https://github.com/SelmaKchir/BugAlgorithms
2 https://github.com/SelmaKchir/BugAlgorithms/wiki/Implementing-Bug-
Algorithms-variants

middleware framework for robotics, applied the Mediator

Design Pattern [5] to create a mediator interoperability layer

for distributed robotics applications.

VI. CONCLUSION AND PERSPECTIVES

In this paper we have proposed an approach to organize

families of algorithms so that the algorithmic decisions to

make are clearly expressed and decoupled from implemen-

tation details. Our approach relies on the Template Method

design pattern to define a generic algorithm for Bug algo-

rithms family.

Our approach consists of three steps. The first step takes

as input a set of algorithmic variants; as described in the

litterature, and manually extract hardware abstractions and

what we have called algorithmic abstractions. The generic

algorithm is then defined as a sequence of instructions in

terms of these abstractions. The implementation of these

variants relies then on the Template Method design pattern.

This approach has been illustrated on the Bug family of

robot navigation algorithms. Seven implemented variants of

Bug algorithms have been implemented using the OROCOS-

RTT robotic framework. Simulation was performed in dif-

ferent unknown environments with a random positioning of

obstacles.

Bug variants are about 20 versions of algorithms. Imple-

menting all BugAlgorithm subclasses is very complicated

to understand and too expensive to build all Bug family mem-

bers. In addition, it is error prone to not define constraints

on subclasses and the data they must specify and use.

It is then much cheaper to build operations of the algorithm

as components and to assemble desired family members from

them. This is our main motivation for using Software Product

Lines (SPL) [17] as an immediate topic of future work.

REFERENCES

[1] W. D. Smart, “Is a Common Middleware for Robotics Possible?”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’07)

Workshop on Measures and Procedures for the Evaluation of

Robot Architectures and Middleware, Nov. 2007. [Online]. Available:
http://www.cse.wustl.edu/∼wds/library/papers/2007/iros-ws2007.pdf

[2] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehen-
sive Literature Survey and Attribute-Based Bibliography,” Journal of

Robotics, vol. 2012, 2012.

[3] V. J. Lumelsky and A. A. Stepanov, “Effect of Uncertainty on
Continuous Path Planning for an Autonomous Vehicle,” in Decision

and Control, 1984. The 23rd IEEE Conference on, vol. 23, dec. 1984,
pp. 1616–1621.

[4] J. Ng and T. Bräunl, “Performance Comparison of Bug
Navigation Algorithms,” J. Intell. Robotics Syst., vol. 50,
no. 1, pp. 73–84, Sep. 2007. [Online]. Available: http:
//dx.doi.org/10.1007/s10846-007-9157-6

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of reusable object-oriented software. Addison-Wesley
Publishing, 1995.

[6] V. Lumelsky and A. Stepanov, “Dynamic Path Planning for a Mobile
Automaton with Limited Information on the Environment,” Automatic

Control, IEEE Transactions on, vol. 31, no. 11, pp. 1058 – 1063, nov
1986.

[7] H. Noborio, K. Fujimura, and Y. Horiuchi, “A Comparative Study
of Sensor-based Path-planning Algorithms in an Unknown Maze,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), vol. 2, 2000, pp. 909–916.

[8] I. Kamon, E. Rimon, and E. Rivlin, “TangentBug: A Range-Sensor-
Based Navigation Algorithm,” The International Journal of Robotics

Research, vol. 17, no. 9, pp. 934–953, September 1998.
[9] I. Kamon, “Sensory Based Motion Planning with Global Proofs,” in

Proceedings of the IROS95, 1995, pp. 435–440.
[10] A. Sankaranarayanar and M. Vidyasagar, “Path Planning for Moving a

Point Object amidst Unknown Obstacles in a Plane: a New Algorithm
and a General Theory for Algorithm Development,” in Proceedings of

the 29th IEEE Conference on Decision and Control, 1990, pp. 1111–
1119 vol.2.

[11] Y. Horiuchi and H. Noborio, “Evaluation of Path Length Made
in Sensor-Based Path-Planning with the Alternative Following,” in
Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA 2001), vol. 2. IEEE Xplore, 2001, pp. 1728–1735.
[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an Open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[13] A. Elkady, J. Joy, T. Sobh, and K. Valavanis, “A Structured Approach
for Modular Design in Robotics and Automation Environments,”
Journal of Intelligent & Robotic Systems, pp. 1–15, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10846-012-9798-y

[14] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0:
Toward a Practical Robot Programming Framework,” in Proc. of the

Australasian Conf. on Robotics and Automation (ACRA), Sydney,
Australia, 2005.

[15] I. A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon,
T. Estlin, R. Madison, J. Guineau, M. McHenry, and I.-H. Shu,
“CLARAty: Challenges and Steps Toward Reusable Robotic Soft-
ware,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 23–30, 2003.

[16] C. Côté, Y. Brosseau, D. Létourneau, C. Raı̈evsky, and F. Michaud,
“Robotic Software Integration Using MARIE,” International

Journal of Advanced Robotic Systems, vol. 3, no. 1, pp.
055–060, Mar. 2006. [Online]. Available: http://www.ars-journal.
com/International-Journal-of-Advanced-Robotic-Systems/Volume-3/
055-060.pdf

[17] P. Clements and L. Northrop, Software Product Lines: Practices and

Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

http://www.cse.wustl.edu/~wds/library/papers/2007/iros-ws2007.pdf
http://dx.doi.org/10.1007/s10846-007-9157-6
http://dx.doi.org/10.1007/s10846-007-9157-6
http://dx.doi.org/10.1007/s10846-012-9798-y
http://www.ars-journal.com/International-Journal-of-Advanced-Robotic-Systems/Volume-3/055-060.pdf
http://www.ars-journal.com/International-Journal-of-Advanced-Robotic-Systems/Volume-3/055-060.pdf
http://www.ars-journal.com/International-Journal-of-Advanced-Robotic-Systems/Volume-3/055-060.pdf

	I Introduction
	II Rational
	III Case study: Bug algorithms
	III-A Bug algorithms overview
	III-B Abstractions identification
	III-C Generic Bug algorithm definition
	III-D Implementation: Template Method design pattern
	III-E Discussion

	IV Results and Validation
	V Related work
	VI Conclusion and Perspectives
	References

