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Abstract Recent advances in Distributed Computing highlight models and al-
gorithms for autonomous swarms of mobile robots that self-organise and cooper-
ate to solve global objectives. The overwhelming majority of works so far con-
siders handmade algorithms and proofs of correctness.
This paper builds upon a previously proposed formal framework to certify the
correctness of impossibility results regarding distributed algorithms that are ded-
icated to autonomous mobile robots evolving in a continuous space. As a case
study, we consider the problem of gathering all robots at a particular location, not
known beforehand. A fundamental (but not yet formally certified) result, due to
Suzuki and Yamashita, states that this simple task is impossible for two robots
executing deterministic code and initially located at distinct positions. Not only
do we obtain a certified proof of the original impossibility result, we also get the
more general impossibility of gathering with an even number of robots, when any
two robots are possibly initially at the same exact location.

1 Introduction

The Distributed Computing community, motivated by the variety of tasks that
can be performed by autonomous robots and their complexity, started recently to
propose formal models for these systems, and to design and prove protocols in
these models. The seminal paper by Suzuki & Yamashita [15] proposes a robot
model, two execution models, and several algorithms (with associated correct-
ness proofs) for gathering and scattering a set of robots. In their model, robots
are identical and anonymous (they execute the same algorithm and they can-
not be distinguished using their appearance), robots are oblivious (they have no
memory of their past actions) and they have neither a common sense of direc-
tion, nor a common handedness (chirality). Furthermore, robots do not commu-
nicate in an explicit way. They have however the ability to sense the environment
and see the position of the other robots. Also, robots execute three-phase cycles:
Look, Compute and Move. During the Look phase, robots take a snapshot of the
other robots’ positions. The collected information is used in the Compute phase
in which robots decide to move or to stay idle. In the Move phase, robots may



move to a new location computed in the previous phase. The two execution mod-
els are denoted (using recent taxonomy [8]) FSYNC, for fully synchronous, and
SSYNC, for semi-synchronous. In the SSYNC model, an arbitrary non-empty
subset of robots execute the three phases synchronously and atomically. In the
FSYNC model, all robots execute the three phases synchronously.

One of the benchmarking [8] problems for mobile robots is that of Gath-

ering. Regardless of their initial positions, robots have to move in such a way
that they eventually stand on the same location, not known beforehand, and re-
main there thereafter. A key impossibility result for gathering is due to Suzuki
& Yamashita [15]: two robots initially located at distinct positions may never
gather if they execute a deterministic algorithm. This result is fundamental be-
cause any weakening of the initial system hypotheses (e.g. anonymity, oblivi-
ousness, common sense of direction) makes the problem solvable [5].

Related Works Most related to our concern are recent approaches to mechan-
ising the algorithm design or the proof of correctness in the context of autonom-
ous mobile robots [4,7,2,1]. Model-checking proved useful to find bugs in ex-
isting literature [2] and assess formally published algorithms [7,2], in a simpler
setting where robots evolve in a discrete space where the number of possible
positions is finite. However, no method exists to derive impossibility results us-
ing model checking. Automatic program synthesis (for the problem of perpetual
exclusive exploration in a ring-shaped discrete space) is due to Bonnet et al. [4],
and could be used to prove impossibility in a particular setting (by a side effect,
if no algorithm can be generated), yet it exhibits important limitations for study-
ing the gathering problem we focus on here. First, the authors consider only the
discrete space setting (with a ring shape). Second, their approach is brute force
(it generates every possible algorithm in a particular setting, regardless of the
problem to solve). Third, the generator is limited to configurations where (i) a
location can only host one robot (so, gathering cannot be expressed), and (ii) no
symmetry appears (which eludes all interesting cases for studying gathering).

Developed for the COQ proof assistant1, the Pactole framework enabled the
use of high-order logic to certify impossibility results [1] for the problem of
convergence: for any positive ε, robots are required to reach locations that are
at most ε apart. Of course, an algorithm that solves gathering also solves con-
vergence, but the converse is not true. As convergence is solvable in the usual
setting, the impossibility results that can be obtained involve Byzantine robots
(that is, robots that may exhibit arbitrary, and possibly malicious, behaviours).
The impossibility results obtained in previous work using Coq [1] show that
convergence is impossible if more than half of the robots are Byzantine in the

1
http://coq.inria.fr
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FSYNC model (or more that one third of the robots are Byzantine in the SSYNC
model). These results cannot be directly extended to that of Gathering Impossib-
ility for several reasons. First, they involve the active participation of Byzantine
robots to destabilise the correct ones, while the gathering problem involves only
correct robots. Second, the possible positions robots may occupy are encoded
using rational numbers, while positions in the original model actually use real
numbers.

Our Contribution In this paper, we consider the construction of a formal proof
for the fundamental impossibility result of Suzuki and Yamashita [15], for two
robots executing deterministic code and initially located at distinct positions.
Our proof builds upon the previously initiated Pactole framework [1] to use ac-
tual real numbers as locations instead of rational numbers, and refines the defin-
itions of executions (including scheduling assumptions) to enable the study of
executions that involve only correct processes. Not only do we obtain a certified
proof of the original impossibility result of Suzuki and Yamashita, we also get
the more general impossibility result with an even number of robots, when any
two robots are possibly initially at the same exact location.

2 Preliminaries

2.1 Certification and the COQ proof assistant

To certify results and to guarantee the soundness of theorems, we use the COQ

proof assistant, a Curry-Howard based interactive prover enjoying a trustworthy
kernel. The Pactole formal model is thus developed in COQ’s formal language,
a very expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [6].
In this (functional) language, datatypes, objects, algorithms, theorems and proofs
can be expressed in a unified way, as terms. λ-abstraction is denoted fun x:T ⇒ t,
and application is denoted t u. Curry-Howard isomorphism associates proofs
and programs, types and logical propositions. Writing a proof of a theorem in
this setting amounts to building (interactively in most cases but with the help
of tactics) a term the type of which corresponds to the theorem statement. As a
term is indeed a proof of its type, ensuring the soundness of a proof thus simply
consists in type-checking a λ-term.

COQ has already been successfully employed for various tasks such as the
formalisation of programming language semantics [11,12] or mathematical de-
velopments as involved as the 4-colours [9] or Feit-Thompson [10] theorems.

The reader will find in [3] a very comprehensive overview and good prac-
tices with reference to COQ. Developing a proof in a proof assistant may non-
etheless be tedious, or require expertise from the user. To make this task easier,
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Pactole proposes a formal model, as well as lemmas and theorem, to specify
and certify results about networks of autonomous mobile robots. It is designed
to be robust and flexible enough to express most of the variety of assumptions
in robots network, for example with reference to the considered space: discrete
or continuous, bounded or unbounded. . .

We do not expect the reader to be an expert in COQ but of course the spe-
cification of a model for mobile robots in COQ requires some knowledge of the
proof assistant. We want to emphasise that the framework eases the developer’s
task. The notations and definitions given hereafter should be read as the typed
functional expressions they are.

The formal model we rely on, as introduced in [1], exceeds our needs with
reference to Byzantine robots, which are irrelevant in the present work. Thus, for
the sake of readability, a few notations have been slightly simplified: the pruned
code essentially deals with taking into account the empty set of Byzantine robots
in demonic actions. The reader is invited to check that the actual code is almost
identical.

2.2 The Formal Model

The Pactole model2 has been sketched in [1] to which we refer for further de-
tails; we recall here its main characteristics.

Two important features of COQ are used: a formalism of higher-order, which
allows us to quantify over programs, demons, etc., and the possibility to define
inductive and coinductive types [14], so as to express inductive and coinduct-
ive datatypes and properties. Coinductive types are in particular of invaluable
help to express in a rather direct way infinite behaviours, infinite datatypes and
properties on them, as we shall see with demons.

Robots are anonymous, however we need to identify some of them in the
proofs. Thus, we consider given a finite set of identifiers, isomorphic to a seg-
ment of N. We omit this set G (usually inferred by COQ) unless it is necessary
to characterise the number of robots. If needed in the model, we can make sure
that names are not used by the embedded algorithm.

Robots are distributed in space, at places called locations. We define a pos-

ition as a function from a set of identifiers to the space of locations. The set of
locations we consider here is the real line R.

Robots compute their target position from the observed configuration of
their siblings in the considered space. We also define permutations of robots,
that is bijective applications from G to itself, usually denoted hereafter by Greek
letters. Moreover, any correct robot is supposed to act as any other correct robot

2 Available at http://pactole.lri.fr
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in the same context, that is, with the same perception of the environment. For
two real numbers k 6= 0 and t, a similarity is a function mapping a location x to
k × (x− t), denoted [[k, t]]. Real number k is called the homothetic factor, and
−k× t is called the translation factor. Similarities can be extended to positions,
by applying the similarity transform to the extracted location. This operation
will be (abusively) written [[k, t]](p). Similarities are used as transformations of
frames of reference.

For a robot r-idi, a computation takes as an input an entire position p as seen
by r-idi, in its own frame of reference (scale, origin, etc.), and returns a real
number li corresponding to a location (the destination point) in the same frame.
As the robots are oblivious in the present context, the scale factor is taken anew
at each cycle. Moreover to avoid any symmetry breaking mechanism based on
identifiers, the result of r must be invariant by permutation of robots. We call
robograms the embedded computation algorithms that fulfil this fundamental
property.

Robograms may be naturally defined in a completely abstract manner, without
any concrete code, in our COQ model as follows.

Record robogram := {
algo : position → location ;

AlgoMorph : ∀ p q σ, (q ≡ p ◦ σ
-1
) → algo p = algo q }.

Demonic actions consist of a function associating to each correct robot a
real number k such that k = 0 and the robot is not activated, or k 6= 0 and
the robot is activated with a scale factor. An actual demon is simply an infinite
sequence (stream) of demonic actions, that is a coinductive object.

Record demonic_action := {frame : G → R}.
CoInductive demon := NextDemon : demonic_action → demon → demon.

Characteristic properties of demons include fairness and synchronous as-
pects. We described in [1] how fair, FSYNC, and SSYNC demons could be
defined using coinductive types. We show in Section 3 how k-fair demons can
be expressed similarly.

Finally, an execution (pi)i∈N from an initial position for (correct) robots p0
and a demon (locate_byzi, framei)i∈N, is an infinite sequence such that

pi+1(x) =

{

r[[framei(x),gpi(x)]](pi) if framei(x) 6= 0

pi(x) otherwise

It is thus an object of type:

CoInductive execution :=

NextExecution : (G → location) → execution → execution.

Its computation is reflected by a corecursive function execute.
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3 Certification of Impossibility

The impossibility result we aim to prove formally is the following:

Theorem 1 It is impossible to achieve the gathering of an even number of obli-

vious robots moving on the real line R with SSYNC k-fair demons for all k ≥ 1.

In this section, we specialise and enrich the Pactole model to provide a
formal proof of this theorem. Note that for the sake of readability some nota-
tions may be slightly simplified compared to the actual code, available from
http://pactole.lri.fr.

The main idea of the proof is taken from [15] while our premises are differ-
ent: we allow for an unbounded number of robots, provided that it is even, and
for an arbitrary initial position. On the contrary, [15] requires the initial position
to have robots at distinct locations.3

To this goal: (i) we consider robots as points, that is two or more robots can
occupy the same location, thus no constraint is added to the definition of a pos-
ition, (ii) we assume robots enjoy strong global multiplicity detectors, the same
global position is thus used for the computations of all robots, (iii) we consider
that the travelling time is negligible, destination points returned by robograms
are used directly to determine new locations, (iv) we consider oblivious robots,
that is a new frame is chosen by the demon for each activation of any robot, (v)

we take location to be R, the (axiomatic) definition of R in the COQ standard
library Reals. Note that we are considering an unbounded continuous space.

3.1 k-Fairness

A demon is said to be k-fair if it is fair and k-bounded, that is such that between
two successive activations of any robot, all other robots can be activated at most
k times. Roughly speaking, k-fairness expresses the ratio between the most act-
ive robot and the less active one, as well as avoids the degenerated case of robots
not being activated.

Firstly we express the property that, for any two robots g and h, the demon
activates g within the k next activations of h. It consists in three cases of activa-
tion for an inital round. Either g is activated (its new frame is non-null) and we
are done; this is case kReset, a base case. Either g is not activated but h is, and
the property will holds for k+1 if it holds for k for the remainder of the demon
(case kReduce). Finally if none of the two considered robots is activated during
this round, the property holds for a certain k if it holds in the remainder of the

3 This is why our results are not in contradiction with [15], Theorem 3.4, that exhibits a solution
for a number of robots n ≥ 3.
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demon (case kStall) for the same k. Notice that if the latter case happens in-
definitely, then one cannot prove Between g h d since Between is an inductive

relation4.

Inductive Between {G} g h (d : demon G) : nat → Prop :=

| kReset : ∀ k, frame (demon_head d) g 6= 0 → Between g h d k

| kReduce : ∀ k, frame (demon_head d) g = 0

→ frame (demon_head d) h 6= 0 → Between g h (demon_tail d) k

→ Between g h d (k + 1)

| kStall : ∀ k, frame (demon_head d) g = 0

→ frame (demon_head d) h = 0 → Between g h (demon_tail d) k

→ Between g h d k.

An infinite demon is thus k-fair, for a certain k, if Between holds for any couple
of robots at any time, that is if the demon is k-fair (for the very same k) from the
start and also for the remainder of the demon. We can express this coinductive
property as follows.

CoInductive kFair {G} k (d : demon G) :=

AlwayskFair : (∀ g h, Between g h d k) → kFair k (demon_tail d)

→ kFair k d.

Intended as a framework and a library, our formal development provides
several theorems about k-fairness that may prove useful, namely that a k-fair
demon is fair, that if a demon is k-fair, then it is k′-fair for all k′ ≥ k, etc.

3.2 Definition of Success

A robogram is a solution to the Gathering problem if robots reach the same,
unknown beforehand, location within finite time regardless of their initial pos-
itions. First we define the property for a position pos of having all robots at a
same location pt.

Definition stacked_at {G} (pos : G → location) (pt : location) :=

∀ r : G, pos r = pt.

Hence there is a gathering point for an execution at some step if for all future
execution steps, the location is the same for all robots. Such an infinite behaviour
is a coinductive property.

CoInductive Gather {G} (pt : location) (e : execution G) :=

Gathering : stacked_at (execution_head e) pt

→ Gather pt (execution_tail e) → Gather pt e.

This situation has to occur eventually, which we thus define as an inductive
property.

4 The curly brackets around the first argument ({G}) set it as implicit, which allows us to omit
it later on.
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Inductive WillGather {G} (pt : location) (e : execution G) :=

| Now : Gather pt e → WillGather pt e

| Later : WillGather pt (execution_tail e) → WillGather pt e.

If this holds for a given robogram r and a given demon d from any initial posi-
tion then r is a solution to the Gathering problem for d.

Definition solGathering {G} (r : robogram G) (d : demon G) :=

∀ (p : G → location),

∃ pt : location, WillGather pt (execute r d p).

We will prove that with a well chosen demon, even as constrained as a k-
fair demon, there exists an execution where robots are always apart (we prove
that this notion is in contradiction with being a solution). More precisely, there
is an execution that keep half the robots away from the other half; that is: the
position is split. In the following, (G ⊎ G) denotes the union of two disjoint sets
isomorphic to the same segment of N, hence guaranteeing an even number of
robots. By construction, an element g of the left (respectively right) G is denoted
inl g (respectively inr g). Moreover, recall that the location is obtained by
application of the position (which is a function) to an identifier.

Definition Split {G} (p : (G ⊎ G) → R) :=

∀ x y : G, p (inl x) 6= p (inr y).

The following coinductive property characterises such an execution:

CoInductive Always_Split {G} (e : execution (G ⊎ G)) :=

CAS : Split (execution_head e)

→ Always_Split (execution_tail e)

→ Always_Split e.

In fact, the faulty execution we exhibit with this property in the proof leaves a
particular position indefinitely bivalent: with the robots evenly distributed over
two distinct locations only.

Of course, any execution for which this property holds cannot be compatible
with a solution for a non-empty set of robots (of even cardinality).

Theorem Always_Split_no_gathering :

∀ (G : finite) (e : execution (G ⊎ G)),

inhabited G → Always_Split e → ∀ pt, ¬ WillGather pt e.

3.3 The Theorem in COQ

We may now state a formal version of Theorem 1 as follows:

Theorem noGathering : ∀ (G : finite) (r : robogram (G ⊎ G)),

inhabited G

→ ∀ k : nat, (1 <= k)

→ ¬ (∀ d, kFair k d → solGathering r d)
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the proof of which amounts to showing that for a non-null even number of ro-
bots, any k and any robogram r there exists a k-fair demon that prevents r to
gather all robots.

The proof we formalise is inspired from [15]; it makes use of two demons,
one that is fully synchronous, and one that is 1-fair. Depending on the expected
result of the first move, we use one or the other.

We consider an initial position consisting of two separate piles of the same
number of robots. If the expected first move brings the robots of one pile onto the
other pile, we choose the fully-synchronous demon, which results in switching
the locations of the two piles, thus in obtaining an equivalent position. Other-
wise, we choose the 1-fair demon that will activate only one pile at a time; the
piles moving alternatively, a change of frame suffices then to get back to an
equivalent position.

Both cases allow us to show that Always_Split holds, thus proving The-
orem noGathering.

4 Remarks and Perspectives

Thanks to the abstraction level of the Pactole framework, setting the space to
be R, thus both unbounded and continuous, is not as complicated as one could
imagine; it emphasises the relevance of a formal proof approach and how it is
complementary to other formal verification techniques. In addition to the syn-
tactical invocation of R and associated functions, the main change from previous
formalisations (that in particular were dealing with Q) addresses proofs more
than specifications, and lies in the fact that we use axiomatic reals. With such
a description of R, there is no computation. Hence relations between two ele-
ments of type R must be actually proved as they usually cannot be obtained by
computation primitives.

The size of the specialised development for the relevant notions and the
aforementioned theorems (thus excluding for example the complete library for
reals) is quite small, as it is approximately 480 lines of specifications and 430
lines of proofs. The file noRDVevenR.v itself is about 200 lines of specifications
for 250 lines of proof scripts. This is a good indication on how adequate our
framework is, as proofs are not too intricate and remain human readable.
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