
RobotML, a Domain-Specific Language
to Design, Simulate and Deploy Robotic

Applications

Saadia Dhouib1, Selma Kchir2, Serge Stinckwich3,4, Tewfik Ziadi2,
and Mikal Ziane2

1 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems
Point Courrier 94, Gif-sur-Yvette, F-91191 France

2 UMR CNRS 7606 LIP6-MoVe, Université Pierre et Marie Curie, Paris, France
3 UMR CNRS 6072 GREYC, Université de Caen-Basse Normandie/ENSICAEN,

Caen, France
4 UMI IRD 209 UMMISCO

IFI/Vietnam National University, Hanoi, Vietnam
saadia.dhouib@cea.fr, serge.stinckwich@ird.fr, mikal.ziane@lip6.fr

Abstract. A large number of robotic software have been developed but
cannot or can hardly interoperate with each other because of their depen-
dencies on specific hardware or software platform is hard-wired into the
code. Consequently, robotic software is hard and expensive to develop
because there is little opportunity of reuse and because low-level details
must be taken into account in early phases. Moreover, robotic experts
can hardly develop their application without programming knowledge
or the help of programming experts and robotic software is difficult to
adapt to hardware or target-platform changes. In this paper we report on
the development of RobotML, a Robotic Modeling Language that eases
the design of robotic applications, their simulation and their deployment
to multiple target execution platforms.

Keywords: Domain-Specific Languages, Generative Programming, MDE,
robotic application.

1 Introduction

Large amounts of robotic software have been developed but cannot or can hardly
interoperate with each other because their dependencies on specific hardware or
software platform is hard-wired into the code. Thus, changing one or several of
the used hardware components in the application implies several time consuming
changes in the code. In addition, robotic software is difficult to adapt to target
platform changes. Consequently, robotic software is hard and expensive to de-
velop because there is little opportunity of reuse. Moreover, robotic experts can
hardly develop their application without programming knowledge or the help of
programming experts. This knowledge is not only related to algorithm program-
ming but to the arcanes of the chosen simulation platform and the details of
drivers of sensors and actuators.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 149–160, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



150 S. Dhouib et al.

Defining robotic applications using appropriate notations and abstractions
and automatically generating executable code could be a solution to deal with
variability problems and to hide the lower level programming details to robotics
experts. Domain-specific languages (DSLs) have been introduced, based on thor-
ough understanding of the application domain, to express solutions at the level of
abstraction of the problem domain.This assumes that along with the DSL itself
a whole toolchain is provided to automate as much as possible the lower-level
task and especially code generation [4,10].

In this paper we propose the RobotML DSL and a toolchain to address
these issues. In section 2, we outline the requirements for RobotML that is
then presented in section 3. Afterwards, we describe the RobotML toolchain,
from modeling to code generation in section 4. Then, a case study is outlined
in section 5, validating the proposed DSL on a real robotic use case. Section 6
discusses how the proposed RobotML DSL fulfills the requirements presented
in Section2. In Section 7, we outline previous work related to our approach and
section 8 concludes the paper.

2 Requirements

In this section we specify the requirements of the ideal autonomous robotics
DSL. Some of the requirements deal with the DSL itself while some are more
related to its implementation and especially to how it will be compiled and run.
In this paper we will report on which requirements were achieved and which ones
were left for further study:

1. Ease of use. Using the DSL should be in the reach not only of programming
experts but of robotics experts and ideally of mere robotics users.

2. Specification of component-based robotic architectures. Assuming
that most robotics software is nowadays component-based, the DSL must al-
low the specification of component-based architectures of autonomous robotic
systems.

3. Neutrality regarding architectural styles. The DSL must not impose
a specific robotic architectural style (deliberative, reactive, hybrid, ...).

4. Multiple, heterogeneous target platforms. As long as the expected
components are provided and conform to the architecture, the latter must
be executable on robots or on a simulator. In addition, it must be possible
to run some components of a given architecture on one platform and other
components on another.

5. Target-platform independence. Even though target-platform indepen-
dence is difficult to achieve, the DSL should be as independent as possible
of the specificities of the execution platforms.

6. Smooth evolution of the supported platforms. Code generation should
be as agile as possible so that supporting a new platform can reuse common
transformations. Similarly, supporting a new version of a target platform
should capitalize as much as possible on the previous implementation.



RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 151

7. Smooth evolution of the DSL. Ideally it should be possible to change
at least some superficial aspects of the DSL without having to build a com-
pletely new implementation.

8. Reasoning. It should be possible to reason on the architecture especially
to check non-functional properties such as real-time constraints or energy
consumption.

3 RobotML Domain Specific Language

This work aims at providing a domain specific language (and related tools like
editors, model validation, code generators) suitable to specify missions, environ-
ments and robot behaviours that will be specified by robotics designers. Indepen-
dently from the target platform, the DSL will help the robotic system designers
to define:

– The system’s architecture (i.e. its internal structure). In fact, the DSL will
ease the definition of specific robotic architecture (reactive, deliberative, hy-
brid) and specific components that form the architecture (sensors, actuators,
planners, mapping, etc.).

– The communication mechanisms between components (sending/receiving of
event notifications and data).

– The behaviour of robotic components that form the system’s architecture.
The main design entries of the DSL are the robotic ontology [3] developed in the
frame of the French research project Proteus1 and a state of the art study on
languages and tools for robotic systems. The latter has helped to identify the
requirements presented in the previous section. The former has helped to build
the domain model. Once the domain model is built, we implemented the DSL
as a UML profile (i.e. extension of the UML meta-model). Then we developed
the graphical modeling tool as an extension of the Papyrus modeling tool2. In
the following, we justify the choice of using a robotic ontology to build the
domain model of the RobotML DSL, and then we present the domain model
(i.e. meta-model) of the DSL.

3.1 Rationale of Using an Ontology during the Design of RobotML

Ontologies are mainly used in Artificial Intelligence and Semantic Web com-
munities to represent knowledge, as a set of concepts and relationships of a
domain. Several works have already used ontologies for their semantic or struc-
tural synergy with DSLs [7,11]. In our case, the main benefit from using the
ontology in the design process of the DSL is reusing a robotics experts knowledge
base to enrich the DSL domain model [6]. From our experience, using an on-
tology has benefits as well as drawbacks. In fact, reusing an ontology facilitates
the DSL designers task by providing a set of concepts that are specific to the
1 http://www.anr-proteus.fr/?q=node/111
2 http://www.eclipse.org/modeling/mdt/?project=papyrus

http://www.anr-proteus.fr/?q=node/111
http://www.eclipse.org/modeling/mdt/?project=papyrus


152 S. Dhouib et al.

robotic domain and that can be directly reused to define the DSL meta model.
Examples of those concepts include Robot, SensorSystem, ActuatorSystem,
LocalizationSystem. On the other hand, a lot of concepts are not useful for
defining the DSL domain model. For example the concept of Interaction is not
useful in the DSL, we have instead used the concepts of Port and Connector to
capture the concept of an interaction. So having an ontology as a design entry
implies that the DSL designer will filter the ontology concepts that are useful
for the DSL domain model. This filtering task is not straightforward, specially
when the DSL designer does not master the ontology language and editing tools.

3.2 Domain Model

The domain model of a given DSL defines the concepts of a language and their
relationships. In this section, we present the domain model of the RobotML
DSL based on the requirements defined in the previous section and the knowledge
base provided by the ontology. We have used UML class diagrams to represent
the domain model. The packages structuring the RobotML domain model and
relationships between them are presented in Fig. 1.

Fig. 1. RobotML Domain Model Fig. 2. RoboticArchitecture Package

Architecture. Fig. 2 shows a general view of the RobotML architecture do-
main model package. This package contains five sub-packages:

1. The robotic system package describes the concepts that help define and com-
pose a robotic system. The System concept corresponds to the Component
concept (as found in the component-based approach). The term system is
more appropriate to describe a robotic component, this is due to the fact that
System is more meaningful for a robotician than Component. Fig. 3 some of
the concepts defined in this package. A System is composed of properties,
ports and connectors. Properties could be either the system’s subsystems or
attributes (for storing configuration values for example). Ports and connec-
tors allow systems to interact. This package includes also the robotic specific
concepts such as sensors and actuators.



RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 153

2. The system environment package defines the concepts composing the envi-
ronment where robots evolve, since we not only model the robotic system
but also its environment (for example for simulation purpose).

3. The data types package defines the types of data that will be exchanged
between robotic components, between algorithms, etc.

4. The robotic mission package describes the concepts that are needed to define
an operational mission and which are used by components of the architecture
performing it.

5. The platform package defines the concept of platform which represents the
execution environments for the robotic system (i.e. robotic middleware,
robotic simulator).

Communications. Communications between robotic systems formalize data
exchange and service calls between them. Communications are refined through
the aspect of ports and connectors. A port formalizes an interaction point of
a system. Port is an abstract concept that is refined through two concepts.
On the one hand, we define the concept of DataFlowPort which is related to
the publish/subscribe model of communication. DataFlowPort enables dataflow-
oriented communication between systems, where messages that flow across ports
represent data items. On the other hand, we define the concept of ServicePort
that supports a request/reply communication paradigm, where messages that
flow across ports represent operation calls.

Fig. 3. RoboticSystem Package Fig. 4. Details of the FSM Package

Behaviour. The concept of EvolutionModel is used to describe the be-
haviour of the robotic system. An evolution model can be defined using al-
gorithms or finite state machines. Fig. 4 shows the FSM concept inheriting from
EvolutionModel and composed of states and transitions. States are composed
of FSMActivities, meaning that activities can be executed during a State.
Transitions are also composed of FSMActivities, meaning that if a transition
is fired, an activity can be executed as an effect. An activity is a behaviour that
is specified using an algorithm.



154 S. Dhouib et al.

Deployment. This package specifies a set of constructs that can be used to
define the assignement of a robotic system to a target robotic platform (a mid-
dleware or a simulator). The deployment is important because it feeds code
generators with the information on which platform the system will be executed.

4 The RobotML Toolchain

RobotML provide a toolchain for robotic development from modeling to soft-
ware simulation and deployment on real robots. This toolchain, illustrated in
Fig. 5, is based on the Eclipse Modeling Project3 that supports model-driven
engineering approach. We have used Papyrus and Acceleo4 plugins integrated to
Eclipse for modeling and code generation.

Fig. 5. The RobotML toolchain

The RobotML user starts by designing a model (PIM, Platform Independent
Model) of a specific scenario where sensors, actuators and the control system of
the robots are represented. The next step is a definition of a deployment platform
model (DPM), which consist of a set of robotic middlewares and/or simulators
connected with each other to form an execution platform for the PIM. Then,
3 http://www.eclipse.org/modeling/
4 http://www.acceleo.org/

http://www.eclipse.org/modeling/
http://www.acceleo.org/


RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 155

after the validation of the model, the user defines a deployment plan where
he/she chooses to which robotic middleware (OROCOS-RTT5, RTMaps6, Urbi7
or Arrocam8) and to which simulation engine (MORSE9 or CycabTK10) code
will be generated. The deployment plan is built in two steps:

– First, the designer allocates the components of the PIM to the modeled
execution platform parts. For example, the control system of the robot can
be allocated to a robotic middleware and sensors/actuators can be allocated
to a robotic simulator. The designer can also specialize the robotic system
components by setting some of their properties to match the specificities of
runtime platforms.

– Second, the designer has the possibility of reusing existing components al-
ready deployed in the component library of the target robotic platform. In
fact, a mapping to target platforms component libraries can be established
by the user.

Finally, from the deployment plan information, the code is automatically gen-
erated. Code generators from the DSL to the aforementioned middlewares and
simulators have been developed in the frame of the Proteus project.
Overall, the RobotML DSL provides a common ground for designing and imple-
menting component-based robotic systems. We illustrate this in the next section
with a case study.

5 Case Study: Urban Challenge

In order to validate the proposed DSL on industrial examples, several case studies
(called challenges) have been designed by the Proteus project partners. In this
section, we will focus on the Urban Open-Access Robotic Platform11 challenge
that deals with the problem of intelligent transportation systems (autonomous
cabs). In the following, we present the urban challenge model in accordance
with the four main parts of the proposed DSL: architecture, communication,
behaviour and deployment then code generation.

5.1 Modeling

Using the RobotML DSL, we have represented the modules of the challenge in
a component-based model.

5 http://www.orocos.org/
6 http://intempora.com/
7 http://www.urbiforge.org/
8 http://effistore.effidence.com/
9 http://www.openrobots.org/wiki/morse/

10 http://cycabtk.gforge.inria.fr/
11 http://www.anr-proteus.fr/?q=node/64

http://www.orocos.org/
http://intempora.com/
http://www.urbiforge.org/
http://effistore.effidence.com/
http://www.openrobots.org/wiki/morse/
http://cycabtk.gforge.inria.fr/
http://www.anr-proteus.fr/?q=node/64


156 S. Dhouib et al.

Architecture. Fig. 6 illustrates the global architecture of the urban challenge
model. The control system consists of controller, trajectory planning, localiza-
tion and obstacle detection components. It defines the behaviour of the robot
during its mission. The control system of the robot takes inputs from sensors
(LIDAR3D, Odometery, RTK_GPS_IMU and Front Camera) and sends com-
mands to actuators (Brake, Steering and Motor) through data flow communi-
cations. The Localization component calculates the position of the robot and
returns the deviation of the robot with respect to the trajectory it must fol-
low. Trajectory Planning computes the trajectory to follow from the current
position of the robot in comparison with its goal (the goal position is initially
specified by the user). Obstacle Detection is defined to deal with dynamic
changes in the environment. It sends information to Control whether a new
obstacle is detected. The Control component aims at transforming the received
data from the components Localization, Trajectory Planning and Obstacle
Detection into commands to Actuators components, which represent the ac-
tuators of the robot. A snapshot of the Papyrus-based modeling environment is
shown in Fig. 7. At the right side of the component definition diagram, we can
see the customized palette that contains RobotML concepts used for defining
the aforementioned robotic components.

Fig. 6. Simplified urban challenge architecture diagram

Communications. In Fig. 6, components are connected through Data
Flow ports. Let us take for example the components Localization and
RTK_GPS_IMU. The synchronization policy for data exchange (syn-
chronous/asynchronous mode) between these components is specified in addition
to the buffer size for data storage. Those information are specified by setting
ports attributes in the properties view of the modeling environment (Fig. 7).

Bevahiour. Components (except sensors and actuators) have a behaviour spec-
ified by a state machine or an algorithm (see section 3.2). At the right side of
the modeling environment (Fig. 7), the state machine diagram of the component
Localization is shown. The first state is the Kalman filter which handles data
sent by sensors and returns an estimation of the pose of the robot. If the position



RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 157

of the robot changes (guard:positionChanged), the state ComputePathDeviation
is activated and the computed deviation is returned to the controller component.

Deployment. In the case of the urban challenge, we have modeled an execution
platform that contains a robotic middleware, namely OROCOS, communicating
with a robotic simulator, namely Morse. The deployment plan contains allo-
cations of sensors (yellow components in Fig 6), actuators (red components in
Fig 6) to MORSE and allocations of the control system (green components in
Fig 6) to OROCOS.

Fig. 7. The RobotML modeling environment

5.2 Code Generation

The RobotML toolchain integrates several code generators defined by Proteus
partners to several robotics middlewares and simulators engines (cf. section 4).
The process of translating a model to code is to perform Model to Text (M2T)
transformations from the DSL to text artifacts (source files, configuration files,
etc.) needed to create an executable application. Starting from the model of
the urban challenge and the deployment plan defined in the model, users can
generate code for several platforms.

6 Discussion

RobotML The main objective of the RobotML DSL was to propose to the
robotics community a domain specific language which facilitates the development
of robotics applications. In this context a set of requirements was identified in
Section 2. In this paper, the RobotML DSL presented an answer to achieve
these requirements. In this section we report on which of these requirements
were achieved by the RobotML DSL and which ones were left for further work.



158 S. Dhouib et al.

1. Ease of use Thanks to RobotML, DSL users can model the components
of their missions without mastering programming languages of robotics plat-
forms. In fact, platforms details are hidden to the DSL users and concepts
used in RobotML are based on robotics ontology.

2. Specification of component-based robotic architectures As presented
in Section 3, the RobotML DSL includes the architecture part which gath-
ers the concepts of System, Port, Connector. The latters allow the specifica-
tion of component-based robotic architectures. For instance, Fig. (6) shows
an example of such architecture.

3. Neutrality regarding architectural styles Most robotic systems soft-
ware architectures are based on components, the only architecture taken
into account in RobotML is component-based. Consequently, any robotic
architecture (hybrid, deliberative, etc) can be specified using an approri-
ate combination of components. For example, the used architecture in the
scenario of Fig. 6 is hybrid.

4. Multiple, heterogenous target platforms Thanks to the use of ROS,
components deployed into robotics platforms can easily communicate with
components deployed into simulators or directly with real robots. Thus, the
code generated from RobotML can be executable on both real and simu-
lated robots.

5. Target-platform independence Using RobotML and thanks to the ab-
stract concepts of the DSL, the architecture model of the robotic application
is independent from the target platform (PIM).

6. Reasoning RobotMLenable roboticist to model some non-functional prop-
erties of the system notably timing properties for software components
(period, deadline, WCET, priority). Such timing properties will feed schedu-
labilaty analysis tools e.g. Cheddar [9]. Another types of reasoning could be
considered for robotic systems specified with RobotML given the extension
of the language to integrate the adequate non functional properties modeling.

The requirements smooth evolution of the supported platforms and smooth evo-
lution of the DSL were left for future work.

7 Related Work

At the moment, there are not that many proposals to use MDE (Model Driven
Engineering) in the context of robotic systems. One of the first initiatives to
promote this approach was Blanc et al. [2] who applied MDE to develop control
ssoftware for an AIBO robot.

SmartSoft [8] combines a service-oriented component-based with a Model-
Driven Software Development approaches. The SmartSoft12 component model
relies on a small and fixed set of communication patterns, e.g., request/response
and publish/subscribe, that define the semantics of the interface (externally visible
ports) of components. The componentmodel is represented by a meta-model called
12 http://smart-robotics.sf.net/

http://smart-robotics.sf.net/


RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 159

SmartMARS (Modeling and Analysis of Robotic Systems). Like RobotML, a
concrete implementation of this meta-model has been done as a UML profile and
the proposed Eclipse-based SmartMDSD model-driven software development
toolchain is based on Papyrus as well. But unlike RobotML, the SmartSoft ap-
proach does not provide the possibility to describe components behaviour at the
same abstraction level than components specification level.

BRICS (Best Practice in Robotics) is an ongoing FP7 EU funded project13 that
also promotes the model-driven engineering (MDE) approaches in order to solve
robotic software engineering issues. Among all the activities done in the project,
a features-based model toolchain was proposed in order to reflect variabilities in
robotic systems [5] and ameta-model calledBCMwas defined for describing amin-
imal component model14 suitable for code generation for multiple targets (ROS,
OROCOS-RTT). Unlike RobotML, BRICS meta-model does not enable specifi-
cation of composability, component’s behaviour and robotic specific components.

The 3-View Component Meta-Model (V3CMM) [1] relies on the use of the
OMG Meta-Object Facility (MOF) instead of using UML. It aims to provide de-
signers with an expressive yet simple platform-independent modeling language
for component-based application design. V3CMM is aimed at allowing designers
(1) to model high-level reusable components, including both their structural
and behavioural facets (modeling for reuse); (2) to build complex platform-
independent designs up from the previous components (modeling by reuse); and
(3) to automatically translate these high-level designs into lower level models
or into different implementations, isolating functionality from platform details.
Compare to RobotML, it is worth noting that although V3CMM has been used
mainly in robotics, it does not contain any specificities about this domain.

8 Conclusion

In this paper we have reported on the RobotML domain-specific language and
toolchain. RobotML is easier to use than the targeted robotic execution or
simulation platforms because low level details have been hidden behind eas-
ier to manage abstractions. Not all of these abstractions are directly related
to robotics and some do relate to defining component-based architecture but
a sizeable amount of low-level programming knowledge has been put into the
code-generation transformations. Early usage reports suggest that even though
the overall development time of a robotic application using RobotML has not
significantly decreased, using RobotML induces the following advantages:

– more time is spent on design than on dealing with low level details,
– the architecture is made explicit,
– switching to a new target platform is much easier.

13 http://www.best-of-robotics.org/
14 http://www.best-of-robotics.org/pages/publications/

BRICS_Deliverable_D4.1appendix.pdf

http://www.best-of-robotics.org/
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D4.1appendix.pdf
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D4.1appendix.pdf


160 S. Dhouib et al.

The RobotML DSL and toolchain have been designed in the context of the ANR
Proteus projet. This project funded by the French research agency, gather 14
academic and industrial partners. The RobotML toolchain will be available
with an open-source licence in the future.

References

1. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Alvarez, B.: V3CMM: a 3-
View Component Meta-Model for Model-Driven Robotic Software Development.
Journal of Software Engineering for Robotics 1(1), 3–17 (2010)

2. Blanc, X., Delatour, J., Ziadi, T.: Benefits of the MDE approach for the devel-
opment of embedded and robotic systems. In: Proceedings of the 2nd National
Workshop on “Control Architectures of Robots: from Models to Execution on Dis-
tributed Control Architectures", CAR 2007 (2007)

3. Dhouib, S., Du Lac, N., Farges, J.L., Gerard, S., Hemaissia-Jeannin, M., Lahera-
Perez, J., Millet, S., Patin, B., Stinckwich, S.: Control architecture concepts and
properties of an ontology devoted to exchanges in mobile robotics. In: 6th National
Conference on Control Architectures of Robots (2011)

4. Gerard, S., Babau, J.P., Champeau, J.: Model Driven Engineering for Distributed
Real-Time Embedded Systems. Wiley-IEEE Press (2005)

5. Gherardi, L., Brugali, D.: An Eclipse-based Feature Models Toolchain. In: Proc.
of the 6th Workshop of the Italian Eclipse Community (Eclipse-IT 2011) (2011)

6. Lortal, G., Dhouib, S., Gérard, S.: Integrating Ontological Domain Knowledge into
a Robotic DSL. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627,
pp. 401–414. Springer, Heidelberg (2011)

7. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-
M.: Weaving Variability into Domain Metamodels. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

8. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
Communication patterns as key for a robotics component model. Introduction to
Modern Robotics (2012)

9. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: Proceedings of the 2004 Annual ACM SIGAda International
Conference on Ada, SIGAda 2004, pp. 1–8. ACM, New York (2004)

10. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-
usage in service robotics. In: Proceedings of the 10th ACM International Conference
on Generative Programming and Component Engineering, GPCE 2011, pp. 73–82.
ACM, New York (2011)

11. Walter, T., Ebert, J.: Combining DSLs and Ontologies Using Metamodel Integra-
tion. In: Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 148–169. Springer,
Heidelberg (2009)


	RobotML, a Domain-Specific Language to Design, Simulate and Deploy RoboticApplications
	Introduction
	Requirements
	RobotML Domain Specific Language
	Rationale of Using an Ontology during the Design of RobotML
	Domain Model

	The RobotML Toolchain
	Case Study: Urban Challenge
	Modeling
	Code Generation

	Discussion
	Related Work
	Conclusion
	References




