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Preface

Welcome to NISK 2010, the third edition of the Norwegian Information
Security Conference. After the initial NISK conference in Agder and its
follow up in Trondheim, it will now take place in Gjøvik on the 23rd and
24th of November. As before the conference will take place in combination
with NIK and NOKOBIT. NISK2010 is sponsored by NISnet, the resource
network of Norwegian Information Security researchers funded by the
Norwegian Research Council.

This year we had 27 high quality submissions from 8 different institutes.
Of those one was withdrawn and one came in too late. The remaining 25
were reviewed by 2 members of the Program Committee each and from
their feedback 14 papers were selected for presentation. This means that
the acceptance rate of 56% is very close the the 58% from last year. All 14
papers will get a 30 minutes timeslot for presenting the ideas. Out of the 14
papers, 8 are authored or co-authored by PhD students and 1 is co-authored
by master students.

We are glad to announce that Dr. Mike Bond from the Computer
Laboratory at the University of Cambridge accepted the invitation as a
keynote speaker. The title of his presentation is Chip and Empiricism:
Breaking EMV, with proof. In May 2010 Mike Bond presented the
controversial paper Chip and PIN is broken, which he co-authored with
Steven J. Murdoch, Saar Drimer, and Ross Anderson, at USENIX Security.
The paper described how an EMV card can be used to make purchases
at Point-of-Sale without knowing the correct PIN. During the subsequent
publicity, demonstrations of the technique deployed against the live
banking system aired on various European television channels.

I would like to thank all the members of the Program Committee for
their valuable input in the reviewing process. Furthermore I would like to
thank the organizers of NIK, Erik Hjelmås and of NOKOBIT, Tom Røise
for the pleasant cooperation and last but certainly not least I would like to
thank Kari Lauritzen for all the help with the practical organization of the
three conferences.
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Abstract
Biometric quality assessment is an active research field from recent years.
Quality information could be used during the enrolment step and it can also
be incorporated in multimodal or soft biometrics approaches. We present
in this paper an SVM-based method to compute the quality of a biometric
sample using two information. The first one is based on the image quality and
the second is pattern-based metrics using the SIFT keypoints extracted from
the image. Experimental results on three large and significant face databases
show the efficiency of the proposed quality method in predicting matching
performance illustrated by the Equal Error Rate (EER).

1 Introduction

Biometric-based authentication systems constitute one of the most promising candidate
for either replacing or enhancing traditional systems based on secret such passwords
and/or token such ID cards. Many biometric modalities have been proposed in the last
decade [1, 2] for authentication issues. Such systems do not provide a 100% reliable
answer and it is quite impossible to obtain such a response. This uncertainty is due from
the variations of human characteristics (such as occlusions for iris recognition systems
[3]), environment factors (i.e., variation of acquisition conditions such as illuminations
for face recognition systems [4]) and cross-device matching [5]. These kinds of variations
may deeply affect biometric raw data quality. Low quality samples increase the enrolment
failure rate, and decrease the system performance [4]. Therefore, quality assessment is
considered as a crucial factor required in both the enrolment and verification phases.
Using quality information, the bad quality samples can be removed during enrolment
or rejected during verification. Such information could also be used in soft biometrics or
multimodal approaches [6].

In this paper, we present an SVM-based method, to assess biometric raw data, which
is based on the use of image quality and pattern-based metrics. The paper is organized as
follows: section two describes previous works in the state of the art concerning biometric
raw data quality. In section three, we detail the developed method. Section four illustrates
the experimental results on three large face databases. We conclude and give some
perspectives of this work in section five.

This paper was presented at the NISK-2010 conference.
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2 State of the art

Quality assessment is receiving more and more attentions in biometrics. Many quality
algorithms have been developed mainly for the fingerprint modality [7, 8], face [4, 9],
iris [3], voice [10] and signature signals [11]. These works have demonstrated that
the performance of biometric systems is heavily affected by the quality of the acquired
biometric data. Tabassi et al. present in [7] a method based on the measurement of the
matching scores to assess fingerprint quality. The proposed method uses a black box
composed of two modules, feature extraction and neural network, which associate image
quality into five classes according to the quartiles of genuine matching score distribution.
He et al. [12] present a hierarchical model to compute the biometric sample quality
at three levels: database, class and image quality levels. The method is based on the
quantiles of genuine and impostor matching score distributions. However, their model
could not be used directly on a single capture (i.e., requires a pre-acquired database).
Zhang et al. present in [4] an asymmetry-based quality assessment method of face images.
The method uses SIFT descriptor for quality assessment. The presented method has
shown its robustness against illumination and pose variations. Another asymmetry-based
method is presented in [13]. However, asymmetry-based methods suppose the asymmetry
hypothesis hence, could not be used for the others types of modalities. Other efforts
[5, 14, 15] have also been focused on the incorporation of biometric quality information
to multimodal fusion approaches. Fierrez-Aguilar et al. [14] used an adaptive score
fusion scheme based on automatic quality estimation in the spatial frequency domain.
Poh et al. present in [15] an overview of methods for quality-based multimodal biometric
fusion using Bayesian networks and propose a novel fusion classifier incorporating both
the quality and device information simultaneously.
The works done in quality assessment are very few in comparison to performance ones.
To our knowledge, most of the existing quality algorithms are modality and matcher
dependent. The others, based on the genuine and impostor matching score distributions,
could not be used directly on a single capture (i.e., they require a large number of captures
for the same person in order to constitute its genuine score distribution). Therefore, the
main contribution of this paper is the definition of a method which can be considered as
independent from the used matching system. It detects in a reasonable accuracy three
types of real alterations that may deeply affect the global performance of the most widely
used matching systems. The presented method is not based on asymmetry hypothesis.
Thus, it may be used for several types of modalities and can be used directly on a single
capture after training the model.

3 Developped Method

The developed method is designed to assess biometric raw data. The method principle
is illustrated in Fig.1: it is based on the use of image quality and pattern-based metrics.
The method constitutes a vector of both information and uses the Support Vector Machine
(SVM) [16] classifier to assign a class for an image.

No-reference image quality

The development of general-purpose no-reference approaches to image quality assess-
ment (NR-IQA) still lags recent advances in full-reference methods. Additionally, most
no-reference or blind approaches are distortion-specific, meaning they assess only a spe-
cific type of distortion assumed present in the test image (such as blockiness, blur, or
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Figure 1: General scheme of the proposed method

ringing). This limits their application domain. Other approaches rely on training a ma-
chine learning algorithm. These methods however, are only as effective as the features
used to train their learning machines. The used NR-IQA method in this paper is the BLI-
INDS index introduced by Saad et al. [17]. This index is based on a DCT framework
entirely. This makes it computationally convenient, uses a commonly used transform,
and allows a coherent framework. The BLIINDS index is defined from four features that
are then pooled together: 1) a contrast feature υ1, 2) a structure distortion based feature υ2
and 3)4) two anisotropic based measures υ3,υ4. Contrast is a basic perceptual attribute
of an image. One may distinguish between global contrast measures and ones that are
computed locally (and possibly pooled into one measure post local extraction). In resort
to computing contrast based on the kth local DCT patch as follows:

ck(x) =
1
N

N

∑
i=1

xi
AC

xDC
(1)

where N is the patch size, xDC represents the DC coefficient and the set {xi
AC| i = 1 : N}

represents the AC coefficients. Then, the local contrast scores from all patches of the
image are then pooled together by averaging the computed values to obtain a global image
contrast value υ1:

υ1 =
1
M

M

∑
i=1

ci(x) (2)

where M is the number of local patches. Structure features are derived locally from the
local DCT frequency coefficients computed on a patch k. They are based on statistical
traits of the DCT histogram for wich the DC coefficient is ignored. To measure these
statistical traits of the DCT histograms of the patch k, its kurtosis is computed to quantify
the degree of its peakedness and tail weight:

κk(xAC) =
E(xAC −μ4)

σ4 (3)

where μ is the mean of xAC, and σ is its standard deviation. Then the resulting values for
all patches are pooled together by averaging the lowest tenth percentile of the obtained
values to compute the global image kurtosis value υ2. As degradation processes damage
a scenes directional information, anisotropy measure, which is a directionally dependent
quality of images, is computed using the Renyi Entropy on DCT image patches along
four different orientations θ = 0,45,90,135 in degrees. Each patch consists of the DCT
coefficients of oriented pixel intensities. We discard the DC coefficient, since the focus
is on directional information. Let the DCT coefficients of kth patch of orientation θ be
denoted by Pθ[k, j], where j is the frequency index of the DCT coefficient. Each DCT
patch is then subjected to a normalization of the form :

P̃θ[k, j] =
Pθ[k, j]2

∑N
j=1 Pθ[k, j]2

(4)
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where N is the size of the oriented kth patch. Finally the associated Renyi entropy Rk
θ is

computed as

Rk
θ =

1
1−β

log2

(

P̃θ[k, j]β
)

(5)

where β > 1. Finally the two measures of anisotropy υ3 and υ4 are defined as

υ3 = σ(E(Rk
θ)) and υ4 = max(E(Rk

θ)),∀k,∀θ (6)

Due to the fact that the perception of image details depends on the image resolution,
the distance from the image plane to the observer, and the acuity of the observers visual
system, a multiscale approach is applied to compute the final global score as:

BLIINDS =
M

∏
i=1

υ
αi

1
1 υ

αi
2

2 υ
αi

3
3 υ

αi
4

4 (7)

constraints by ∑4
j=1 ∑M

i=1 αi
j = 1 and where M represents the number of decomposition

level used.

Pattern-based quality

The pattern-based metrics used to contribute to quality assessment use the Scales Invariant
Feature Transform (SIFT) descriptors described in [18]. SIFT algorithm consists of four
major stages: 1) scale-space extrema detection, 2) keypoint localization, 3) orientation
assignment and 4) keypoint descriptor. In the first stage, potential interest points
are identified, using a difference-of-Gaussian function, that are invariant to scale and
orientation. In the second stage, candidate keypoints are localized to sub-pixel accuracy
and eliminated if found to be unstable. The third stage identifies the dominant orientations
for each keypoint based on its local image patch. The keypoint descriptor in the final
stage is created by sampling the magnitudes and orientations of the image gradients in
a neighborhood of each key-point and building smoothed orientation histograms that
contain the important aspect of the neighborhood. Each local descriptor is composed
on a 4x4 array (histogram). To each coordinate of this array, an 8 orientation vector is
associated. A 128-elements vector is then built for each keypoint. In other words, each
image im is described by a set of invariant features X(im) = {ki = (si, sci, xi, yi)| i = 1 :
N(im)} where si is the 128-elements SIFT invariant descriptor computed near keypoints
ki, (xi,yi) its position in the original image im, sci its scale and N(im) the number of
detected keypoints for image im. The features extracted are invariant to image scaling
and rotation, and partially invariant to change in illumination and 3D camera viewpoint.
From these features, we use the following four metrics that we considered as potentially
interesting (see section 4) to contribute to quality assessment:

• keypoints: the number of keypoints detected from image im;

• DC coefficient: DC coefficient of the matrix Ms, with N(im) rows and 128 columns,
related to SIFT invariant descriptor for si, i = 1 : N(im) where N(im) is the number
of detected keypoints for image im;

• scales: mean and standard deviation of scales related to the keypoints detected from
image im.
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SVM classification

In order to assign a class to an image from both image quality and pattern-based
information, we use the Support Vector Machine (SVM). From all existing classification
schemes, a Support Vector Machine (SVM)-based technique has been selected due to
high classification rates obtained in previous works [19] and to their high generalization
abilities. The SVMs were developed by Vapnik et al. [16] and are based on the structural
risk minimization principle from statistical learning theory. SVMs express predictions
in terms of a linear combination of kernel functions centered on a subset of the training
data, known as support vectors (SV). In our study, the input patterns has five dimensions
(BLIINDS, number of keypoints detected, DC coefficient, mean and standard deviation
of scales) and can belong to ten different classes defined as follows (see table 1):

• class 1 illustrates a reference image;

• classes 2 to 10 illustrate 3 types of alterations and 3 levels for each type (see section
experimental results for details about the introduced alterations).

Table 1: SVM classes definition

Class Description Alteration levels
1 reference or original image

2, 3 and 4 blurring alteration 1, 2 and 3, respectively
5, 6 and 7 gaussian noise alteration 1, 2 and 3, respectively

8, 9 and 10 resize alteration 1, 2 and 3, respectively

Suppose we have a training set {xi,yi} where xi is the training pattern and yi the label.
For problems with two classes, with the classes yi ∈ {−1,1}, a support vector machine
[16, 20] implements the following algorithm. First, the training points {xi} are projected
into a space H (of possibly infinite dimension) by means of a function Φ(·). The second
step is to find an optimal decision hyperplane in this space. The criterion for optimality
will be defined shortly. Note that for the same training set, different transformations Φ(·)
may lead to different decision functions. A transformation is achieved in an implicit
manner using a kernel K(·, ·) and consequently the decision function can be defined as :

f (x) = 〈w,Φ(x)〉+b =
�

∑
i=1

α∗
i yiK(xi,x)+b (8)

with α∗
i ∈ R. The values w and b are the parameters defining the linear decision

hyperplane. We use in the proposed system a linear function as kernel function. In SVMs,
the optimality criterion to maximize is the margin, that is to say, the distance between the
hyperplane and the nearest point Φ(xi) of the training set. The α∗

i which optimize this
criterion are obtained by solving the following problem :

⎧

⎪

⎪



⎪

⎪



maxαi ∑�
i=1 αi −

1
2 ∑�

i, j=1 αiα jyiK(xi,x jy j)

with constraints,
0 ≤ αi ≤ C ,

∑�
i=1 αiyi = 0 .

(9)
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where C is a penalization coefficient for data points located in or beyond the margin and
provides a compromise between their numbers and the width of the margin (for this study
C = 1). In this paper, we use the RBF kernel with γ = 1/5:

k(xi,xj) = exp(−γ‖xi −xj‖
2) (10)

Originally, SVMs have essentially been developed for the two classes problems.
However, several approaches can be used for extending SVMs to multiclass problems.
The method we use in this communication, is called one against one. Instead of learning
N decision functions, each class is discriminated here from another one. Thus, N(N−1)

2
decision functions are learned and each of them makes a vote for the affectation of a new
point x. The class of this point x becomes then the majority class after the voting.

Discussion

The goal of the proposed method is to detect, in a reasonable accuracy, some real
alterations which may deeply affect the most widely used matching systems. The
presented method may be considered as independent from the used matching system.
An example of its practical use is illustrated in figure 2. The method predicts the quality
of the input image. Then, depending from the robustness of the used matching system
against the predicted alteration, the matching system qualifies the image (good, medium
or bad quality).

Figure 2: An example of use of the method

4 Experimental results

In this section, we detail the experimental protocol and the results we obtained. We
present first the protocol used for the evaluation process. Then, we illustrate the
effectiveness of the extracted metrics in detecting the introduced alterations. In order
to validate the presented quality method, we use the SIFT matching algorithm as a use
case. Finally, we show the efficiency of the proposed quality method in predicting the
performance of SIFT matching system using the Equal Error Rate (EER) metric. This
error rate corresponds to the point at which the FAR and FRR cross (compromise between
FAR and FRR). It is widely used to evaluate the performance of biometric systems [21].

Protocol

In this study, we use three benchmark databases. For each database, we made three
types of alterations (blurring, gaussian noise and resize alterations) and three levels for
each type. The introduced alterations are commonly realistic during the acquisition of
biometric data which may deeply affect the global performance of biometric systems.
Finally, we have 30 databases: 3 reference databases and 27 altered databases (i.e., 9 for
each reference database):
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Reference databases

• FACES94 Database [22]: This database is composed of 152 individuals and 20
samples per individual. These images have been captured in regulated illumination
and the variation of expression is moderated.

• ENSIB Database [23]: It is composed of 100 individuals and 40 samples per
individual. Each sample corresponds to one pose from the left one to the right.

• FERET Database [24, 25]: It is composed of 725 individuals with from 5 to 91
samples per individual (the average value is 11). Each sample corresponds to a
pose angle, illumination and expression.

Samples from
FACES94

Samples from
ENSIB

Samples from
FERET

Altered databases

We generated 27 databases from the three reference databases: FACES94, ENSIB and
FERET databases. For each database, we use three types of alterations (blurring, gaussian
noise and resize) and three levels for each type. Fig. 3 shows these alterations on a sample
from FACES94 database.

(a) blurring alteration

(b) gaussian noise alteration

(c) resize alteration

Figure 3: Alterations for a reference image from FACES94. From left to right, reference
image then alteration level 1, 2 and 3.

Quality metrics behavior with alterations

In this section, we show the robustness of the used metrics in detecting alterations
presented in the previous section. To do so, we use the Pearson’s correlation coefficient
between two variables defined in Eq. 11. It is defined as the covariance of the two
variables divided by the product of their standard deviation.

Pearson(X ,Y ) =
Cov(X ,Y )

σX σY
(11)
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In order to compute the correlation of the used metrics with the three types of
alterations, we define for each type of alteration and for each metric p the variables as
follows:

• Xp = {Xpk| k = 1 : 4} where Xp1 is the set of values of metric p for the reference
databases images, (Xp2,Xp3,Xp4) are the sets of values of metric p for the altered
databases level 1, 2 and 3, respectively;

• Alteration levels are represented by the variable Y (1: for the reference databases,
2, 3 and 4: for the altered databases level 1, 2 and 3). More precisely, Y = {yk|yk =
1 f or k = 1 : N, yk = 2 f or k = N +1 : 2N, yk = 3 f or k = 2N +1 : 3N and yk =
4 f or k = 3N +1 : 4N} where N is the size of the 3 reference databases.

Table 2 shows that our four pattern-based metrics (keypoints, DC coefficient, mean
and standard deviation of scales) are pertinent in detecting the three types of alterations:
blurring, gaussian noise and resize alterations. The image quality metric BLIINDS has
shown to be efficient (with a correlation coefficient more than 0.8) in detecting blurring
and gaussian noise alterations. For the resize alteration, BLIINDS has not shown to be
efficient which is not a surprising result since resize alteration do not affect image quality.

Table 2: Pearson correlation coefficients between the proposed metrics and the three
alterations

Metrics ρblurring(X ,Y ) ρgaussian noise(X ,Y ) ρresize(X ,Y )
keypoints 0.617 0.446 -0.581
DC coe f f icient -0.651 0.634 -0.588
mean scale 0.821 -0.543 -0.423
std scale 0.399 -0.342 -0.543
BLIINDS 0.802 -0.821 -0.17

Biometric matching algorithm

The matching algorithm used in this paper is SIFT presented in [18]. The matching
similarity principle used is described in our previous work in [26]. Each image im is
described by a set of invariant features X(im) = {ki = (si, xi, yi)| i = 1 : N(im)} where
si is the 128-elements SIFT invariant descriptor computed near keypoints ki, (xi,yi) its
position in the original image im and N(im) the number of detected keypoints for image
im.

The verification between two images im1 and im2 corresponds to compute a similarity
between two sets of features X(im1) and X(im2). We thus use the following matching
method which is a modified version of a decision criterion first proposed by Lowe [18].
Given two keypoints x ∈ X(im1) and y ∈ X(im2), we say that x is associated to y iff:

d(x,y) = min{z ∈ X(im2)}d(x,z) and d(x,y) ≤ C d(x,y′) (12)

where C is an arbitrary threshold, d(·, ·) denotes the Euclidean distance between the
SIFT descriptors and y′ denotes any point of X(im2) whose distance to x is minimal but
greater than d(x,y):

d(x,y′) = min{z ∈ X(im2), d(x,z)>d(x,y)}d(x,z) (13)

64



In other words, x is associated to y if y is the closest point from x in X(im2) according
to the Euclidean distance between SIFT descriptors and if the second smallest value of this
distance d(x,y′) is significantly greater than d(x,y). The significance of the necessary gap
between d(x,y) and d(x,y′) is encoded by the constant C. Then, we consider that keypoint
x is matched to y iff x is associated to y and y is associated to x. Figure 4 illustrates an
example of matching results resulting from an impostor and a genuine comparison. The
number of associations is used here as a similarity measure.

Figure 4: Example of matching results resulting from a genuine (on the left) and an
impostor comparisons (on the right)

Quality sets definition

The proposed SVM quality method predicts a class for an image. In order to quantify the
efficiency of this method, we need first to define the quality sets for the used matching
system. Depending from the used matching system, some alterations may not have an
impact on it and others may deeply affect its performance. Therefore, we have tested the
robustness of SIFT matching against the introduced alterations. We use the first image
for the enrolment and the others for the test. We illustrate in table 3 the impact of adding
altered images to the reference database images. We can clearly see that all the introduced
alterations have shown an impact on system performance. Therefore, we have defined for
this study the four quality sets as illustrated in table 4. Certainly, we may have choose
another definition of sets that will more penalize the resize alteration (i.e., by putting label
9 in quality set IV) since it has the most impact on SIFT matching.

Table 3: Effect of alterations on each database: values of EERs (%).

FACES94 ENSIB FERET
original db 0.29 10.41 26
blurring alteration 1.65 15.54 29.61
gaussian noise alteration 0.76 13.3 27.81
resize alteration 9.74 18.67 34.17

Table 4: Category of quality

Quality set Predicted quality class by SVM (refer to table 1 for class definition) Description
I 1 good
II 2, 5 and 8 fair
III 3, 6 and 9 poor
IV 4, 7 and 10 very poor

Assessing the SVM-Based quality method

According to Gother et al. [27], biometric quality measurement algorithms should predict
the matching performance. That is, a quality measurement algorithm takes a biometric
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raw data, and produces a class or a scalar related to error rates associated to that sample.
Therefore, we illustrate the efficiency of the proposed SVM-based method using the
quantification of the global performance of biometric systems illustrated by the Equal
Error Rate (EER). EER is defined as the rate when both False Acceptance Rate (FAR)
and False Reject Rate (FRR) are equal: The lower EER, the more accurate the system is
considered to be [28]. In order to validate the proposed SVM-based quality method, we
have proceed, for each benchmark database, as follows:

• Learning the SVM model: we learn the SVM model using the images from the
10 databases (i.e., the reference database and its 9 altered ones). In order to avoid
the skew due to the fact of using the same data for learning and validation, we
have operated a 10 folds cross-validation, 10 times with shuffling the data each
time in order to have different partitions and averaging the results. The mean
accuracy (standard deviation) for the 10 produced SVM models, for each database,
are 83.13% (0.0075), 91.6% (0.0049) and 80.45% (0.0043) for FACES94, ENSIB
and FERET databases, respectively;

• Quality sets definition: we have considered four quality sets as defined in table 4;

• EER value for each quality set: in order to quantify the effectiveness of our quality
method in predicting system performance, we have put each image to a quality
set, according to table 4, using its predicted label by our method. Then, we have
calculated the EER value for each quality set. The effectiveness of the method
is quantified by how well our quality method could predict system performance
among the defined quality sets.

Table 5 illustrates the EER values for each quality set among the three used benchmark
databases (FACES94, ENSIB and FERET). The proposed SVM-based quality method has
shown to be efficient in predicting SIFT matching performance. The increase of EER
values as quality degrades indicate vulnerability of low quality face images. From table 5
we can also conclude:

• for FACES94 and ENSIB databases, there were no significant differences between
the EERs of the reference database (i.e., which is considered containing images of
good quality) and the set predicted as good quality by our method.

• for FERET database, there was a difference of 5.88%. This variation was
due to the difficulties of FERET database which contains altered images by
resolution. Despite this, our method have shown to be efficient in predicting system
performance.

Table 5: EER values for the reference databases and the mean of EER (standard deviation)
values for each quality set among the three databases

EER values (%)
Database reference database set I (good) set II (fair) set III (poor) set IV (very poor)
FACES94 0.29 0.4744 (0.0423) 0.6843 (0.0147) 1.8078 (0.0176) 5.7983 (0.0149)

ENSIB 10.41 10.6397 (0.0343) 13.2912 (0.0144) 16.5495 (0.0387) 17.787 (0.0015)
FERET 26 31.88 ( 0.0265) 32.23 (0.0745) 32.52 (0.012) 34.37 (0.0347)
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5 Conclusion and perspectives

Quality assessment is becoming an import factor to take into account when developing
and evaluating biometric systems. In this paper, we have presented an SVM-based quality
method based on the use of image quality and pattern-based metrics. The developed
method has shown its efficiency in predicting system’s performance illustrated by the
Equal Error Rate (EER). The method can be considered as independent from the used
matching system. For example, if the used matching system tolerate resize alteration,
we could modify the quality sets definition by putting their labels (i.e., labels 8, 9 and
10) in quality set I (i.e., we consider that the altered image, by resize alteration, may be
considered as of good quality for this type of matching system). On the other hand, the
method is not based on asymmetry hypothesis. Thus, it may be used for several types of
modalities (such as hand veins, iris, fingerprint . . .). The method also could be applied
directly on a single capture after training the model.

For the perspectives, we would like to quantify the efficiency of the method on
other types of modalities (such as fingerprint) to test if the method can be considered
as modality-independent. We also intend to compare it with others quality algorithms
existing in the state of the art for iris and fingerprint modalities.
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