ESTIMATION OF THE JUMP SIZE DENSITY IN A MIXED COMPOUND POISSON PROCESS.

F. COMTE ${ }^{1}$, C. DUVAL ${ }^{1}$, V. GENON-CATALOT ${ }^{1}$, AND J. KAPPUS ${ }^{2}$

Abstract

Consider a mixed compound process $Y(t)=\sum_{i=1}^{N(\Lambda t)} \xi_{i}$ where N is a Poisson process with intensity $1, \Lambda$ a positive random variable, $\left(\xi_{i}\right)$ a sequence of i.i.d. random variables with density f and $\left(N, \Lambda,\left(\xi_{i}\right)\right)$ are independent. In this paper, we study nonparametric estimators of f by specific deconvolution methods. Assuming that Λ has exponential distribution with unknown expectation, we propose two types of estimators based on the observation of an i.i.d. sample $\left(Y_{j}(\Delta)\right)_{1 \leq j \leq n}$ for Δ a given time. One strategy is for fixed Δ, the other for small Δ (with large $n \Delta$). Risks bounds and adaptive procedures are provided. Then, with no assumption on the distribution of Λ, we propose a nonparametric estimator of f based on the joint observation $\left(N_{j}\left(\Lambda_{j} \Delta\right), Y_{j}(\Delta)\right)_{1 \leq j \leq n}$. Risks bounds are provided leading to unusual rates. The methods are implemented and compared via simulations. October 2, 2014

Keywords. Adaptive methods. Deconvolution. Mixed compound Poisson process. Nonparametric density estimation. Penalization method.
AMS Classification. 62M09-62G07

1. Introduction

Compound Poisson processes are commonly used in many fields of applications, especially in queuing and risk theory (see e.g. Embrechts et al. (1997), Grandell (1997), Mikosch (2009)). Nonparametric estimation of the jump size density in compound Poisson processes has been the subject of several recent contributions. The model can be described as follows. Consider a Poisson process $(N(t))$ with intensity $1,\left(\xi_{i}, i \geq 1\right)$ a sequence of i.i.d. random variables with common density f independent of N and λ a positive number. Then, $(N(\lambda t), t \geq 0)$ is a Poisson process with intensity λ and $X^{\lambda}(t)=\sum_{i=1}^{N(\lambda t)} \xi_{i}$ is a compound Poisson process with jump size density f. The process X^{λ} has independent and stationary increments and is therefore a special case of Lévy process with Lévy density λf. Lots of references on Lévy density estimation are available (see Comte and Genon-Catalot (2009), Figueroa-Lopez (2009), Neumann and Reiss (2009), Ueltzhöfer and Klüppelberg (2011), Gugushvili (2012)). Inference is generally based on a discrete observation of one sample path with sampling interval Δ and uses the n-sample of $i . i . d$. increments $\left(X^{\lambda}(k \Delta)-X^{\lambda}((k-1) \Delta), k \leq n\right)$. For the special case of compound Poisson process, van Es et al. (2007) build a kernel type estimator of f in the low frequency setting (Δ fixed), assuming that the intensity λ is known. In Duval (2013) and in Comte et al. (2014), the same problem is considered with λ unknown and in the high frequency setting ($\Delta=\Delta_{n}$ tends to 0 while $n \Delta$ tends to infinity).

In this paper, we consider the case where the intensity λ is not deterministic but is random. The model is now as follows. Let Λ be a positive random variable, independent of $(N(t), t \geq 0)$

[^0]and of the sequence ($\xi_{i}, i \geq 1$). Then,
\[

$$
\begin{equation*}
Y(t)=\sum_{i=1}^{N(\Lambda t)} \xi_{i} \tag{1}
\end{equation*}
$$

\]

defines a mixed compound Poisson process (see Grandell 1997). Given that $\Lambda=\lambda$, the conditional distribution of $(Y(t))$ is identical to the distribution of $\left(X^{\lambda}(t)\right)$. The mixed compound Poisson model belongs to the more general class of mixed effects models where some parameters are (unobserved) random variables. Mixed effects models are extremely popular in biostatistics and actuarial statistics. They are used in studies in which repeated measurements are taken on a series of individuals (see e.g. Davidian and Giltinan (1995), Pinhero and Bates (2000), Antonio and Beirlant (2007), Belomestny (2011)). The randomness of parameters allows to account for the variability existing between subjects. This is why here, we assume that, for a given time Δ, we have $i . i . d$. observations $\left(Y_{j}(\Delta), j=1, \ldots, n\right)$ of $Y(\Delta)$ and our aim is to define and study nonparametric estimators of f. Note that, for deterministic λ, the n-sample of increments $\left(X^{\lambda}(k \Delta)-X^{\lambda}((k-1) \Delta), k \leq n\right)$ for one trajectory has exactly the same distribution as an i.i.d. sample ($X_{j}^{\lambda}(\Delta), j=1, \ldots, n$) for n trajectories at one instant Δ. Hence, the performances of estimating procedures based on i.i.d. data $\left(Y_{j}(\Delta), j=1, \ldots, n\right)$ may be compared with those of procedures based on increments $\left(X^{\lambda}(k \Delta)-X^{\lambda}((k-1) \Delta), k \leq n\right)$ for one trajectory. In particular, rates of convergence depend on $n \Delta$ for large n, and small or fixed Δ (not too large). Note that this topic corresponds to decompounding a random sum. Boegsted and Pitts (2010) assume that the distribution of the random number of terms is general but known and construct a nonparametric plug in estimator of f. In here, we assume that the distribution of Λ either contains unknown parameters or is completely unknown, so that the distribution $N(\Lambda t)$ is unknown.

The model we study belongs to the general class of random sums of random variables. This model is used in a huge number of applications. For instance, in the field of non life insurance mathematics, companies hold portfolios of n contracts or policies. For each contract j, they know, per year $(\Delta=1)$, the total claim amount $\sum_{i=1}^{M_{j}} \xi_{i}^{j}$ where M_{j} is the number of claims (e.g. accidents) and ξ_{i}^{j} is the claim size of the $i-t h$ claim of the j - th contract. Independence of contracts is generally assumed. The number of claims is possibly also observed. The mixed effect model to define the distribution of $M_{j}=M_{j}(\Delta)$ is also of common use (see Mikosch(2009) and Grandell (1997)). The model of random sums is also used in stochastic activity of neurons for instance to model the amplitude of the endplate potential (see Tuckwell (1998), vol. 2 chap.9).

To fix notations, let $\left(\Lambda_{j}, j \geq 1\right)$ be i.i.d. with distribution $\nu(d \lambda)$, let $\left(N_{j}(t), j \geq 1\right)$ be i.i.d. Poisson processes with intensity 1 independent of $\left(\Lambda_{j}, j \geq 1\right)$ and consider, for $\Delta>0$, the n sample $\left(Y_{j}(\Delta)=\sum_{i=1}^{N_{j}\left(\Lambda_{j} \Delta\right)} \xi_{i}^{j}, j=1, \ldots, n\right)$ where $\left(\xi_{i}^{j}, j, i \geq 1\right)$ are i.i.d. with density f, and the sequence $\left(\xi_{i}^{j}, j, i \geq 1\right)$ is independent of $\left(\Lambda_{j},\left(N_{j}(t)\right), j \geq 1\right)$. The paper is divided in two distinct parts, one is semi-parametric and the other purely nonparametric. In both parts, our approach relies on deconvolution and requires the assumption that f belongs to $\mathbb{L}^{2}(\mathbb{R})$. In Section 2 , we assume that the unobserved random intensities Λ_{j} 's have an exponential distribution with unknown parameter μ^{-1} (expectation μ). We define two different nonparametric estimators of f by a deconvolution approach. First, introducing

$$
\begin{equation*}
Q_{\Delta}(u)=\mathbb{E}\left(e^{i u Y(\Delta)} \mathbf{I}_{Y(\Delta) \neq 0}\right), \quad \phi_{\Delta}(u)=\mathbb{E} e^{i u Y(\Delta)}, \tag{2}
\end{equation*}
$$

we observe that the Fourier transform $f^{*}(u)$ of f satisfies $f^{*}(u)=Q_{\Delta}(u) /\left(q_{\Delta} \phi_{\Delta}(u)\right)$, where $q_{\Delta}:=\mathbb{P}(Y(\Delta) \neq 0)$. This relation is specific to the case of Λ having an exponential distribution. We deduce an estimator $\hat{f}^{*}(u)$ of $f^{*}(u)$ based on empirical estimators of $Q_{\Delta}(u), \phi_{\Delta}(u), q_{\Delta}$ where
we have to deal with the fact that $q_{\Delta}, \phi_{\Delta}(u)$ appear in the denominator of $f^{*}(u)$. Then, by Fourier inversion, we build a collection of nonparametric estimators $\hat{f}_{m}(x)$ of f associated with a cut off parameter m. Proposition 2.2 gives the bound of the \mathbb{L}^{2}-risk of the estimator with fixed cut off parameter. Afterwards, we propose a data driven selection \hat{m} of m and prove that the corresponding estimator $\hat{f}_{\hat{m}}$ is adaptive (Theorem 2.1). The risk bounds are non asymptotic. However, if Δ gets too small, the previous method deteriorates as q_{Δ} becomes small and $1 / q_{\Delta}$ is badly estimated (this is pointed out on simulations). This is why we investigate a second method which performs well for small Δ. The idea is that for $\mu \Delta<1$, the following series development holds:

$$
\begin{equation*}
f^{*}(u)=\sum_{k \geq 0}(-1)^{k}(1+\mu \Delta)(\mu \Delta)^{k}\left(g_{\Delta}^{*}(u)\right)^{k+1}, \tag{3}
\end{equation*}
$$

where g_{Δ} is the conditional density of $Y(\Delta)$ given $Y(\Delta) \neq 0$. We apply a method comparable to the one developed in Comte et al. (2014) for non random intensity, based on estimators of g_{Δ} and μ. For these two methods, no moment condition on f is imposed, thus fat tails density can be considered.

In Section 3, we no longer assume that Λ has exponential distribution. For identifiability purpose, we enrich the observation and assume that, in addition to $\left(Y_{j}(\Delta)\right)$, the sample $\left(N_{j}\left(\Lambda_{j} \Delta\right), j=1, \ldots, n\right)$ is observed. We focus on estimating f without using any estimator for the distribution of Λ. We do not assume that Λ admits a density and the method works for deterministic (unknown) λ. Here also, we define two estimators of f. The first one is based on the following idea. Assuming that $f^{*}(u) \neq 0$ for all $u, \mathbb{E}(\Lambda+|\xi|)<+\infty$ and $K_{\Delta}(u):=\mathbb{E}\left(\Lambda e^{i u Y(\Delta)}\right) \neq 0$, we check that

$$
\begin{equation*}
\psi(u):=\frac{\left(f^{*}(u)\right)^{\prime}}{f^{*}(u)}=i \frac{G_{\Delta}(u)}{H_{\Delta}(u)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\Delta}(u)=\mathbb{E}\left(\frac{Y(\Delta)}{\Delta} e^{i u Y(\Delta)}\right), \quad H_{\Delta}(u)=\mathbb{E}\left(\frac{N(\Lambda \Delta)}{\Delta} e^{i u Y(\Delta)}\right) . \tag{5}
\end{equation*}
$$

Therefore, $\psi(u)$ can be estimated by using empirical counterparts of $G_{\Delta}(u), H_{\Delta}(u)$. As $f^{*}(0)=$ $1, f^{*}(u)=\exp \left(\int_{0}^{u} \psi(v) d v\right)$ can be estimated replacing ψ by an estimator. Afterwards, we proceed by deconvolution to define a collection of estimators \widetilde{f}_{m} depending on a cut off parameter m. Proposition 3.1 gives the bound of the \mathbb{L}^{2}-risk of \widetilde{f}_{m} for fixed m. The risk bounds are non standard as well as the proof to obtain them and give rise to unusual rates on standard examples when making the optimal bias-variance trade-off. We propose an heuristic penalization criterion to define a data-driven choice of the cut off parameter.

The second estimator of this part is simply based on the fact that each time that $N_{j}\left(\Lambda_{j} \Delta\right)=1$, a random variable ξ is observed, or equivalently, the conditional distribution of $Y_{j}(\Delta)$ given $N_{j}\left(\Lambda_{j} \Delta\right)=1$ is exactly f.
Section 4 illustrates our methods on simulated data for different examples of jump densities f and of distributions for Λ. It appears clearly that the first method of Section 2 performs well for all values of Δ except very small contrary to the second one, as expected from theoretical results. The methods of Section 3 perform well for all Δ and various distributions for Λ, including the exponential. A complete discussion on numerical results is given. Section 5 contains proofs. In the Appendix, auxiliary results needed in proofs are recalled. The last appendix contains supplementary material.

2. SEMI-PARAMETRIC STRATEGY OF ESTIMATION

In this Section, we assume that Λ has an exponential distribution with parameter μ^{-1}.
2.1. Parameter estimation when Λ is $\mathcal{E}\left(\mu^{-1}\right)$. For any distribution $\nu(d \lambda)$ of Λ_{j}, the distribution of $N_{j}\left(\Lambda_{j} \Delta\right)$ is given by:

$$
\begin{equation*}
\mathbb{P}\left(N_{j}\left(\Lambda_{j} \Delta\right)=m\right)=\int_{0}^{+\infty} e^{-\lambda \Delta} \frac{(\lambda \Delta)^{m}}{m!} \nu(d \lambda), m \geq 0 \tag{6}
\end{equation*}
$$

When Λ_{j} has $\mu^{-1} e^{-\lambda \mu^{-1}} 1_{\lambda>0}$, the computation is explicit:

$$
\begin{equation*}
\mathbb{P}\left(N_{j}\left(\Lambda_{j} \Delta\right)=m\right)=\left(\frac{\mu \Delta}{\mu \Delta+1}\right)^{m} \frac{1}{\mu \Delta+1}:=\alpha_{m}(\mu, \Delta), m \geq 0 . \tag{7}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathbb{P}\left(Y_{j}(\Delta) \neq 0\right)=\mathbb{P}\left(N_{j}\left(\Lambda_{j} \Delta\right) \neq 0\right)=1-\alpha_{0}(\mu, \Delta)=1-\frac{1}{1+\mu \Delta}=\frac{\mu \Delta}{1+\mu \Delta}:=q_{\Delta}, \tag{8}
\end{equation*}
$$

we get $\mu=\Delta^{-1} q_{\Delta} /\left(1-q_{\Delta}\right)$. To estimate $1 / q_{\Delta}$ and μ, we define for k a constant

$$
\begin{equation*}
\hat{q}_{\Delta}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{I}_{Y_{j}(\Delta) \neq 0}, \quad \frac{1}{\tilde{q}_{\Delta}}=\frac{1}{\hat{q}_{\Delta}} \mathbf{I}_{\hat{q}_{\Delta} \geq k \sqrt{\Delta / n}}, \quad \tilde{\mu}=\frac{1}{\Delta} \frac{\hat{q}_{\Delta}}{1-\hat{q}_{\Delta}} \mathbf{I}_{1-\hat{q}_{\Delta} \geq k \sqrt{\Delta / n}} . \tag{9}
\end{equation*}
$$

The following properties hold.
Proposition 2.1. Under the Assumption:
(H1) The parameter μ belongs to a compact interval $\left[\mu_{0}, \mu_{1}\right]$ with $\mu_{0}>0$,
and if $n \Delta \geq 1$, the estimators $\hat{q}_{\Delta}, 1 / \tilde{q}_{\Delta}$ and $\tilde{\mu}$ given by (9) satisfy for all integer $p \geq 1$,

$$
\mathbb{E}\left(\hat{q}_{\Delta}-q_{\Delta}\right)^{2 p} \leq C\left(p, \mu_{1}\right)\left(\frac{\Delta}{n}\right)^{p}, \quad \mathbb{E}\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right)^{2 p} \leq C^{\prime}(p, \Delta)\left(\frac{1}{n \Delta^{3}}\right)^{p}
$$

and

$$
\begin{equation*}
\mathbb{E}(\tilde{\mu}-\mu)^{2 p} \leq \frac{C^{\prime \prime}(p, \Delta)}{(n \Delta)^{p}} \tag{10}
\end{equation*}
$$

where $C\left(p, \mu_{1}\right)$ only depends on $p, \mu_{1}, C^{\prime}(p, \Delta)=C^{\prime}(p)+O(\Delta), C^{\prime \prime}(p, \Delta)=C^{\prime \prime}(p)+O(\Delta)$, and $C^{\prime}(p, \Delta), C^{\prime \prime}(p, \Delta)$ only depend on $p, \mu_{0}, \mu_{1}, \Delta$.

Note that Assumption (H1) is needed but definition (9) does require the knowledge of μ_{0}, μ_{1}.
2.2. Notation. The following notations are used below. For $u: \mathbb{R} \rightarrow \mathbb{C}$ integrable, we denote its \mathbb{L}^{1} norm and its Fourier transform respectively by

$$
\|u\|_{1}=\int_{\mathbb{R}}|u(x)| d x, \quad u^{*}(y)=\int_{\mathbb{R}} e^{i y x} u(x) d x, \quad y \in \mathbb{R}
$$

When u, v are square integrable, we denote the \mathbb{L}^{2} norm and the \mathbb{L}^{2} scalar product by

$$
\|u\|=\left(\int_{\mathbb{R}}|u(x)|^{2} d x\right)^{1 / 2}, \quad\langle u, v\rangle=\int_{\mathbb{R}} u(x) \bar{v}(x) d x \quad \text { with } z \bar{z}=|z|^{2} .
$$

We recall that, for any integrable and square-integrable functions u, u_{1}, u_{2}, the following relations hold: $\left(u^{*}\right)^{*}(x)=2 \pi u(-x)$ and $\left\langle u_{1}, u_{2}\right\rangle=(2 \pi)^{-1}\left\langle u_{1}^{*}, u_{2}^{*}\right\rangle$. The convolution product of u, v is denoted by: $u \star v(x)=\int_{\mathbb{R}} u(y) \bar{v}(x-y) d y$.
2.3. Estimation of f for fixed sampling interval Δ. In this section, we propose an estimator of f assuming that Δ is fixed (heuristically, $\Delta=1$). For $Q_{\Delta}, \phi_{\Delta}$ defined in (2), we have

$$
\phi_{\Delta}(u)=\int_{0}^{+\infty} \mu^{-1} e^{-\lambda / \mu} \exp \left(-\lambda \Delta\left(1-f^{*}(u)\right)\right) d \lambda=\frac{1}{1+\mu \Delta\left(1-f^{*}(u)\right)} .
$$

Simple computations yield:

$$
Q_{\Delta}(u)=\phi_{\Delta}(u)-\frac{1}{1+\mu \Delta}=\frac{\mu \Delta f^{*}(u)}{(1+\mu \Delta)\left(1+\mu \Delta\left(1-f^{*}(u)\right)\right)} .
$$

Solving for $f^{*}(u)$ yields the following formula

$$
\begin{equation*}
f^{*}(u)=\frac{1+\mu \Delta}{\mu \Delta} \frac{Q_{\Delta}(u)}{Q_{\Delta}(u)+\frac{1}{1+\mu \Delta}}=\frac{Q_{\Delta}(u)}{q_{\Delta} \phi_{\Delta}(u)} . \tag{11}
\end{equation*}
$$

This formula which is very specific to the case of Λ_{j} having exponential distribution with expectation μ suggests to estimate $f^{*}(u)$ as follows:

$$
\begin{equation*}
\hat{f}^{*}(u)=\frac{\hat{Q}_{\Delta}(u)}{\tilde{q}_{\Delta} \widetilde{\phi}_{\Delta}(u)} \quad \text { with } \quad \hat{Q}_{\Delta}(u)=\frac{1}{n} \sum_{j=1}^{n} e^{i u Y_{j}(\Delta)} \mathbb{I}_{Y_{j}(\Delta) \neq 0}, \tag{12}
\end{equation*}
$$

$1 / \tilde{q}_{\Delta}$ is defined by (9), and, for k a constant,

$$
\begin{equation*}
\frac{1}{\widetilde{\phi_{\Delta}}(u)}=\frac{1}{\widehat{\phi_{\Delta}}(u)} \mathbf{I}_{\left|\widehat{\phi_{\Delta}}(u)\right| \geq k / \sqrt{n}}, \quad \widehat{\phi_{\Delta}}(u)=\frac{1}{n} \sum_{j=1}^{n} e^{i u Y_{j}(\Delta)} . \tag{13}
\end{equation*}
$$

Then, we apply Fourier inversion to (12), but as \hat{f}^{*} is not integrable, a cut off is required. We propose thus

$$
\begin{equation*}
\hat{f}_{m}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} e^{-i u x} \hat{f}^{*}(u) d u \tag{14}
\end{equation*}
$$

Then we can bound the mean-square risk of the estimator as follows.
Proposition 2.2. Assume that Λ is $\mathcal{E}\left(\mu^{-1}\right), f \in \mathbb{L}^{2}(\mathbb{R})$ and that $(\mathbf{H} 1)$ holds. Then the estimator \hat{f}_{m} for $m \leq n \Delta$ given by (14) and (12) satisfies

$$
\mathbb{E}\left(\left\|\hat{f}_{m}-f\right\|^{2}\right) \leq\left\|f-f_{m}\right\|^{2}+\frac{1}{\pi n q_{\Delta}} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}+\frac{c}{n \Delta}
$$

where f_{m} is such that $f_{m}^{*}=f^{*} \mathbb{I}_{[-\pi m, \pi, m]}$ and where the constant c does not depend on n nor Δ.
We can see that the bias term $\left\|f-f_{m}\right\|^{2}$ is decreasing with m while the variance term, of order m / n, is increasing with m; this illustrates that a standard bias-variance compromise has to be performed. If f belongs to the Sobolev ball defined by $\mathcal{S}(\alpha, L)=\left\{f \in \mathbb{L}^{2}(\mathbb{R}), \int\left|f^{*}(u)\right|^{2}(1+\right.$ $\left.\left.u^{2}\right)^{\alpha} d u \leq L\right\}$,

$$
\left\|f-f_{m}\right\|^{2}=\frac{1}{2 \pi} \int_{|u| \geq \pi m}\left|f^{*}(u)\right|^{2} d u \leq \frac{L}{2 \pi}\left(1+(\pi m)^{2}\right)^{-\alpha} \leq c_{L} m^{-2 \alpha} .
$$

Therefore, we find that, for $m=m_{\text {opt }} \asymp(n \Delta)^{1 /(2 \alpha+1)}, \mathbb{E}\left(\left\|\hat{f}_{m_{\text {opt }}}-f\right\|^{2}\right)=O\left((n \Delta)^{-2 \alpha /(2 \alpha+1)}\right)$, which is a standard nonparametric rate.

We propose a data driven way of selecting m, and we proceed classically by mimicking the bias-variance compromise. Setting $\mathcal{M}_{n}=\{1, \ldots, n \Delta\}$, we select

$$
\begin{equation*}
\hat{m}=\arg \min _{m \in \mathcal{M}_{n}}\left(-\left\|\hat{f}_{m}\right\|^{2}+\widehat{\operatorname{pen}}(m)\right) \quad \text { where } \widehat{\operatorname{pen}}(m)=\kappa \frac{1}{\tilde{q}_{\Delta}} \frac{1}{2 \pi n} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\widetilde{\phi_{\Delta}}(u)\right|^{2}} \tag{15}
\end{equation*}
$$

Then we can prove the following result
Theorem 2.1. Assume that Λ is $\mathcal{E}\left(\mu^{-1}\right), f \in \mathbb{L}^{2}(\mathbb{R})$ and that assumption $(\mathbf{H} 1)$ holds. Then for $\kappa \geq \kappa_{0}=96$, we have

$$
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}}-f\right\|^{2}\right) \leq c \inf _{m \in \mathcal{M}_{n}}\left(\left\|f-f_{m}\right\|^{2}+\frac{\kappa}{2 \pi n q_{\Delta}} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}\right)+\frac{c^{\prime}}{n \Delta}
$$

where c is a numerical constant ($c=4$ would suit) and c^{\prime} depends on μ_{0}, μ_{1} and $\|f\|$.
The bounds of Proposition 2.2 and Theorem 2.1 are nonasymptotic and hold for all n and Δ. However, if Δ gets too small, the method deteriorates because q_{Δ} is small and $1 / q_{\Delta}$ is badly estimated.

Remark 1. Theorem 2.1 states that the estimator $\hat{f}_{\hat{m}}$ is adaptive as the bias-variance compromise is automatically realized. It also states that there is a minimal value κ_{0} such that for all $\kappa \geq \kappa_{0}$, the adaptive risk bound holds. From our proof, we find $\kappa_{0}=96$, which is not optimal. Indeed, in simple models, a minimal value for κ_{0} may be computed. For instance, Birgé and Massart (2007) prove that for Gaussian regression or white noise models, the method works for $\kappa_{0}=1+\eta, \eta>0$, and explodes for $\kappa_{0}=1-\eta$. To obtain the minimal value in another context is not obvious. This is why it is customary when using a penalized method, to calibrate the value κ in the penalty by preliminary simulations.
2.4. Estimation of f for small sampling interval. Now, we assume that $\Delta=\Delta_{n}$ tends to 0 and that $n \Delta$ tends to infinity. We use an approach for small sampling interval which is different from the previous one. We consider representation (3) for f^{*} which holds for $\mu \delta<1$ and will use Proposition 2.1 above, and Formula (17) together with Proposition 2.3 below to estimate the terms of the series.

The distribution of $Y_{j}(\Delta)$ is given by:

$$
\mathbb{P}_{Y(\Delta)}(d x)=\alpha_{0}(\mu, \Delta) \delta_{0}(d x)+\sum_{m \geq 1} \alpha_{m}(\mu, \Delta) f^{\star m}(x) d x
$$

where $\alpha_{m}(\mu, \Delta), m \geq 0$ is defined by (7). The conditional distribution of $Y(\Delta)$ given $Y(\Delta) \neq 0$ has density and Fourier transform given by (see (2), (8))

$$
g_{\Delta}(x)=\frac{1}{q_{\Delta}} \sum_{k \geq 1} \alpha_{k}(\mu, \Delta) f^{\star k}(x), \quad g_{\Delta}^{*}(u)=\frac{Q_{\Delta}(u)}{q_{\Delta}}
$$

Using (7), the Fourier transform of g_{Δ} is given by $\left(\mu \Delta\left|f^{*}(u)\right| /(1+\mu \Delta)<1\right)$:

$$
g_{\Delta}^{*}(u)=\left(\frac{\mu \Delta}{1+\mu \Delta}\right)^{-1} \sum_{k \geq 1} \frac{1}{1+\mu \Delta}\left(\frac{\mu \Delta}{1+\mu \Delta}\right)^{k}\left(f^{*}(u)\right)^{k}=\frac{f^{*}(u)}{\left.1+\mu \Delta\left(1-f^{*}(u)\right)\right)}
$$

Thus $\left|g_{\Delta}^{*}(u)\right| \leq\left|f^{*}(u)\right|$ which implies that

$$
\begin{equation*}
\left\|g_{\Delta}\right\| \leq\|f\| \tag{16}
\end{equation*}
$$

Solving for $f^{*}(u)$ yields: $f^{*}(u)=(1+\mu \Delta) g_{\Delta}^{*}(u) /\left(1+\mu \Delta g_{\Delta}^{*}(u)\right)$. Now, if $\mu \Delta<1$, then the development (3) holds and we have to estimate μ and g_{Δ}^{*}. For μ we use the estimator $\tilde{\mu}$ given in (9). To estimate $g_{\Delta}^{*}(u)$, we set, see (12) and (9):

$$
\begin{equation*}
\widetilde{g_{\Delta}^{*}}(u)=\frac{\widehat{g_{\Delta}^{*}}(u)}{\max \left(1,\left|\widehat{g_{\Delta}^{*}}(u)\right|\right)} \quad \text { with } \quad \widehat{g_{\Delta}^{*}}(u)=\frac{\hat{Q}_{\Delta}(u)}{\tilde{q}_{\Delta}} \tag{17}
\end{equation*}
$$

The following proposition, proved in A. 2 and inspired by Chesneau et al. (2012), shows that we have estimators of convolutions of g_{Δ} with parametric rate as soon as $k \geq 2$:
Proposition 2.3. If $f \in \mathbb{L}^{2}(\mathbb{R})$ and if (H1) holds,

$$
\widehat{g_{m, \Delta}^{\star k}}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left(\widetilde{g_{\Delta}^{*}}(u)\right)^{k} e^{-i u x} d u, \quad g_{m, \Delta}^{\star k}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left(g_{\Delta}^{*}(u)\right)^{k} e^{-i u x} d u
$$

Then, for all $k \geq 2$

$$
\mathbb{E}\left(\left\|\widehat{g_{m, \Delta}^{\star k}}-g_{m, \Delta}^{\star k}\right\|^{2}\right) \leq c\left(k, \mu_{0}, \mu_{1}\right)\left(\frac{m}{(n \Delta)^{k}}+\frac{D_{k}^{2}}{n \Delta}\|f\|^{2}\right), \quad D_{k}=\left(3^{k}-2^{k}-1\right) / 2
$$

To estimate f^{*}, we plug in $\widetilde{g_{\Delta}^{*}}$ and $\tilde{\mu}$ in (3) and truncate the series up to order K :

$$
\hat{f}_{K}^{*}(u)=\sum_{k=0}^{K}(-1)^{k}(1+\tilde{\mu} \Delta)(\tilde{\mu} \Delta)^{k}\left(\widetilde{g_{\Delta}^{*}}(u)\right)^{k+1}
$$

Then, we proceed with Fourier inversion with cut off, to define

$$
\hat{f}_{m, K}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} \hat{f}_{K}^{*}(u) e^{-i u x} d u
$$

We can prove the following result.
Proposition 2.4. Assume that $f \in \mathbb{L}^{2}(\mathbb{R})$, that $(\mathbf{H} 1)$ holds, that Λ is $\mathcal{E}\left(\mu^{-1}\right)$, and that $2 \mu_{1} \Delta<$ 1 and $\Delta<1$. Then, for any $m \leq n \Delta$, we have

$$
\mathbb{E}\left(\left\|\hat{f}_{m, K}-f\right\|^{2}\right) \leq\left\|f_{m}-f\right\|^{2}+12 \frac{(1+\mu \Delta)^{3}}{\mu} \frac{m}{n \Delta}+4 A\left(\mu_{1} \Delta\right)^{2 K+2}+\frac{E_{K}}{n \Delta}
$$

where f_{m} is such that $f_{m}^{*}=f^{*} \mathbb{I}_{[-\pi m, \pi, m]}, A=4\|f\|^{2}\left(1+\mu_{1} \Delta\right)^{2} /\left(1-\mu_{1} \Delta\right)^{2}$ and E_{K} is a constant depending on K, μ_{0}, μ_{1} and $\|f\|$.

If $f \in \mathcal{S}(\alpha, L)$, then $\left\|f-f_{m}\right\|^{2} \leq c_{L} m^{-2 \alpha}$ as already noticed and choosing $m=m_{\text {opt }} \asymp$ $(n \Delta)^{1 /(2 \alpha+1)}$ implies

$$
\mathbb{E}\left(\left\|\hat{f}_{m_{o p t}, K}-f\right\|^{2}\right) \leq c_{1}(n \Delta)^{-2 \alpha /(2 \alpha+1)}+c_{2} \Delta^{2 K+2}
$$

To choose K in practice, we impose $\Delta^{2 K+2} \leq 1 /(n \Delta)$, so that the residual is negligible, that is

$$
\begin{equation*}
K \geq K_{0}:=\frac{1}{2}\left(\frac{\log (n)}{|\log (\Delta)|}-3\right) \tag{18}
\end{equation*}
$$

even if this contradicts the fact that K is fixed (and thus independent on n).
Now, we have to select m in a data driven way. To that aim, we propose

$$
\hat{m}_{K}=\arg \min _{m \in\{1, \ldots,[n \Delta]\}}\left(-\left\|\hat{f}_{m, K}\right\|^{2}+\widetilde{\operatorname{pen}}(m)\right), \quad \widetilde{\operatorname{pen}}(m)=\kappa^{\prime} \frac{(1+\tilde{\mu} \Delta)^{2}}{\tilde{q}_{\Delta}} \frac{m}{n}
$$

We can prove

Theorem 2.2. Assume that $f \in \mathbb{L}^{2}(\mathbb{R})$, that Λ is $\mathcal{E}\left(\mu^{-1}\right)$, that $(\mathbf{H} 1)$ holds and that $2 \mu_{1} \Delta<1$. Then there exists a numerical constant κ_{0}^{\prime} such that, for all $\kappa^{\prime} \geq \kappa_{0}^{\prime}$, we have

$$
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}_{K}, K}-f\right\|^{2}\right) \leq c \inf _{m \in\{1, \ldots,[n \Delta]\}}\left(\left\|f_{m}-f\right\|^{2}+\kappa^{\prime} \frac{(1+\mu \Delta)^{3}}{\mu} \frac{m}{n \Delta}\right)+4 A\left(\mu_{1} \Delta\right)^{2 K+2}+\frac{E_{K}^{\prime}}{n \Delta}
$$

where c is a numerical constant, A is defined in Proposition 2.4 and E_{K}^{\prime} is a constant depending on K, μ_{0}, μ_{1} and $\|f\|$.

For the choice of κ^{\prime} in the penalty, we refer to Remark 1.
2.5. The case where Λ has Gamma distribution. The distribution (6) is also explicit when Λ has Gamma distribution, with parameters $\left(a, \mu^{-1}\right)$ together with $Q_{\Delta}, \Phi_{\Delta}$ as defined by (2). Indeed, plugging the Gamma density in formula (6), we get

$$
\alpha_{m}(a, \mu, \Delta)=\frac{\Gamma(a+m)}{\Gamma(a) m!}\left(\frac{1}{1+\mu \Delta}\right)^{a}\left(\frac{\mu \Delta}{1+\mu \Delta}\right)^{m}
$$

If a is integer, this is a negative binomial distribution $\operatorname{bin}^{-}(a, 1 / 1+\mu \Delta)$. We observe that $\mathbb{P}(Y(\Delta)=0)=\left(\frac{1}{1+\mu \Delta}\right)^{a}$, so that we cannot estimate the two parameters a and μ. For instance if a is known, the two estimators of Sections 2.3 and 2.4 can be generalized, up to some additional but tedious computations.

3. Nonparametric strategy

In this section, we make no assumption on the distribution of Λ and turn to the estimation of f, using both samples $\left(Y_{j}(\Delta), N_{j}\left(\Lambda_{j} \Delta\right)\right)_{j}$. Observe that we cannot estimate f on the basis of the sample $\left(Y_{j}(\Delta)\right)_{j}$ as in the previous section. The distribution of Λ only appears through $\mathbb{P}\left(Y_{j}(\right.$ Delta $\left.)=0\right)$. Even in the case where the distribution of Λ is known up to two parameters, there occurs an identifiability problem.
3.1. First estimator. We start from the characteristic function and for ν denoting the distribution of Λ, we have, from (2),

$$
\phi_{\Delta}(u)=\int_{0}^{+\infty} \exp \left(-\lambda \Delta\left(1-f^{*}(u)\right)\right) \nu(d \lambda)
$$

and by derivation (see (5)),

$$
\begin{equation*}
i G_{\Delta}(u)=\left(f^{*}(u)\right)^{\prime} K_{\Delta}(u), \quad \text { where } \quad K_{\Delta}(u)=\mathbb{E}\left(\Lambda e^{i u Y(\Delta)}\right) \tag{19}
\end{equation*}
$$

For fixed $\Lambda=\lambda$, we get

$$
\mathbb{E}\left(\frac{N(\lambda \Delta)}{\Delta} e^{i u \sum_{k=1}^{N(\lambda \Delta)} \xi_{k}}\right)=f^{*}(u) \mathbb{E}\left(\lambda e^{i u \sum_{k=1}^{N(\lambda \Delta)} \xi_{k}}\right)
$$

and therefore

$$
H_{\Delta}(u)=\mathbb{E}\left(\frac{N(\Lambda \Delta)}{\Delta} e^{i u Y(\Delta)}\right)=f^{*}(u) K_{\Delta}(u)
$$

We deduce that, if $H_{\Delta} \neq 0$, (4) holds. With the condition $f^{*}(0)=1$, we obtain the formula

$$
f^{*}(u)=\exp \left(\int_{0}^{u} \psi(v) d v\right)
$$

where $\psi=\left(f^{*}\right)^{\prime} / f^{*}$, see formula (4). Note that for $u \leq 0, \int_{0}^{u}=-\int_{u}^{0}$, and the formula is still valid. We deduce an estimator by setting

$$
\begin{equation*}
\widetilde{f}_{m}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} e^{-i u x} \widetilde{f^{*}}(u) d u \tag{20}
\end{equation*}
$$

where

$$
\widetilde{f^{*}}(u)=\widehat{f^{*}}(u) \mathbb{I}_{\left\{\left|\widehat{f^{*}}(u)\right| \leq 1\right\}}+\frac{\widehat{f^{*}}(u)}{\left|\widehat{f^{*}}(u)\right|} \mathbb{I}_{\left\{\left|\widehat{f^{*}}(u)\right|>1\right\}}=\frac{\widehat{f^{*}}(u)}{\max \left(1,\left|\widehat{f^{*}}(u)\right|\right)}
$$

with

$$
\begin{gathered}
\widehat{f^{*}}(u)=\exp \left(\int_{0}^{u} \widetilde{\psi}(v) d v\right), \quad \widetilde{\psi}(v)=i \frac{\hat{G}_{\Delta}(v)}{\tilde{H}_{\Delta}(v)} \\
\hat{G}_{\Delta}(v)=\frac{1}{n \Delta} \sum_{j=1}^{n} Y_{j}(\Delta) e^{i v Y_{j}(\Delta)} \\
\hat{H}_{\Delta}(v)=\frac{1}{n \Delta} \sum_{j=1}^{n} N_{j}\left(\Lambda_{j} \Delta\right) e^{i v Y_{j}(\Delta)}, \frac{1}{\tilde{H}_{\Delta}(v)}=\frac{1}{\hat{H}_{\Delta}(v)} \mathbb{I}_{\left\{\left|\hat{H}_{\Delta}(v)\right| \geq k(n \Delta)^{-1 / 2}\right\}},
\end{gathered}
$$

for some constant k.
We introduce the following assumption depending on an integer p.
[B] (i) $\forall u \in \mathbb{R}, f^{*}(u) \neq 0$, and there exists $K_{0}>0$ such that $\forall u \in \mathbb{R},\left|K_{\Delta}(u)\right| \geq K_{0}$.
(ii) $(p) \mathbb{E}\left(\xi^{2 p}\right)<+\infty, \mathbb{E}\left(\Lambda^{2 p}\right)<+\infty$.
(iii) $\left\|G_{\Delta}^{\prime}\right\|_{1}<+\infty$.

To justify assumption $[\mathbf{B}](i)$, let us consider the case where Λ follows an exponential $\mathcal{E}(1 / \mu)$ distribution. Then

$$
K_{\Delta}(u)=\frac{\mu}{\left[1+\mu \Delta\left(1-f^{*}(u)\right)\right]^{2}} \quad \text { and } \quad K_{\Delta}(u) \sim_{u \rightarrow+\infty} \frac{\mu}{[1+\mu \Delta]^{2}}
$$

Thus H_{Δ} is not lower bounded near infinity contrary to $K_{\Delta}(u)$.
Under $[\mathbf{B}]($ ii $), \mathbb{E}\left[(Y(\Delta))^{2 p}\right]=\Delta \mathbb{E}(\Lambda) \mathbb{E}\left(\xi^{2 p}\right)+o(\Delta)$. Indeed, we first compute the cumulants of the conditional distribution of $Y(\Delta)$ given Λ. Then we deduce the conditional moments using the link between moments and cumulants. Integrating with respect to Λ gives the result. Note that $[\mathbf{B}](i i)$ implies that G_{Δ}^{\prime} exists, with

$$
i G_{\Delta}^{\prime}(u)=\left(f^{*}\right)^{\prime \prime}(u) K_{\Delta}(u)+i\left(f^{*}\right)^{\prime}(u) \mathbb{E}\left(\Lambda Y(\Delta) e^{i u Y(\Delta)}\right)
$$

Thus, if $\left(f^{*}\right)^{\prime}$ and $\left(f^{*}\right)^{\prime \prime}$ are integrable, then [B](iii) holds. Then we can prove the following result.

Proposition 3.1. Assume that (H0) and $[\mathbf{B}]$ hold. Let \widetilde{f}_{m} be given by (20) and let Δ be fixed, $n \Delta \geq 1$. Then the following bound holds:

$$
\begin{aligned}
\mathbb{E}\left(\left\|\widetilde{f}_{m}-f\right\|^{2}\right) \leq & \left\|f-f_{m}\right\|^{2}+\frac{c_{1}}{n \Delta} \int_{-\pi m}^{\pi m}\left|f^{*}(u)\right|^{2}\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|^{2}}+\left(\int_{0}^{|u|} \frac{\left|\left(f^{*}\right)^{\prime}(v)\right|}{\left|f^{*}(v)\right|^{2}} d v\right)^{2}\right) d u \\
& +\frac{c_{2}}{(n \Delta)^{p}} \int_{-\pi m}^{\pi m}\left(1+\left(\int_{0}^{|u|}\left|\frac{\left(f^{*}\right)^{\prime}(v)}{f^{*}(v)}\right|^{2} d v\right)^{p}\right)\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|^{2}}\right)^{p} d u \\
& +\frac{c_{3}}{(n \Delta)^{2 p-1}} \int_{-\pi m}^{\pi m}\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|}\right)^{2 p} d u
\end{aligned}
$$

where the constants $c_{i}, i=1,2,3$ depend on $\left\|G_{\Delta}^{\prime}\right\|_{1}, K_{0}$ and the moments of Λ and ξ_{i} up to order $2 p$.

The bounds are specific to our problem since the unknown function appears both in bias and variance terms.
3.2. Rate of the estimator. We study the resulting rate for the estimator on different examples.

- Gamma distribution. Let $f \sim \Gamma(\alpha, 1)$. Then $f^{*}(u)=(1-i u)^{-\alpha}$ and

$$
\left(f^{*}\right)^{\prime}(u) / f^{*}(u)=-\frac{i \alpha}{1-i u} .
$$

Note that Assumption [B](iii) is fulfilled.
Then $\left\|f-f_{m}\right\|^{2}=O\left(m^{-2 \alpha+1}\right)$ so that $\alpha>1 / 2$ is required for consistency of the estimator. For the variance terms, using the bound (21), we have

$$
\begin{gathered}
\mathbb{V}_{1}:=\int_{-\pi m}^{\pi m}\left|f^{*}(u)\right|^{2}\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|^{2}}+\left(\int_{0}^{|u|} \frac{\left|\left(f^{*}\right)^{\prime}(v)\right|}{\left|f^{*}(v)\right|^{2}} d v\right)^{2}\right) d u=O\left(m^{2}\right), \\
\mathbb{V}_{2}:=\int_{-\pi m}^{\pi m}\left(1+\left(\int_{0}^{|u|}\left|\frac{\left(f^{*}\right)^{\prime}(v)}{f^{*}(v)}\right|^{2} d v\right)^{p}\right)\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|^{2}}\right)^{p} d u=O\left(m^{(2 \alpha+1) p+1}\right),
\end{gathered}
$$

and

$$
\mathbb{V}_{3}:=\int_{-\pi m}^{\pi m}\left(\int_{0}^{|u|} \frac{d v}{\left|f^{*}(v)\right|}\right)^{2 p} d u=O\left(m^{(2 \alpha+1) p+1}\right)
$$

Optimizing the bias and $\mathbb{V}_{1} /(n \Delta)$ yields $m_{\text {opt }, 1} \asymp(n \Delta)^{1 /(2 \alpha+1)}$ and a rate $O\left((n \Delta)^{-(2 \alpha-1) /(2 \alpha+1)}\right)$. Optimizing the bias and $\mathbb{V}_{2} /(n \Delta)^{p}$ yields $m_{\text {opt }, 2} \asymp(n \Delta)^{1 /(1+2 \alpha(1+1 / p))}$ and a rate

$$
O\left((n \Delta)^{-(2 \alpha-1) /(2 \alpha+1+2 \alpha / p)}\right) .
$$

Optimizing the bias and $\mathbb{V}_{3} /(n \Delta)^{2 p-1}$ yields $m_{\text {opt }, 3} \asymp(n \Delta)^{(2 p-1) /(2 p(\alpha+1)+2 \alpha)}$ and a rate

$$
O\left((n \Delta)^{-(2 \alpha-1)(2 p-1) /(2 p(\alpha+1)+2 \alpha)}\right) .
$$

For $p \geq 2$ the rate is of order $(n \Delta)^{-(2 \alpha-1) /\left(2 \alpha+1+\frac{2 \alpha}{p}\right)}$, which is close to $(n \Delta)^{-(2 \alpha-1) /(2 \alpha+1)}$ for large p. Thus, as p can be as large as possible, \mathbb{V}_{1} and \mathbb{V}_{2} get comparable.

- Gaussian distribution. Let us consider $f^{*}(u)=e^{-u^{2} / 2},\left(f^{*}\right)^{\prime}(u) / f^{*}(u)=-u$. Assumption [B](iii) is fulfilled. We use Lemma 6.2 recalled in the Appendix. Then $\left\|f-f_{m}\right\|^{2}=$ $O\left(m^{-1} e^{-(\pi m)^{2}}\right), \mathbb{V}_{1}=O(m), \mathbb{V}_{2}=O\left(m^{2 p-1} e^{p(\pi m)^{2}}\right)$ and $\mathbb{V}_{3}=O\left(m^{-2 p-1} e^{p(\pi m)^{2}}\right)$. We choose

$$
\left(\pi m_{\text {opt }}\right)^{2}=\frac{p}{p+1} \log (n \Delta)-\frac{2 p}{p+1} \log (\log (n \Delta))
$$

and get the rate

$$
(n \Delta)^{-\frac{p}{p+1}}(\log n \Delta)^{\frac{p-1}{p+1}}
$$

Note that optimizing the bias and $\mathbb{V}_{1} /(n \Delta)$ yields the rate $\sqrt{\log (n \Delta)} /(n \Delta)$. Here again, for large p, the two terms \mathbb{V}_{1} and \mathbb{V}_{2} are comparable.
3.3. Cut off selection. As for the previous methods, we need to propose a data-driven selection of the cut off. As above, the bias is estimated up to a constant by $-\left\|\widetilde{f}_{m}\right\|^{2}$. The penalty is built by estimating the variance term of the risk bound. Here, we have three terms and we do no know which term to choose to build a penalty. Thus select m as in the fixed Δ method for exponential Λ

$$
\widetilde{m}=\arg \min _{m}\left(-\left\|\widetilde{f}_{m}\right\|^{2}+\widehat{\operatorname{pen}}(m)\right)
$$

with $\widehat{p e n}(m)$ defined in (15) and is built using the $Y_{j}(\Delta)$'s only.
The numerical results confirm that this simple strategy works well.
3.4. Second estimator. A simple procedure is available for estimating f based on the joint observation $\left(N_{j}\left(\Lambda_{j} \Delta\right), Y_{j}(\Delta)\right)_{1 \leq j \leq n}$. Note that

$$
\mathbb{P}\left(N_{j}\left(\Lambda_{j} \Delta\right)=1\right):=\alpha_{1}(\nu, \Delta)=\Delta \int_{0}^{+\infty} e^{-\lambda \Delta} \lambda \nu(d \lambda)>0
$$

and that the conditional distribution of $Y_{j}(\Delta)$ given $N_{j}\left(\Lambda_{j} \Delta\right)=1$ is identical to the distribution of ξ_{1}^{j}. Hence, let us set:

$$
\begin{equation*}
\frac{1}{\tilde{\alpha}_{1}}=\frac{1}{\hat{\alpha}_{1}} \mathbf{I}_{\hat{\alpha}_{1} \geq k \sqrt{\Delta / n}}, \quad \hat{\alpha}_{1}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{I}_{\left(N_{j}\left(\Lambda_{j} \Delta\right)=1\right)}, \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\check{f}_{m}(x)=\frac{1}{2 \pi \tilde{\alpha}_{1}} \int_{-\pi m}^{\pi m} e^{-i u x}\left(\frac{1}{n} \sum_{i=1}^{n} e^{i u Y_{j}(\Delta)} \mathbb{I}_{\left(N_{j}\left(\Lambda_{j} \Delta\right)=1\right)}\right) d u \tag{23}
\end{equation*}
$$

The following property holds.
Proposition 3.2. Assume (H0), $\mathbb{E}(\Lambda)<+\infty, \mathbb{E}\left(\Lambda e^{-\Lambda \Delta}\right) \geq k_{0}$ and $n \Delta \geq 1 \vee \frac{4 k^{2}}{k_{0}^{2}}$. Then

$$
\mathbb{E}\left(\left\|\check{f}_{m}-f\right\|^{2}\right) \leq\left\|f-f_{m}\right\|^{2}+\frac{4 m}{n \alpha_{1}(\nu, \Delta)}\left(1+\frac{2 k^{2} \Delta}{\alpha_{1}(\nu, \Delta)} \frac{1}{n \alpha_{1}(\nu, \Delta)}\right)
$$

where f_{m} is such that $f_{m}^{*}=f^{*} \mathbf{I}_{[-\pi m, \pi, m]}$
Note that $\alpha_{1}(\nu, \Delta)=\Delta(\mathbb{E}(\Lambda)+o(1))$. The variance term is of order $O(m /(n \Delta))$. We propose the following adaptive choice for m :

$$
\check{m}=\arg \min _{m \leq n \Delta}\left(-\left\|\check{f}_{m}\right\|^{2}+\frac{\kappa}{n \tilde{\alpha}_{1}}\right) .
$$

The proof of Proposition 3.2 follows the same lines as the analogous Proposition 2.2 and is omitted. The proof of adaptiveness of $\check{f}_{\check{m}}$ is also omitted.

The interest of this estimator is obviously its simplicity. However, it strongly depends on the observed value $\hat{\alpha}_{1}$ as the number of observations taken for the estimation is $n \hat{\alpha}_{1}$. If this value is too small, the estimator performs poorly.

4. ILLUSTRATIONS OF THE METHODS

In this section, we illustrate the estimators with data driven cut off on simulated data. In all Tables, the \mathbb{L}_{2}-risks are computed for f a Gaussian $\mathcal{N}(0,3)$ and Λ either an exponential distribution with mean 1 , or a uniform density on [5,6], a translated exponential $\mathcal{E}(2)+5$, a translated \mathcal{B} eta distribution \mathcal{B} eta $(2,2)+5$. To compute \mathbb{L}_{2}-risks, we use 1000 repetitions for $n \Delta=200,1000$ and 2500 repetitions for $n \Delta=5000$.

The cut off m is selected among 200 equispaced values between 0.01 and 2 . All methods require the calibration of the constant κ in penalties. After preliminary experiments, κ is taken equal to 0.21 in method 1 (first semi-parametric method), to 5 in method 2 (second semi-parametric method), and to 5 in the last method.

Figure 1 corresponds to a jump density mixture of Gaussian $0.4 \mathcal{N}(-2,1)+0.6 \mathcal{N}(3,1)$ and Λ an exponential $\mathcal{E}(1)$. Figure 2 plots a Gumbel jump distribution with c.d.f. $F(x)=\exp (-\exp (-x)), x>$ 0 and Λ either $\mathcal{E}(1)$ or $\mathcal{U}([1,2])$. The truncation constant k is alway taken equal to 0.5 , except in (22) where $k=0$.

We compare the two semiparametric methods for the Gaussian jump density and Λ exponential $\mathcal{E}(1)$. Method 1 works for fixed values of $\Delta(\Delta=1,2)$, but also for small values (0.1 to $0.9)$. However, when Δ gets too small (0.01), the risk increases. On the other hand method 2 , completely fails for $\Delta=1$, as predicted by the theory ($A=+\infty$ in the risk bound of Proposition 2.4 when $\mu \Delta=1$); for $\Delta=0.5,0.9$, methods 1 and 2 have comparable risks while for $\Delta \leq 0.1$, method 2 is better. The value $\bar{n}_{\neq 0}$ of non zero data represents the number of data really used for estimation. The cut off values are rather small and stable (standard deviations are of order 10^{-2}). The value K is taken of order $\sup \left(1, K_{0}\right)$ for K_{0} defined in formula (18) (see Tables 3, 4 in Section A). In Figure 1, 50 estimated curves of a Gaussian mixture by methods 1 and 2 are plotted, for different sample sizes $n=500,2000,5000$. The two methods distinguish well the two modes and are improved as n increases.

n	Method 1	Method 3	Simple
200	$5.6 \cdot 10^{-3}\left(5.7 \cdot 10^{-3}\right)$	$4.9 \cdot 10^{-3}\left(6.0 \cdot 10^{-3}\right)$	$5.9 \cdot 10^{-3}\left(4.5 \cdot 10^{-3}\right)$
500	$2.7 \cdot 10^{-3}\left(2.5 \cdot 10^{-3}\right)$	$3.6 \cdot 10^{-3}\left(1.2 \cdot 10^{-3}\right)$	$2.6 \cdot 10^{-3}\left(2.2 \cdot 10^{-3}\right)$
1000	$1.5 \cdot 10^{-3}\left(1.7 \cdot 10^{-3}\right)$	$2.4 \cdot 10^{-3}\left(5.2 \cdot 10^{-3}\right)$	$1.3 \cdot 10^{-3}\left(9.2 \cdot 10^{-4}\right)$
2000	$7.9 \cdot 10^{-4}\left(5.7 \cdot 10^{-4}\right)$	$2.0 \cdot 10^{-3}\left(9.7 \cdot 10^{-3}\right)$	$7.2 \cdot 10^{-4}\left(5.1 \cdot 10^{-4}\right)$
5000	$3.7 \cdot 10^{-4}\left(2.9 \cdot 10^{-4}\right)$	$7.4 \cdot 10^{-4}\left(9.4 \cdot 10^{-4}\right)$	$3.1 \cdot 10^{-4}\left(2.2 \cdot 10^{-4}\right)$

TABLE 1. Mean of the \mathbb{L}_{2}-risks for the semi-parametric method 1 , the nonparametric method 3 and the simple method (see section 3.4). $\Delta=1, \Lambda \sim \mathcal{E}(1)$ and f is $\mathcal{N}(0,3)$; standard deviation in parenthesis.

In Table 1 we compare the first semi-parametric method to the nonparametric ones (method 3 and simple). They are comparable, with good results even for small values of n. The simple method performs surprisingly well and is stable. In Table 2, we change the distribution of Λ and therefore we show no results for method 1 , since it does not work in that case, neither in

Figure 1. Estimation of f for a Gaussian mixture $0.4 \mathcal{N}(-2,1)+0.6 \mathcal{N}(3.1)$ for $n=500$ (first column) $n=2000$ (second column) and $n=5000$ (third column) with the semiparametric method 1 (first line) and the semi parametric method 2 (second line, $K=5$) for $\Delta=1 / 2$. True density (bold black line) and 50 estimated curves (green lines).
theory nor in practice. The chosen distributions for Λ make the simple method perform worse than method 3. For $n=200$, the risk of method 3 is twice better, for $n=500$, it is three times better and for $n=1000$, four times better. For larger n, the methods become equivalent. The simple method fails here because the number $n \hat{\alpha}_{1}$ (see (22)) is too small. In Figure 2, 50 estimated curves of a Gumbel distribution by methods 1 and 3 are plotted, for different sample sizes $n=500,2000$, for Λ an exponential $\mathcal{E}(1)$ and a uniform $\mathcal{U}([1,2])$. Columns 1 and 2 allow to compare methods 1 and 3 when Λ is exponential. Method 3 has good performances without estimating the distribution of Λ. In all cases, the values of m are small and stable.

Λ	n	Method 3	Simple
$\mathcal{U}([5,6])$	200	$2.8 \cdot 10^{-2}\left(6.6 \cdot 10^{-3}\right)$	$5.6 \cdot 10^{-2}\left(1.5 \cdot 10^{-2}\right)$
	500	$9.0 \cdot 10^{-3}\left(3.8 \cdot 10^{-3}\right)$	$2.8 \cdot 10^{-2}\left(1.8 \cdot 10^{-2}\right)$
	1000	$3.3 \cdot 10^{-3}\left(2.2 \cdot 10^{-3}\right)$	$1.3 \cdot 10^{-2}\left(9.5 \cdot 10^{-3}\right)$
$\mathcal{E}(2)+5$	200	$2.8 \cdot 10^{-2}\left(6.8 \cdot 10^{-3}\right)$	$5.6 \cdot 10^{-2}\left(1.7 \cdot 10^{-2}\right)$
	500	$9.0 \cdot 10^{-3}\left(3.7 \cdot 10^{-3}\right)$	$2.7 \cdot 10^{-2}\left(1.6 \cdot 10^{-2}\right)$
	1000	$3.4 \cdot 10^{-3}\left(2.3 \cdot 10^{-3}\right)$	$1.3 \cdot 10^{-2}\left(8.7 \cdot 10^{-3}\right)$
	200	$2.7 \cdot 10^{-2}\left(6.5 \cdot 10^{-3}\right)$	$5.6 \cdot 10^{-2}\left(1.4 \cdot 10^{-2}\right)$
	500	$9.2 \cdot 10^{-3}\left(4.0 \cdot 10^{-3}\right)$	$2.9 \cdot 10^{-2}\left(1.7 \cdot 10^{-2}\right)$
	1000	$3.3 \cdot 10^{-3}\left(2.2 \cdot 10^{-3}\right)$	$1.3 \cdot 10^{-2}\left(8.9 \cdot 10^{-3}\right)$

Table 2. Mean of the \mathbb{L}_{2}-risks for the nonparametric method 3 and the simple method (see section 3.4); standard deviation in parenthesis. $\Delta=1, \Lambda \sim \mathcal{U}([5,6])$, $\mathcal{E}(2)+5, \mathcal{B e t a}(2,2)+5$ and f is $\mathcal{N}(0,3)$.

$$
\overline{\hat{m}}=0.57(0.10)
$$

$\overline{\hat{m}}=0.72(0.08)$

$\overline{\widetilde{m}}=0.53(0.05)$

$\overline{\widetilde{m}}=0.66(0.05)$

$\overline{\widetilde{m}}=0.47$ (0.04)

$\overline{\widetilde{m}}=0.60(0.04)$

Figure 2. Estimation of f for a Gumbel distribution, for $n=500$ (first line) $n=2000$ (second line) with method 1 (first column) and method 3 (second and third column) for $\Delta=1$. In the first two columns Λ is $\mathcal{E}(1)$ and in the third Λ is $\mathcal{U}([1,2])$. True density (bold black line) and 50 estimated curves (green lines).

References

[1] Antonio, K. and Beirlant, J. (2007) Actuarial statistics with generalized linear mixed models. Insurance Math. Econom. 40, 58-76.
[2] Belomestny, D. (2011) Statistical inference for time-changed Lévy processes via composite characteristic function estimation. Ann. Statist. 39, 2205-2242.
[3] Birgé, L. and Massart, P. (1998) Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4, 329-375.
[4] Birgé, L. and Massart, P. (2007) Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138, 33-73.
[5] Bogsted, M. and Pitts, S M. (2010) Decompounding random sums: a nonparametric approach. Ann. Inst. Statist. Math. 62, 855-872.
[6] Butucea, C. and Tsybakov, A. B. (2008a) Sharp optimality in density deconvolution with dominating bias. I. Theory Probab. Appl. 52, 24-39.
[7] Butucea, C. and Tsybakov, A. B. (2008b) Sharp optimality in density deconvolution with dominating bias. II. Theory Probab. Appl. 52, 237-249.
[8] Chesneau, C., Comte, F. and Navarro, F. (2013) Fast nonparametric estimation for convolutions of densities. the Canadian Journal of Statistics, 41, 617-636.
[9] Comte, F., Duval, C. and Genon-Catalot, V. (2014) Nonparametric density estimation in compound Poisson processes using convolution power estimators. Metrika 77, 163-183.
[10] Comte, F. and Genon-Catalot (2009) Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stochastic Processes and their Applications 119, 4088-4123.
[11] Davidian, M., and Giltinan, D.M. (1995) Nonlinear Models for Repeated Measurement Data, New York: Chapman and Hall.
[12] Duval, C. (2013) Density estimation for compound Poisson processes from discrete data. Stochastic Process. Appl. 123, 3963-3986.
[13] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modelling extremal events. Berlin: Springer.
[14] van Es, B., Gugushvili, S. and Spreij, P. (2007) A kernel type nonparametric density estimator for decompounding. Bernoulli 13, 672694.
[15] Figueroa-López, J. E. (2009) Nonparametric estimation of Lévy models based on discrete-sampling. Optimality, 117-146, IMS Lecture Notes Monogr. Ser., 57, Inst. Math. Statist., Beachwood, OH.
[16] Grandell, J. (1997) Mixed Poisson processes. Monographs on Statistics and Applied Probability, 77. Chapman \& Hall, London.
[17] Gugushvili, S. (2012) Nonparametric inference for discretely sampled Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 48, 282-307.
[18] Hall, P. and Heyde, C. C. (1980) Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, New York-London.
[19] Klein, T. and Rio, E. (2005) Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 1060-1077.
[20] Mikosch, T. (2009) Non-life insurance mathematics. An introduction with the Poisson process. Second edition. Universitext. Springer-Verlag, Berlin.
[21] Neumann, M. H. (1997) On the effect of estimating the error density in nonparametric deconvolution. Journal of Nonparametric Statistics 7, 307-320.
[22] Neumann, M. H. and Reiss, M. (2009) Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15, 223-248.
[23] Pinheiro, J.C. and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS. New York, Springer.
[24] Tuckwell, H.C (1998). Introduction to Theoretical Neurobiology: Volume 2. Nonlinear and stochastic theories. Cambridge studies in biology 8. Cambridge University Press, New York.
[25] Ueltzhöfer, F. A. J. and Klüppelberg, C. (2011) An oracle inequality for penalised projection estimation of Lévy densities from high-frequency observations. J. Nonparametr. Stat. 23, 967-989.

5. Proofs

First we state a useful Lemma proved in Section A.1, similar to a Lemma stated in Neumann (1997).
Lemma 5.1. $\forall u \in \mathbb{R}, \quad \mathbb{E}\left(\left|\frac{1}{\widetilde{\phi_{\Delta}}(u)}-\frac{1}{\phi_{\Delta}(u)}\right|^{2 p}\right) \leq c_{p}\left(\frac{1}{\left|\phi_{\Delta}(u)\right|^{2 p}} \wedge \frac{n^{-p}}{\left|\phi_{\Delta}(u)\right|^{4 p}}\right)$.
5.1. Proof of Proposition 2.1. By the Rosenthal Inequality (see Hall and Heyde (1980) p.23), we get

$$
\mathbb{E}\left(\left|\hat{q}_{\Delta}-q_{\Delta}\right|^{2 p}\right) \leq \frac{C(2 p)}{n^{2 p}}\left(n q_{\Delta}+\left(n q_{\Delta}\left(1-q_{\Delta}\right)\right)^{p}\right)
$$

Now, $n q_{\Delta}=n \Delta \mu /(1+\mu \Delta) \leq n \Delta \mu_{1}$ gives, under $n \Delta \geq 1$, the first bound:

$$
\mathbb{E}\left(\left|\hat{q}_{\Delta}-q_{\Delta}\right|^{2 p}\right) \leq C(2 p)\left(\mu_{1}+\mu_{1}^{p}\right)\left(\frac{\Delta}{n}\right)^{p}
$$

Now we write that

$$
\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}=\left(\frac{1}{\hat{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right) \mathbb{I}_{\hat{q}_{\Delta}>k \sqrt{\Delta / n}}-\frac{1}{q_{\Delta}} \mathbb{I}_{\hat{q}_{\Delta} \leq k \sqrt{\Delta / n}}
$$

With a proof analogous to Lemma 5.1, we get

$$
\mathbb{E}\left(\left|\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right|^{2 p}\right) \leq c\left(\frac{1}{q_{\Delta}^{2 p}} \wedge \frac{(n / \Delta)^{-p}}{q_{\Delta}^{4 p}}\right)=O\left(\frac{1}{\left(n \Delta^{3}\right)^{p}}\right)
$$

For $\tilde{\mu}$, the decomposition is the following

$$
\begin{gathered}
\tilde{\mu}-\mu=\frac{1}{\Delta}\left\{\frac{\hat{q}_{\Delta}-q_{\Delta}}{1-\hat{q}_{\Delta}}\right. \\
\mathbb{I}_{1-\hat{q}_{\Delta}>k \sqrt{\Delta / n}}+q_{\Delta}\left(\frac{1}{1-\hat{q}_{\Delta}}-\frac{1}{1-q_{\Delta}}\right) \mathbb{I}_{1-\hat{q}_{\Delta}>k \sqrt{\Delta / n}} \\
-\frac{q_{\Delta}}{1-q_{\Delta}} \mathbb{I}_{\left.1-\hat{q}_{\Delta} \leq k \sqrt{\Delta / n}\right\}}
\end{gathered}
$$

leading analogously to (10).
5.2. Proof of Proposition 2.2. We use the fact that $\left|\phi_{\Delta}(u)\right|^{-1} \leq 1+2 \mu \Delta, q_{\Delta}^{-1} \leq 1+1 /\left(\mu_{0} \Delta\right)$, $\left\|f^{*}\right\|^{2}=2 \pi\|f\|^{2}$, Proposition 2.1 and Lemma 5.1.

Rosenthal's inequality implies for $p \geq 1$,

$$
\begin{equation*}
\mathbb{E}\left(\left|\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right|^{2 p}\right) \leq \frac{C(2 p)}{n^{2 p}}\left(n q_{\Delta}+\left(n q_{\Delta}\right)^{p}\right) \leq c_{p}\left(\mu_{1}+\mu_{1}^{p}\right)\left(\frac{\Delta}{n}\right)^{p} \tag{24}
\end{equation*}
$$

Then we have the decomposition, using Formula (11),

$$
\begin{align*}
& \hat{f}^{*}(u)-f^{*}(u)=T_{0}(u)+\sum_{i=1}^{6} T_{i}(u), \quad \text { with } T_{0}(u)=\frac{\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)}{q_{\Delta} \phi_{\Delta}(u)}, \tag{25}\\
& T_{1}(u)=\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right) q_{\Delta} f^{*}(u), \quad T_{2}(u)=\phi_{\Delta}(u) f^{*}(u)\left(\frac{1}{\widetilde{\phi}_{\Delta}(u)}-\frac{1}{\phi_{\Delta}(u)}\right), \\
& T_{3}(u)=Q_{\Delta}(u)\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right)\left(\frac{1}{\widetilde{\phi}_{\Delta}(u)}-\frac{1}{\phi_{\Delta}(u)}\right), \quad T_{4}(u)=\frac{\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)}{\phi_{\Delta}(u)}\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right) \\
& T_{5}(u)=\left(\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right)\left(\frac{1}{\widetilde{\phi}_{\Delta}(u)}-\frac{1}{\phi_{\Delta}(u)}\right)\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right), \\
& T_{6}(u)=\frac{\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)}{q_{\Delta}}\left(\frac{1}{\widetilde{\phi}_{\Delta}(u)}-\frac{1}{\phi_{\Delta}(u)}\right) .
\end{align*}
$$

Then

$$
\int_{-\pi m}^{\pi m}\left|\hat{f}^{*}(u)-f^{*}(u)\right|^{2} d u \leq 2 \int_{-\pi m}^{\pi m}\left|T_{0}(u)\right|^{2} d u+12 \sum_{i=1}^{6} \int_{-\pi m}^{\pi m}\left|T_{i}(u)\right|^{2} d u .
$$

First from (24), we have

$$
\mathbb{E}\left(\int_{-\pi m}^{\pi m}\left|T_{0}(u)\right|^{2} d u\right) \leq \frac{1}{n q_{\Delta}} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}
$$

For the following bounds, we use constants c, c^{\prime} which may change from line to line but depend neither on n nor on Δ. We have by Proposition 2.1

$$
\mathbb{E}\left(\int_{-\pi m}^{\pi m}\left|T_{1}(u)\right|^{2} d u\right)=\int_{-\pi m}^{\pi m}\left|f^{*}(u)\right|^{2} d u \mathbb{E}\left(q_{\Delta}^{2}\left|\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right|^{2}\right) \leq \frac{c}{n \Delta} 2 \pi\|f\|^{2}
$$

and analogously by Lemma 5.1, $\mathbb{E}\left(\int_{-\pi m}^{\pi m}\left|T_{2}(u)\right|^{2} d u\right) \leq c^{\prime}\|f\|^{2} / n$. Then as $m \leq n \Delta$, with both Lemma 5.1 and Proposition 2.1, we get

$$
\mathbb{E}\left(\int_{-\pi m}^{\pi m}\left|T_{3}(u)\right|^{2} d u\right) \leq \frac{c}{n^{2} \Delta} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{4}} \leq \frac{c^{\prime}}{n} .
$$

The three last terms are bounded in the same way.
Remark that $\left\|\hat{f}_{m}-f\right\|^{2}=\left\|f-f_{m}\right\|^{2}+\left\|f_{m}-\hat{f}_{m}\right\|^{2}$ as $f-f_{m}$ and $\hat{f}_{m}-f_{m}$ have Fourier transforms with disjoint supports and that $\int_{-\pi m}^{\pi m}\left|\hat{f}^{*}(u)-f^{*}(u)\right|^{2} d u=2 \pi\left\|\hat{f}_{m}-f_{m}\right\|^{2}$.

Gathering all the terms gives the result of Proposition 2.2.
5.3. Proof of Theorem 2.1. Let $S_{m}=\left\{t \in \mathbb{L}^{2}(\mathbb{R}), t^{*}=t^{*} \mathbb{I}_{[-\pi m, \pi m]}\right\}$, and consider the contrast $\gamma_{n}(t)=\|t\|^{2}-\frac{2}{2 \pi}\left\langle t^{*}, \hat{f}^{*}\right\rangle$. Clearly, $\hat{f}_{m}=\arg \min _{t \in S_{m}} \gamma_{n}(t)$ and $\gamma_{n}\left(\hat{f}_{m}\right)=-\left\|\hat{f}_{m}\right\|^{2}$. Moreover, we note that

$$
\begin{equation*}
\gamma_{n}(t)-\gamma_{n}(s)=\|t-f\|^{2}-\|s-f\|^{2}-\frac{2}{2 \pi}\left\langle t^{*}-s^{*}, \hat{f}^{*}-f^{*}\right\rangle \tag{26}
\end{equation*}
$$

By definition of \hat{m}, we have $\gamma_{n}\left(\hat{f}_{\hat{m}}\right)+\widehat{\operatorname{pen}}(\hat{m}) \leq \gamma_{n}\left(f_{m}\right)+\widehat{\operatorname{pen}}(m)$. This with (26) implies

$$
\begin{equation*}
\left\|\hat{f}_{\hat{m}}-f\right\|^{2} \leq\left\|f-f_{m}\right\|^{2}+\widehat{\operatorname{pen}}(m)+\frac{2}{2 \pi}\left\langle\hat{f}_{\hat{m}}^{*}-f_{m}^{*}, \hat{f}^{*}-f^{*}\right\rangle-\widehat{\operatorname{pen}}(\hat{m}) \tag{27}
\end{equation*}
$$

Writing that

$$
\begin{aligned}
2\left\langle\hat{f}_{\hat{m}}^{*}-f_{m}^{*}, \hat{f}^{*}-f^{*}\right\rangle & \leq 2\left\|\hat{f}_{\hat{m}}^{*}-f_{m}^{*}\right\| \sup _{t \in S_{\hat{m}}+S_{m},\|t\|=1}\left|\left\langle t^{*}, \hat{f}^{*}-f^{*}\right\rangle\right| \\
& \leq \frac{1}{4}\left\|\hat{f}_{\hat{m}}^{*}-f_{m}^{*}\right\|^{2}+4 \sup _{t \in S_{\hat{m} \vee m},\|t\|=1}\left\langle t^{*}, \hat{f}^{*}-f^{*}\right\rangle^{2} \\
& \leq \frac{1}{2}\left\|\hat{f}_{\hat{m}}^{*}-f^{*}\right\|^{2}+\frac{1}{2}\left\|f^{*}-f_{m}^{*}\right\|^{2}+4 \sup _{t \in S_{\hat{m} \vee m},\|t\|=1}\left\langle t^{*}, \hat{f}^{*}-f^{*}\right\rangle^{2},
\end{aligned}
$$

plugging this in (27) and gathering the terms, we get

$$
\begin{equation*}
\frac{1}{2}\left\|\hat{f}_{\hat{m}}-f\right\|^{2} \leq \frac{3}{2}\left\|f-f_{m}\right\|^{2}+\widehat{\operatorname{pen}}(m)+\frac{4}{2 \pi} \sup _{t \in S_{\hat{m} \vee m},\|t\|=1}\left\langle t^{*}, \hat{f}^{*}-f^{*}\right\rangle^{2}-\widehat{\operatorname{pen}}(\hat{m}) \tag{28}
\end{equation*}
$$

Now, we write the decomposition

$$
\left\langle t^{*}, \hat{f}^{*}-f^{*}\right\rangle=\frac{1}{q_{\Delta}}\left\langle t^{*}, \frac{\hat{Q}_{\Delta}-Q_{\Delta}}{\phi_{\Delta}}\right\rangle+R(t)
$$

where $R(t)=\sum_{i=1}^{6}\left\langle t^{*}, T_{i}\right\rangle$ where the T_{i} 's are defined by (25).
Clearly, the proof of Proposition 2.2, the Cauchy Schwarz inequality and $\left\|t^{*}\right\|^{2}=2 \pi$ lead to $\mathbb{E}\left(\sup _{t \in S_{\hat{m} \vee m},\|t\|=1}|R(t)|^{2}\right) \leq c /(n \Delta)$. Thus, we have to study $\sup _{t \in S_{\hat{m} \vee m},\|t\|=1} q_{\Delta}^{-1}\left\langle t^{*},\left(\hat{Q}_{\Delta}-\right.\right.$ $\left.\left.Q_{\Delta}\right) / \phi_{\Delta}\right\rangle$, for which, we can prove (see the proof in Section 5.4):

Lemma 5.2. Under the Assumptions of Theorem 2.1, let

$$
p(m, \hat{m})=\frac{3}{2 \pi n q_{\Delta}} \int_{-\pi(m \vee \hat{m})}^{\pi(m \vee \hat{m})} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}
$$

We have

$$
\mathbb{E}\left(\frac{1}{2 \pi} \sup _{t \in S_{\hat{m} \vee m},\|t\|=1}\left\langle t^{*}, \frac{\hat{Q}_{\Delta}-Q_{\Delta}}{q_{\Delta} \phi_{\Delta}}\right\rangle^{2}-p(m, \hat{m})\right)_{+} \leq \frac{c}{n \Delta}
$$

Let us define

$$
\Omega=\left\{\left|\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right| \leq \frac{1}{2 q_{\Delta}}\right\} \text { and } \operatorname{pen}(m)=\frac{1}{2 \pi n q_{\Delta}} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}
$$

We have $p\left(m, m^{\prime}\right) \leq 3 \operatorname{pen}(m)+3 \operatorname{pen}\left(m^{\prime}\right)$ and on Ω, we have, $\forall m \in \mathcal{M}_{n}$,

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\operatorname{pen}}(m) \mathbb{I}_{\Omega}\right) & \leq \frac{3}{2} \frac{\kappa}{2 \pi n q_{\Delta}} \mathbb{E}\left(\int_{-\pi m}^{\pi m} \frac{d u}{\left|\widetilde{\phi_{\Delta}}(u)\right|^{2}}\right) \\
& \leq \frac{3 \kappa}{2 \pi n q_{\Delta}} \int_{-\pi m}^{\pi m} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}+\frac{3 \kappa}{2 \pi n q_{\Delta}} \int_{-\pi m}^{\pi m} \mathbb{E}\left(\left|\frac{1}{\widetilde{\phi_{\Delta}}(u)}-\frac{1}{\phi_{\Delta}(u)}\right|^{2}\right) d u \\
& \leq 3 \kappa \operatorname{pen}(m)+\frac{3 \kappa}{2 \pi n q_{\Delta}} \frac{2 \pi m(1+2 \mu \Delta)^{4}}{n} \leq 3 \kappa \operatorname{pen}(m)+\frac{c}{n}
\end{aligned}
$$

Using (28) and Lemma 5.2, we derive

$$
\begin{align*}
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}}-f\right\|^{2} \mathbb{I}_{\Omega}\right) & \leq 3\left\|f-f_{m}\right\|^{2}+6 \kappa \operatorname{pen}(m)+\mathbb{E}\left([16 p(m, \hat{m})-2 \widehat{\operatorname{pen}}(\hat{m})] \mathbb{I}_{\Omega}\right)+\frac{c}{n \Delta} \\
& \leq 3\left\|f-f_{m}\right\|^{2}+6(\kappa+8) \operatorname{pen}(m)+2 \mathbb{E}\left([24 \operatorname{pen}(\hat{m})-\widehat{\operatorname{pen}}(\hat{m})] \mathbb{I}_{\Omega}\right)+\frac{c}{n \Delta} \tag{29}
\end{align*}
$$

Now we note that, as $1 / q_{\Delta} \leq 2 / \tilde{q}_{\Delta}$ on Ω,

$$
\begin{aligned}
\mathbb{E}\left([24 \operatorname{pen}(\hat{m})-\widehat{\operatorname{pen}}(\hat{m})] \mathbb{I}_{\Omega}\right)= & \mathbb{E}\left[\left(\frac{24}{2 \pi n q_{\Delta}} \int_{-\pi \hat{m}}^{\pi \hat{m}} \frac{d u}{\left|\phi_{\Delta}(u)\right|^{2}}-\frac{\kappa}{2 \pi n \tilde{q}_{\Delta}} \int_{-\pi \hat{m}}^{\pi \hat{m}} \frac{d u}{\left|\widetilde{\phi_{\Delta}}(u)\right|^{2}}\right) \mathbb{I}_{\Omega}\right] \\
\leq & \mathbb{E}\left[\left(\frac{96}{2 \pi n \tilde{q}_{\Delta}} \int_{-\pi \hat{m}}^{\pi \hat{m}} \frac{d u}{\left|\widetilde{\phi_{\Delta}}(u)\right|^{2}}-\frac{\kappa}{2 \pi n \tilde{q}_{\Delta}} \int_{-\pi \hat{m}}^{\pi \hat{m}} \frac{d u}{\left|\widetilde{\phi_{\Delta}}(u)\right|^{2}}\right) \mathbb{I}_{\Omega}\right] \\
& +\mathbb{E}\left[\left(\frac{96}{2 \pi n \tilde{q}_{\Delta}} \int_{-\pi \hat{m}}^{\pi \hat{m}}\left|\frac{1}{\widetilde{\phi_{\Delta}}(u)}-\frac{1}{\phi_{\Delta}(u)}\right|^{2} d u\right) \mathbb{I}_{\Omega}\right]
\end{aligned}
$$

Now we choose $\kappa \geq 96$ (which makes the first r.h.s. difference negative or zero), use that on $\Omega, 1 / \tilde{q}_{\Delta} \leq(3 / 2)\left(1 / q_{\Delta}\right)$ and that $\hat{m} \leq n \Delta$ which, together with Lemma 5.1 implies that $\mathbb{E}\left([24 \operatorname{pen}(\hat{m})-\widehat{\operatorname{pen}}(\hat{m})] \mathbb{I}_{\Omega}\right) \leq c / n$. Plugging this in (29) yields, for $\kappa \geq \kappa_{0}=96$ that, $\forall m \in \mathcal{M}_{n}$,

$$
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}}-f\right\|^{2} \mathbf{I}_{\Omega}\right) \leq 3\left\|f-f_{m}\right\|^{2}+6(\kappa+8) \operatorname{pen}(m)+\frac{c}{n \Delta}
$$

On the other hand

$$
\begin{aligned}
\mathbb{P}\left(\Omega^{c}\right) & =\mathbb{P}\left(\left|\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right|>\frac{1}{2} \frac{1}{q_{\Delta}}\right) \leq\left(2 q_{\Delta}\right)^{6} \mathbb{E}\left(\left|\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right|^{6}\right) \\
& \leq\left(2 q_{\Delta}\right)^{6} C^{\prime}(3, \Delta) \frac{1}{\Delta^{9} n^{3}} \leq \frac{c}{(n \Delta)^{3}}
\end{aligned}
$$

where the last line follows from Proposition 2.1. Moreover $\left\|\hat{f}_{\hat{m}}-f\right\|^{2}=\left\|\hat{f}_{\hat{m}}-f_{\hat{m}}\right\|^{2}+\left\|f-f_{\hat{m}}\right\|^{2}$. Now, $\left\|f-f_{\hat{m}}\right\|^{2} \leq\|f\|^{2}$ and as $\left\|\hat{f}_{\hat{m}}-f_{\hat{m}}\right\|^{2} \leq\left\|\hat{f}_{n \Delta}-f_{n \Delta}\right\|^{2} \leq c(n \Delta)^{2}$, we obtain that

$$
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}}-f\right\|^{2} \mathbb{I}_{\Omega^{c}}\right) \leq \frac{c}{n \Delta}
$$

This, together with (29) implies the result given in Theorem 2.1.
5.4. Proof of Lemma 5.2. For $t \in S_{m}, t^{*}$ has support $I_{m}=[-\pi m, \pi m]$. To get the result, we apply the Talagrand inequality (see Appendix) to

$$
t \mapsto \nu_{n}(t)=\frac{1}{2 \pi n} \sum_{j=1}^{n} \int_{\mathbb{R}} t^{*}(-u) \frac{e^{i u Y_{j}(\Delta)} \mathbb{I}_{Y_{j}(\Delta) \neq 0}-Q_{\Delta}(u)}{q_{\Delta} \phi_{\Delta}(u)} d u
$$

First, we have

$$
\mathbb{E}\left(\sup _{t \in S_{m^{\prime} \vee m},\|t\|=1}\left|\nu_{n}(t)\right|^{2}\right) \leq \frac{1}{2 \pi n} \int_{I_{m \vee m^{\prime}}} \frac{1}{q_{\Delta}\left|\phi_{\Delta}^{2}(u)\right|} d u:=H^{2} .
$$

Note that as $1 \leq 1 /\left|\phi_{\Delta}(u)\right| \leq 1+2 \mu \Delta$,

$$
\frac{1}{q_{\Delta}} \frac{m \vee m^{\prime}}{n} \leq H^{2} \leq \frac{(1+2 \mu \Delta)^{2}}{q_{\Delta}} \frac{m \vee m^{\prime}}{n} .
$$

Second, using $\left|\phi_{\Delta}^{-1}(u)\right| \leq 1+2 \mu \Delta$ and $f^{*}(u)=Q_{\Delta}(u) /\left(q_{\Delta} \phi_{\Delta}(u)\right)$, we get

$$
\begin{aligned}
& \sup _{t \in S_{m^{\prime} \vee m},\|t\|=1} \operatorname{Var}\left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{t^{*}(-u) e^{i u Y_{1}(\Delta)} \mathbf{I}_{Y_{1}(\Delta) \neq 0}}{q_{\Delta} \phi_{\Delta}(u)} d u\right) \\
& \leq \frac{1}{4 \pi^{2}} \sup _{t \in S_{m^{\prime} \vee m},\|t\|=1} \mathbb{E}\left(\int_{\mathbb{R}^{2}} \frac{t^{*}(-u) t^{*}(w) e^{i(u-w) Y_{1}(\Delta)}}{q_{\Delta}^{2} \phi_{\Delta}(u) \phi_{\Delta}(-w)} \mathbf{I}_{Y_{1}(\Delta) \neq 0} d u d w\right) \\
& \leq \frac{1}{2 \pi}\left(\int_{I_{m \vee m^{\prime}}^{2}} \frac{\left|Q_{\Delta}(u-w)\right|^{2}}{q_{\Delta}^{2}\left|\phi_{\Delta}(u)\right|^{2}\left|\phi_{\Delta}(w)\right|^{2}} d u d w\right)^{1 / 2} \\
& =\frac{1}{2 \pi}\left(\int_{I_{m \vee m^{\prime}}^{2}} \frac{\left|Q_{\Delta}(u-w)\right|^{2}}{q_{\Delta}^{2}\left|\phi_{\Delta}(u-w)\right|^{2}} \frac{1}{\left|\phi_{\Delta}(u)\right|^{2}} \frac{\left|\phi_{\Delta}(u-w)\right|^{2}}{\left|\phi_{\Delta}(w)\right|^{2}} d u d w\right)^{1 / 2} \\
& \leq\left(1+2 \mu_{1} \Delta\right)\|f\|\left(\frac{1}{2 \pi} \int_{I_{m \vee m^{\prime}}} \frac{d u}{\left|\phi_{\Delta}^{2}(u)\right|}\right)^{1 / 2}:=v .
\end{aligned}
$$

Note that $v \leq c \sqrt{m \vee m^{\prime}}$. Lastly

$$
\sup _{t \in S_{m^{\prime} \vee m},\|t\| \|=1} \sup _{y \in \mathbb{R}}\left|\int_{\mathbb{R}} \frac{t^{*}(-u) e^{i u y} \mathbf{I}_{y \neq 0}}{q_{\Delta} \phi_{\Delta}(u)} d u\right| \leq \sqrt{2 \pi}\left(\int_{I_{m \vee m^{\prime}}} \frac{d u}{\left|q_{\Delta} \phi_{\Delta}(u)\right|^{2}}\right)^{1 / 2} \leq c \frac{\sqrt{m \vee m^{\prime}}}{\Delta}:=M
$$

Thus,

$$
\frac{v}{n} \propto \frac{\sqrt{m \vee m^{\prime}}}{n}, \quad \frac{n H^{2}}{v} \propto \frac{\sqrt{m \vee m^{\prime}}}{\Delta}, \quad \frac{M^{2}}{n^{2}} \propto \frac{m \vee m^{\prime}}{(n \Delta)^{2}}, \quad \frac{n H}{M} \propto \sqrt{n \Delta},
$$

and the Talagrand inequality with $\epsilon^{2}=\frac{1}{4}$ gives the result.
5.5. Proof of Proposition 2.4. Let $F_{k}(\mu \Delta):=(1+\mu \Delta)(\mu \Delta)^{k}$. We have

$$
F_{k}(\tilde{\mu} \Delta)-F_{k}(\mu \Delta)=(\tilde{\mu}-\mu) \Delta\left(\sum_{j=0}^{k-1}(\tilde{\mu} \Delta)^{j}(\mu \Delta)^{k-1-j}+\sum_{j=0}^{k}(\tilde{\mu} \Delta)^{j}(\mu \Delta)^{k-j}\right)
$$

Then, we use inequality (10), which also implies $\mathbb{E}\left(|\tilde{\mu}|^{2 p}\right) \leq C\left(p, \mu_{1}\right)$ to get

$$
\begin{equation*}
\mathbb{E}\left(F_{k}(\tilde{\mu} \Delta)-F_{k}(\mu \Delta)\right)^{2} \leq C\left(k, \mu_{1}, \Delta\right) \frac{\Delta^{2 k}}{n \Delta} \tag{30}
\end{equation*}
$$

where the constant $C\left(k, \mu_{1}, \Delta\right)=C\left(k, \mu_{1}\right)+O(\Delta)$. We write

$$
\hat{f}_{m, K}=\hat{f}_{m}^{(1)}+\hat{f}_{m, K}^{(2)}, \quad \hat{f}_{m}^{(1)}=(1+\tilde{\mu} \Delta) \widehat{g_{m, \Delta}} .
$$

We define

$$
\tilde{f}_{m, K}^{(2)}=\sum_{k=1}^{K}(-1)^{k} F_{k}(\tilde{\mu} \Delta) g_{m, \Delta}^{\star k+1}, \quad f_{m, K}=\sum_{k=0}^{K}(-1)^{k} F_{k}(\mu \Delta) g_{m, \Delta}^{\star} k+1
$$

and

$$
f_{m}^{(1)}=(1+\mu \Delta) g_{m, \Delta}, \quad f_{m, K}^{(2)}=f_{m, K}-f_{m}^{(1)}
$$

By the triangle inequality we have

$$
\begin{gathered}
\mathbb{E}\left(\left\|\hat{f}_{m, K}-f\right\|^{2}\right) \leq 4\left(\mathbb{E}\left(\left\|\hat{f}_{m}^{(1)}-f_{m}^{(1)}\right\|^{2}\right)+\mathbb{E}\left(\left\|\hat{f}_{m, K}^{(2)}-\tilde{f}_{m, K}^{(2)}\right\|^{2}\right)+\mathbb{E}\left(\left\|\tilde{f}_{m, K}^{(2)}-f_{m, K}^{(2)}\right\|^{2}\right)\right. \\
\left.+\left\|f_{m, K}-f_{m}\right\|^{2}\right)+\left\|f_{m}-f\right\|^{2} \\
:=4\left(\mathbb{E}\left(T_{1}+T_{2}+T_{3}\right)+T_{4}\right)+\left\|f_{m}-f\right\|^{2}
\end{gathered}
$$

where $\left\|f_{m}-f\right\|^{2}$ is the usual bias term.
Now we successively study the terms T_{i}, for $i=1, \ldots, 4$.
Let us start by the study of T_{1}. We split it again $T_{1} \leq 3\left(T_{1,1}+T_{1,2}+T_{1,3}\right)$ with

$$
\begin{gathered}
T_{1,1}=\frac{1}{2 \pi}\left(\frac{1+\mu \Delta}{q_{\Delta}}\right)^{2} \int_{-\pi m}^{\pi m}\left|\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right|^{2} d u, T_{1,2}=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left|\frac{1+\tilde{\mu} \Delta}{\tilde{q}_{\Delta}}-\frac{1+\mu \Delta}{q_{\Delta}}\right|^{2}\left|Q_{\Delta}(u)\right|^{2} d u \\
T_{1,3}=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left|\frac{1+\tilde{\mu} \Delta}{\tilde{q}_{\Delta}}-\frac{1+\mu \Delta}{q_{\Delta}}\right|^{2}\left|\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right|^{2} d u
\end{gathered}
$$

As by $(24), \mathbb{E}\left(\left|\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right|^{2}\right) \leq q_{\Delta} / n$, we find

$$
\mathbb{E}\left(T_{1,1}\right) \leq \frac{(1+\mu \Delta)^{2}}{q_{\Delta}} \frac{m}{n}=\frac{(1+\mu \Delta)^{3}}{\mu} \frac{m}{n \Delta}
$$

This term is the main one. Now we prove that the two others are of order less than $O(1 /(n \Delta))$.
It follows from Proposition 2.1 that

$$
\begin{equation*}
\mathbb{E}\left(\left|\frac{1+\tilde{\mu} \Delta}{\tilde{q}_{\Delta}}-\frac{1+\mu \Delta}{q_{\Delta}}\right|^{2 k}\right) \leq C\left(k, \mu_{0}, \mu_{1}\right) \frac{1}{\Delta^{2 k}} \frac{1}{(n \Delta)^{k}} \tag{31}
\end{equation*}
$$

Thus, using (31) with $k=1$, and that $\left|Q_{\Delta}(u)\right| \leq q_{\Delta}\left|f^{*}(u)\right|$, we get

$$
\mathbb{E}\left(T_{1,2}\right) \leq c_{1}\left(\mu_{0}, \mu_{1}\right) \frac{\left(q_{\Delta} / \Delta\right)^{2}}{n \Delta} \frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left|f^{*}(u)\right|^{2} d u \leq \frac{c\left(\mu_{0}, \mu_{1}\right)\|f\|^{2}}{n \Delta}
$$

Moreover, using (24), we have $\mathbb{E}\left(\left|\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right|^{4}\right) \leq c\left(2, \mu_{1}\right)(\Delta / n)^{2}$. Therefore, by the Cauchy-Schwarz Inequality and assuming that $n \Delta \geq 1$ and $m \leq n \Delta$, we obtain that

$$
\mathbb{E}\left(T_{1,3}\right) \leq c\left(\mu_{0}, \mu_{1}\right) \frac{m}{(n \Delta)^{2}} \leq \frac{c\left(\mu_{0}, \mu_{1}\right)}{n \Delta}
$$

Gathering the terms, we have

$$
\mathbb{E}\left(T_{1}\right) \leq 3 \frac{(1+\mu \Delta)^{3}}{\mu} \frac{m}{n \Delta}+\frac{c\left(\mu_{0}, \mu_{1},\|f\|\right)}{n \Delta}
$$

Next we study T_{2}. By Inequality (30), as $1 /(n \Delta) \leq 1$, we get

$$
\begin{aligned}
\mathbb{E}\left(\left\|\hat{f}_{m, K}^{(2)}-\tilde{f}_{m, K}^{(2)}\right\|^{2}\right) & \left.=\mathbb{E}\left(\| \sum_{k=1}^{K}(-1)^{k}\left(F_{k}(\tilde{\mu} \Delta)-F_{k}(\mu \Delta)+F_{k}(\mu \Delta)\right) \widehat{\left(g_{m, \Delta}^{\star k+1}\right.}-g_{m, \Delta}^{\star k+1}\right) \|^{2}\right) \\
& \leq c \sum_{k=1}^{K} \Delta^{2 k} \mathbb{E}\left(\widehat{g_{m, \Delta}^{\star k+1}}-g_{m, \Delta}^{\star k+1} \|^{2}\right)
\end{aligned}
$$

where c depends on K and μ_{1}. From Proposition 2.3, as $m \leq n \Delta$, this term is bounded by

$$
\sum_{k=1}^{K} \Delta^{2 k} c\left(k+1, \mu_{0}, \mu_{1}\right)\left(\frac{m}{(n \Delta)^{k+1}}+\frac{D_{k+1}^{2}}{n \Delta}\|f\|^{2}\right) \leq \frac{c^{\prime}\left(K, \mu_{0}, \mu_{1}\right)}{n \Delta}
$$

Now, to bound T_{3}, we write that, using that $\left|g_{\Delta}^{*}(u)\right| \leq 1 \wedge\left|f^{*}(u)\right|$, for all u,

$$
\begin{aligned}
2 \pi\left\|\tilde{f}_{m, K}^{(2)}-f_{m, K}^{(2)}\right\|^{2} & \leq \int_{-\pi m}^{\pi m}\left|\sum_{k=1}^{K}(-1)^{k}\left(F_{k}(\tilde{\mu} \Delta)-F_{k}(\mu \Delta)\right)\left(g_{\Delta}^{*}(u)\right)^{k+1}\right|^{2} d u \\
& \leq\left\|f^{*}\right\|^{2}\left|\sum_{k=1}^{K}\right| F_{k}(\tilde{\mu} \Delta)-\left.F_{k}(\mu \Delta)\right|^{2}
\end{aligned}
$$

Then, with Inequality (30), we get

$$
\mathbb{E}\left(\left\|\tilde{f}_{m, K}^{(2)}-f_{m, K}^{(2)}\right\|^{2}\right) \leq K\|f\|^{2} \sum_{k=1}^{K} \mathbb{E}\left(\left|F_{k}(\tilde{\mu} \Delta)-F_{k}(\mu \Delta)\right|^{2}\right) \leq c\left(K, \mu_{1}\right) \frac{\|f\|^{2}}{n \Delta}
$$

Thus T_{3} is bounded by a term of order $1 /(n \Delta)$.
Next we turn to T_{4}. We have, using that $\left|g_{\Delta}^{*}(u)\right| \leq 1 \wedge\left|f^{*}(u)\right|$ for all u,

$$
\begin{aligned}
2 \pi\left\|f_{m, K}-f_{m}\right\|^{2} & =\left\|f_{m, K}^{*}-f_{m}^{*}\right\|^{2} \leq \int_{-\pi m}^{\pi m}\left|\sum_{k=K+1}^{\infty}\left(1+\mu_{1} \Delta\right)\left(\mu_{1} \Delta\right)^{k+1}\left(g_{\Delta}^{*}(u)\right)^{k+1}\right|^{2} d u \\
& \leq\left\|f^{*}\right\|^{2}\left(\sum_{k=K+1}^{\infty}\left(1+\mu_{1} \Delta\right)\left(\mu_{1} \Delta\right)^{k+1}\right)^{2} \\
& =\frac{\left(1+\mu_{1} \Delta\right)^{2}}{\left(1-\mu_{1} \Delta\right)^{2}}\left(\mu_{1} \Delta\right)^{2 K+2}\left\|f^{*}\right\|^{2} \leq 2 \pi A\left(\mu_{1} \Delta\right)^{2 K+2}
\end{aligned}
$$

where A is defined in Proposition 2.4. It follows that,

$$
\mathbb{E}\left(\left\|\hat{f}_{m, K}-f\right\|^{2}\right) \leq\left\|f_{m}-f\right\|^{2}+4\left(A\left(\mu_{1} \Delta\right)^{2 K+2}+3 \frac{(1+\mu \Delta)^{3}}{\mu} \frac{m}{n \Delta}+E_{K} \frac{1}{n \Delta}\right)
$$

which is the result of Proposition 2.1.
5.6. Proof of Theorem 2.2. The only term involved in the adaptation is $T_{1,3}$, all the others are bounded independently of m. Thus the above bounds can be used, and $T_{1,3}$ is treated by using Talagrand Inequality applied to the underlying empirical process. The principle is as in Comte et al. (2014), proof of Theorem 4.1, with the use of the set Ω as in the proof of Theorem 2.1. For sake of conciseness, the proof is omitted.
5.7. Proofs of Section 3. We start by stating a useful Lemma.

Lemma 5.3. Assume that [B] (i)-(ii)(p) hold. Then recalling that $\psi=i G_{\Delta} / H_{\Delta}$ (see (4), we have

$$
\mathbb{E}\left(|\widetilde{\psi}(v)-\psi(v)|^{2 p}\right) \leq \frac{\kappa_{p}}{(n \Delta)^{p}} \frac{1+|\psi(v)|^{2 p}}{\left|H_{\Delta}(v)\right|^{2 p}}
$$

Proof of Lemma 5.3. We omit the index Δ for simplicity. We have

$$
\begin{equation*}
\widetilde{\psi}-\psi=i\left(\frac{\hat{G}}{\tilde{H}}-\frac{G}{H}\right)=i(\hat{G}-G)\left(\frac{1}{\tilde{H}}-\frac{1}{H}\right)+i \frac{\hat{G}-G}{H}+i G\left(\frac{1}{\tilde{H}}-\frac{1}{H}\right) \tag{32}
\end{equation*}
$$

so that a bound on (32) follows from bounding $\mathbb{E}\left(|\hat{G}(v)-G(v)|^{2 p}\right)$ and $\mathbb{E}\left(\left|\tilde{H}^{-1}(v)-H^{-1}(v)\right|^{2 p}\right)$ for $p=1,2$.
Clearly

$$
\begin{equation*}
\mathbb{E}\left(|\hat{G}(v)-G(v)|^{2}\right)=\frac{1}{n \Delta^{2}} \operatorname{Var}\left(Y_{1}(\Delta) e^{i v Y_{1}(\Delta)}\right) \leq \frac{\mathbb{E}\left(\left|Y_{1}(\Delta)\right|^{2} / \Delta\right)}{n \Delta} \tag{33}
\end{equation*}
$$

where $\mathbb{E}\left(\left|Y_{1}(\Delta)\right|^{2} / \Delta\right)=\mathbb{E} \Lambda \mathbb{E} \xi^{2}+\Delta \mathbb{E}\left(\Lambda^{2}\right)(\mathbb{E}(\xi))^{2}$. And for general p, the Rosenthal Inequality yields

$$
\begin{align*}
\mathbb{E}\left(|\hat{G}(v)-G(v)|^{2 p}\right) & \leq \frac{C(2 p)}{(n \Delta)^{2 p}}\left\{n 2^{2 p} \mathbb{E}\left(\left|Y_{1}(\Delta)\right|^{2 p}\right)+\left[n \operatorname{Var}\left(Y_{1}(\Delta) e^{i v Y_{1}(\Delta)}\right)\right]^{p}\right\} \\
& \leq c\left(\frac{1}{(n \Delta)^{2 p-1}}+\frac{1}{(n \Delta)^{p}}\right) \tag{34}
\end{align*}
$$

since $[\mathbf{B}](\mathrm{ii})(\mathrm{p})$ holds and $n \Delta \geq 1$. Next the bound on $\mathbb{E}\left(\left|\tilde{H}^{-1}-H^{-1}\right|^{2 p}\right)$ is the following:

$$
\begin{equation*}
\mathbb{E}\left(\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|^{2 p}\right) \leq c_{p} \inf \left((n \Delta)^{-p}|H(v)|^{-4 p},|H(v)|^{-2 p}\right) . \tag{35}
\end{equation*}
$$

The proof of (35) is similar to the proof of Lemma 5.1 and thus is omitted. We conclude using (32), (33), (34) and (35).

Proof of Proposition 3.1. Let

$$
R(u)=\int_{0}^{u}\left(\frac{\hat{G}(v)}{\tilde{H}(v)}-\frac{G(v)}{H(v)}\right) d v .
$$

Then to compute the risk of the estimator, we write:

$$
\left\|\widetilde{f}_{m}-f\right\|^{2}=\left\|f-f_{m}\right\|^{2}+\left\|\widetilde{f}_{m}-f_{m}\right\|^{2}=\left\|f-f_{m}\right\|^{2}+\frac{1}{2 \pi} \int_{-\pi m}^{\pi m}\left|\widetilde{f^{*}}(u)-f^{*}(u)\right|^{2} d u
$$

and

$$
\begin{aligned}
\left|\widetilde{f^{*}}(u)-f^{*}(u)\right|^{2} & \leq\left|\widetilde{f^{*}}(u)-f^{*}(u)\right|^{2} \mathbf{I}_{|R(u)|<1}+\left|\widetilde{f^{*}}(u)-f^{*}(u)\right|^{2} \mathbf{I}_{|R(u)| \geq 1} \\
& \leq\left|\widehat{f^{*}}(u)-f^{*}(u)\right|^{2} \mathbf{I}_{|R(u)|<1}+4 \mathbf{I}_{|R(u)| \geq 1} \\
& \leq\left|f^{*}(u)\right|^{2}|\exp (R(u))-1|^{2} \mathbf{I}_{|R(u)|<1}+4 \mathbf{I}_{|R(u)| \geq 1} \\
& \leq e^{2}\left|f^{*}(u)\right|^{2}|R(u)|^{2} \mathbf{I}_{|R(u)| \leq 1}+4|R(u)| \mathbf{I}_{|R(u)|>1} .
\end{aligned}
$$

So we prove

$$
\begin{equation*}
\mathbb{E}\left(|R(u)|^{2} \mathbb{I}_{|R(u)| \leq 1}\right) \leq \frac{c}{n \Delta}\left(M_{1} \int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}+\left(\int_{0}^{|u|} \frac{|G(v)|}{|H(v)|^{2}} d v\right)^{2}\right) \tag{36}
\end{equation*}
$$

and

$$
\begin{aligned}
\mathbb{E}\left(|R(u)| \mathbb{I}_{|R(u)|>1}\right) \leq c\left\{\left(M_{p}+\right.\right. & \left.\left(\int_{0}^{|u|}\left|\frac{G(v)}{H(v)}\right|^{2} d v\right)^{p}\right)\left(\frac{1}{n \Delta} \int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p} \\
& \left.+\frac{\mathbb{E}\left(\left|Y_{1}(\Delta)\right|^{2 p} / \Delta\right)}{(n \Delta)^{2 p-1}}\left(\int_{0}^{|u|} \frac{d v}{|H(v)|}\right)^{2 p}\right\}
\end{aligned}
$$

with $M_{p}=\left[\left\|G^{\prime}\right\|_{1}^{p}+\mathbb{E}^{1 / 2}\left(Y_{1}^{2 p}(\Delta) / \Delta\right)\right]$.
By decomposition (32), we write that $|R(u)| \leq R_{1}(u)+R_{2}(u)+R_{3}(u)$ with

$$
R_{1}(u)=\left|\int_{0}^{u} \frac{\hat{G}(v)-G(v)}{H(v)} d v\right|, \quad R_{2}(u)=\left|\int_{0}^{u} G(v)\left(\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right) d v\right|
$$

and

$$
R_{3}(u)=\left|\int_{0}^{u}(\hat{G}(v)-G(v))\left(\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right) d v\right|
$$

Let $A_{j}:=\{|R(u)| \leq 1\} \cap\left\{R_{j}(u)=\max _{k \in\{1,2,3\}} R_{k}(u)\right\}$, then

$$
\begin{align*}
\mathbb{E}\left(|R(u)|^{2} \mathbb{I}_{|R(u)| \leq 1}\right) & \leq 9 \mathbb{E}\left(R_{1}^{2}(u) \mathbb{I}_{A_{1}}\right)+9 \mathbb{E}\left(R_{2}^{2}(u) \mathbb{I}_{A_{2}}\right)+\mathbb{E}\left(|R(u)| \mathbb{I}_{A_{3}}\right) \\
& \leq 9 \mathbb{E}\left(R_{1}^{2}(u)\right)+9 \mathbb{E}\left(R_{2}^{2}(u)\right)+3 \mathbb{E}\left(R_{3}(u) \mathbb{I}_{A_{3}}\right) . \tag{38}
\end{align*}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left(R_{1}^{2}(u)\right) & \leq \frac{1}{n \Delta^{2}} \int_{0}^{u} \int_{0}^{u} \frac{\mathbb{E}\left(Y_{1}^{2}(\Delta) e^{i(v-w) Y_{1}(\Delta)}\right)}{H(v) H(-w)} d v d w \\
& \leq \frac{1}{n \Delta}\left(\int_{0}^{u} \int_{0}^{u} \frac{1}{|H(v)|^{2}}\left|G^{\prime}(v-w)\right| d v d w\right)^{1 / 2}\left(\int_{0}^{u} \int_{0}^{u} \frac{1}{|H(w)|^{2}}\left|G^{\prime}(v-w)\right| d v d w\right)^{1 / 2} \\
(39) & \leq \frac{\left\|G^{\prime}\right\|_{1}}{n \Delta} \int_{0}^{u} \frac{d v}{|H(v)|^{2}}
\end{aligned}
$$

Moreover

$$
\begin{align*}
\mathbb{E}\left(R_{2}^{2}(u)\right) & \leq \int_{0}^{u} \int_{0}^{u} G(v) G(-w) \mathbb{E}\left[\left(\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right)\left(\frac{1}{\tilde{H}(-w)}-\frac{1}{H(-w)}\right)\right] d v d w \\
& \leq \frac{c}{n \Delta} \int_{0}^{u} \int_{0}^{u} \frac{|G(v) G(-w)|}{|H(v)|^{2}|H(w)|^{2}} d v d w=\frac{c}{n \Delta}\left(\int_{0}^{u} \frac{|G(v)|}{|H(v)|^{2}} d v\right)^{2} \tag{40}
\end{align*}
$$

Lastly

$$
\begin{align*}
\mathbb{E}\left(R_{3}(u)\right) & \leq \int_{0}^{u} \mathbb{E}^{1 / 2}\left(|\hat{G}(v)-G(v)|^{2}\right) \mathbb{E}^{1 / 2}\left(\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|^{2}\right) d v \\
& \leq c \frac{\mathbb{E}^{1 / 2}\left(Y_{1}^{2}(\Delta) / \Delta\right)}{n \Delta} \int_{0}^{u} \frac{1}{|H(v)|^{2}} d v \tag{41}
\end{align*}
$$

We plug (39)-(41) in (38) and we obtain (36).
Let now $B_{j}:=\{|R(u)|>1\} \cap\left\{R_{j}(u)=\max _{k \in\{1,2,3\}} R_{k}(u)\right\}$. On $B_{j},|R(u)| \leq 3 R_{j}(u)$ and thus $3 R_{j}(u)>1$. Then

$$
\begin{align*}
\mathbb{E}\left(|R(u)| \mathbb{I}_{|R(u)|>1}\right) & \leq 3\left(\mathbb{E}\left(R_{1}(u) \mathbf{I}_{B_{1}}\right)+\mathbb{E}\left(R_{2}(u) \mathbb{I}_{B_{2}}\right)+\mathbb{E}\left(R_{3}(u) \mathbf{I}_{B_{3}}\right)\right) \\
& \leq 9^{p}\left(\mathbb{E}\left(R_{1}^{2 p}(u)\right)+\mathbb{E}\left(R_{2}^{2 p}(u)\right)\right)+3^{p} \mathbb{E}\left(R_{3}^{p}(u) \mathbf{I}_{B_{3}}\right) . \tag{42}
\end{align*}
$$

By applying Rosenthal's inequality and using the bound obtained in (39), we get

$$
\mathbb{E}\left(R_{1}^{2 p}(u)\right) \leq c\left(\left\|G^{\prime}\right\|_{1}^{p}\left(\frac{1}{n \Delta} \int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p}+\frac{\mathbb{E}\left(\left|Y_{1}(\Delta)\right|^{2 p} / \Delta\right)}{(n \Delta)^{2 p-1}}\left(\int_{0}^{|u|} \frac{d v}{|H(v)|}\right)^{2 p}\right) .
$$

For R_{2} we write

$$
\mathbb{E}\left(R_{2}^{2 p}(u)\right) \leq\left(\int_{0}^{|u|}\left(\frac{|G(v)|}{|H(v)|}\right)^{2} d v\right)^{p} \mathbb{E}\left[\left(\int_{0}^{|u|}|H(v)|^{2}\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|^{2}\right)^{p}\right] .
$$

Now we apply the Hölder inequality and inequality (35),

$$
\begin{aligned}
\mathbb{E}\left(R_{2}^{2 p}(u)\right) & \leq\left(\int_{0}^{|u|}\left(\frac{|G(v)|}{|H(v)|}\right)^{2} d v\right)^{p}\left(\int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p-1} \int_{0}^{|u|} \frac{|H(v)|^{4 p}}{|H(v)|^{2}} \mathbb{E}\left(\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|^{2 p}\right) d v \\
& \leq c\left(\int_{0}^{|u|}\left(\frac{|G(v)|}{|H(v)|}\right)^{2} d v\right)^{p}\left(\frac{1}{n \Delta} \int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p}
\end{aligned}
$$

For R_{3} we apply the Hölder Inequality again, and then the Cauchy Schwarz Inequality, (34) and (35), to obtain

$$
\begin{aligned}
\mathbb{E}\left(R_{3}^{p}(u)\right) & \leq\left(\int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p-1} \int_{0}^{|u|} \frac{|H(v)|^{2 p}}{|H(v)|^{2}} \mathbb{E}\left(\left(|\hat{G}(v)-G(v)|\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|\right)^{p}\right) d v \\
& \leq\left(\int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p-1} \int_{0}^{|u|} \frac{|H(v)|^{2 p}}{|H(v)|^{2}} \mathbb{E}^{1 / 2}\left(|\hat{G}(v)-G(v)|^{2 p}\right) \mathbb{E}^{1 / 2}\left(\left|\frac{1}{\tilde{H}(v)}-\frac{1}{H(v)}\right|^{2 p}\right) d v \\
& \leq c \mathbb{E}^{1 / 2}\left(\left|Y_{1}(\Delta)\right|^{2 p} / \Delta\right)\left(\frac{1}{n \Delta} \int_{0}^{|u|} \frac{d v}{|H(v)|^{2}}\right)^{p}
\end{aligned}
$$

Plugging the three bounds in (42) gives (37).

6. Appendix

The Talagrand inequality. The result below follows from the Talagrand concentration inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).
Lemma 6.1. (Talagrand Inequality) Let Y_{1}, \ldots, Y_{n} be independent random variables, let $\nu_{n, Y}(f)=$ $(1 / n) \sum_{i=1}^{n}\left[f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)\right]$ and let \mathcal{F} be a countable class of uniformly bounded measurable functions. Then for $\epsilon^{2}>0$

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\nu_{n, Y}(f)\right|^{2}-2\left(1+2 \epsilon^{2}\right) H^{2}\right]_{+} \leq \frac{4}{K_{1}}\left(\frac{v}{n} e^{-K_{1} \epsilon^{2} \frac{2 H^{2}}{v}}+\frac{98 M^{2}}{K_{1} n^{2} C^{2}\left(\epsilon^{2}\right)} e^{-\frac{2 K_{1} C\left(\epsilon^{2}\right) \epsilon \frac{n H}{7 \sqrt{2}}}{M}}\right),
$$

with $C\left(\epsilon^{2}\right)=\sqrt{1+\epsilon^{2}}-1, K_{1}=1 / 6$, and

$$
\sup _{f \in \mathcal{F}}\|f\|_{\infty} \leq M, \quad \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\nu_{n, Y}(f)\right|\right] \leq H, \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Var}\left(f\left(Y_{k}\right)\right) \leq v
$$

By standard density arguments, this result can be extended to the case where \mathcal{F} is a unit ball of a linear normed space, after checking that $f \mapsto \nu_{n}(f)$ is continuous and \mathcal{F} contains a countable dense family.

Lemma 6.2. Consider c, s nonnegative real numbers, and γ a real such that $2 \gamma>-1$ if $c=0$ or $s=0$. Then, for all $m>0, \int_{-m}^{m}\left(x^{2}+1\right)^{\gamma} \exp \left(c|x|^{s}\right) d x \approx m^{2 \gamma+1-s} e^{c m^{s}}$, and if in addition $2 \gamma>1$ if $c=0$ or $s=0, \int_{m}^{\infty}\left(x^{2}+1\right)^{-\gamma} \exp \left(-c|x|^{s}\right) d x \approx m^{-2 \gamma+1-s} e^{-c m^{s}}$.

The proof of this lemma is based on integration by parts and is omitted. See also Lemma 2 p. 35 in Butucea and Tsybakov (2008a,b).

Appendix A. Supplementary appendix

A.1. Proof of Lemma 5.1. Below, c is a constant which may change from line to line.

Let $B_{n}=\left(\left|\widehat{\phi}_{\Delta}(u)\right| \geq k / \sqrt{n}\right)$. We write

$$
\frac{1}{\widetilde{\phi_{\Delta}}(u)}-\frac{1}{\phi_{\Delta}(u)}=A_{1}+A_{2}
$$

with

$$
A_{1}=\left(\frac{1}{\widehat{\phi}_{\Delta}(u)}-\frac{1}{\phi_{\Delta}(u)}\right) \mathbf{I}_{B_{n}}, \quad A_{2}=-\frac{1}{\phi_{\Delta}(u)} \mathbf{I}_{B_{n}^{c}}
$$

We have:

$$
\left|A_{1}\right| \leq \frac{\sqrt{n}\left|\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right|}{k\left|\phi_{\Delta}(u)\right|} .
$$

By the Rosenthal inequality, for all $q \geq 1, \mathbb{E}\left|\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right|^{2 q} \leq 3 / n^{q}$. Therefore, $\mathbb{E}\left|A_{1}\right|^{2 p} \leq$ $\left(3 /\left(k\left|\phi_{\Delta}(u)\right|\right)^{2 p}\right)$. Obviously, $\mathbb{E}\left|A_{2}\right|^{2 p} \leq 1 /\left|\phi_{\Delta}(u)\right|^{2 p}$. Now, we proceed to find the other bound. We have $A_{1}=A_{1}^{\prime}+A_{1}^{\prime \prime}$ with

$$
A_{1}^{\prime}=\frac{\left(\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right)^{2}}{\phi_{\Delta}^{2}(u) \widehat{\phi}_{\Delta}(u)} \mathbb{I}_{B_{n}}, \quad A_{1}^{\prime \prime}=\frac{\phi_{\Delta}(u)-\widehat{\phi}_{\Delta}(u)}{\phi_{\Delta}^{2}(u)} \mathbb{I}_{B_{n}} .
$$

We have:

$$
\mathbb{E}\left|A_{1}^{\prime}\right|^{2 p} \leq \frac{1}{\left|\phi_{\Delta}(u)\right|^{4 p}}\left(\frac{\sqrt{n}}{k}\right)^{2 p} \frac{3}{n^{2 p}}=\frac{3}{k^{2 p}} \frac{n^{-p}}{\left|\phi_{\Delta}(u)\right|^{4 p}}, \quad \mathbb{E}\left|A_{1}^{\prime \prime}\right|^{2 p} \leq 3 \frac{n^{-p}}{\left|\phi_{\Delta}(u)\right|^{4 p}} .
$$

Therefore, we also have $\mathbb{E}\left|A_{1}\right|^{2 p} \leq c n^{-p} /\left|\phi_{\Delta}(u)\right|^{4 p}$. Now, we study the second inequality for the term A_{2}. First note that

$$
B_{n}^{c} \subset\left(\left|\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right| \geq\left|\phi_{\Delta}(u)\right|-k / \sqrt{n}\right) .
$$

Moreover, $\left|\phi_{\Delta}(u)\right|-k / \sqrt{n}>\left|\phi_{\Delta}(u)\right| / 2 \Longleftrightarrow\left|\phi_{\Delta}(u)\right|>2 k / \sqrt{n}$. Thus,

$$
\begin{aligned}
\mathbb{P}\left(B_{n}^{c}\right) & \leq \mathbb{P}\left(\left|\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right| \geq \frac{\left|\phi_{\Delta}(u)\right|}{2}\right)+\mathbb{I}_{\left(\left|\phi_{\Delta}(u)\right| \leq 2 k / \sqrt{n}\right)} \\
& \leq\left(\frac{2}{\left|\phi_{\Delta}(u)\right|}\right)^{2 p} \mathbb{E}\left|\widehat{\phi}_{\Delta}(u)-\phi_{\Delta}(u)\right|^{2 p}+\mathbf{I}_{\left(\left|\phi_{\Delta}(u)\right|^{-1} \geq \sqrt{n} / 2 k\right)} \\
& \leq c\left(\frac{2}{\left|\phi_{\Delta}(u)\right|}\right)^{2 p} n^{-p}+\left(\frac{2 k}{\sqrt{n}}\right)^{2 p}\left|\phi_{\Delta}(u)\right|^{-2 p} .
\end{aligned}
$$

Thus $\mathbb{P}\left(B_{n}^{c}\right) \leq c n^{-p} /\left|\phi_{\Delta}(u)\right|^{2 p}$. Finally, we also have:

$$
\begin{equation*}
\mathbb{E}\left|A_{2}\right|^{2 p} \leq c \frac{n^{-p}}{\left|\phi_{\Delta}(u)\right|^{4 p}} \tag{43}
\end{equation*}
$$

So the proof of Lemma 5.1 is complete.

A.2. Proof of Proposition 2.3.,

We first prove that, for all $v \geq 1$ and $\mu \in\left[\mu_{0}, \mu_{1}\right]$ with $\mu_{1} \Delta<1$, we have

$$
\begin{equation*}
\sup _{u \in \mathbb{R}} \mathbb{E}\left(\widetilde{g_{\Delta}^{*}}(u)-\left.g_{\Delta}^{*}(u)\right|^{2 v}\right) \leq \frac{C\left(v, \mu_{0}, \mu_{1}\right)}{(n \Delta)^{v}} \tag{44}
\end{equation*}
$$

We will use the following elementary inequality.
Lemma A.1. Let $z=r e^{i \theta}$ with $r \leq 1$, and $\hat{z}=\rho e^{i \omega}, \tilde{z}=e^{i \omega}$ with $\rho>1$. Then $|\tilde{z}-z| \leq|\hat{z}-z|$.

It follows from Lemma A. 1 above that

$$
\left|\widetilde{g_{\Delta}^{*}}(u)-g_{\Delta}^{*}(u)\right| \leq\left|\widehat{g_{\Delta}^{*}}(u)-g_{\Delta}^{*}(u)\right|=\left|T_{1}(u)\right|+\left|T_{2}(u)\right|
$$

with

$$
T_{1}(u)=\frac{1}{\tilde{q}_{\Delta}}\left(\hat{Q}_{\Delta}(u)-Q_{\Delta}(u)\right), \quad T_{2}(u)=Q_{\Delta}(u)\left(\frac{1}{\tilde{q}_{\Delta}}-\frac{1}{q_{\Delta}}\right)
$$

As $q_{\Delta} \leq \mu_{1} \Delta /\left(1+\mu_{1} \Delta\right)$ and $\tilde{q}_{\Delta}^{-1} \leq 2\left(\mu_{0} \Delta+1\right) /\left(\mu_{0} \Delta\right)$, using Inequality (24), we get for all u,

$$
\mathbb{E}\left(\left|T_{1}(u)\right|^{2 v}\right) \leq \frac{C\left(v, \mu_{0}, \mu_{1}\right)}{(n \Delta)^{v}}
$$

Second, as $\left|Q_{\Delta}(u)\right| \leq q_{\Delta}$, we obtain by Proposition 2.1, for all $v \geq 1$, and for all u,

$$
\mathbb{E}\left(\left|T_{2}(u)\right|^{2 v}\right) \leq\left(\frac{q_{\Delta}}{\Delta}\right)^{2 v} \frac{C\left(v, \mu_{0}, \mu_{1}\right)}{(n \Delta)^{v}}
$$

This gives (44).
Now we follow the lines of Chesneau et al. (2012). For $|v| \leq 1$ and $|w| \leq 1$, we have for any $k \geq 1$,

$$
\left|w^{k}-v^{k}\right|=\left|(w-v)^{k}+\sum_{j=1}^{k-1}\binom{k}{j} v^{j}(w-v)^{k-j}\right| \leq|w-v|^{k}+|v| \sum_{j=1}^{k-1}\binom{k}{j}|w-v|^{k-j}
$$

Thus, $\left|w^{k}-v^{k}\right|^{2} \leq 2\left(|w-v|^{2 k}+D_{k}^{2}|v|^{2}|w-v|^{2}\right)$. We apply this inequality for $w=\widetilde{g_{m, \Delta}^{*}}(u), v=$ $g_{m, \Delta}^{*}(u)$ and use (44) to obtain:

$$
\left.\mathbb{E} \mid \widetilde{\left(g_{m, \Delta}^{*}\right.}(u)\right)^{k}-\left.\left(g_{m, \Delta}^{*}(u)\right)^{k}\right|^{2} \leq 2\left(\frac{C\left(k, \mu_{0}, \mu_{1}\right)}{(n \Delta)^{k}}+D_{k}^{2}\left|g_{\Delta}^{*}(u)\right|^{2} \frac{C\left(1, \mu_{0}, \mu_{1}\right)}{n \Delta}\right)
$$

Finally, the Plancherel theorem and Inequality (16) give

$$
\begin{aligned}
\mathbb{E}\left(\left\|\widehat{g_{m, \Delta}^{\star k}}-g_{m, \Delta}^{\star k}\right\|^{2}\right) & =\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} \mathbb{E}\left(\left|\left(\widetilde{g_{m, \Delta}^{*}}(u)\right)^{k}-\left(g_{m, \Delta}^{*}(u)\right)^{k}\right|^{2}\right) d u \\
& \leq c\left(k, \mu_{0}, \mu_{1}\right)\left(\frac{m}{(n \Delta)^{k}}+D_{k}^{2} \frac{\|f\|^{2}}{n \Delta}\right)
\end{aligned}
$$

This ends the proof of Proposition 2.3.
A.3. Table of \mathbb{L}^{2}-risks in semi-parametric methods 1 and 2. Because of computational limitations, we only make 100 repetitions (instead of 1000) when $\Delta=0.01$ (first columns of Tables 3, 4).

Δ	0.01	0.1	0.5	0.9	1	2
n	20000	2000	400	220	200	100
$\bar{n}_{\neq 0}$	200	181	133	104	99	66
L_{2} Risk	0.14	$6.2 \cdot 10^{-3}$	$3.9 \cdot 10^{-3}$	$5.3 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$
	$\left(5.9 \cdot 10^{-3}\right)$	$\left(2.8 \cdot 10^{-3}\right)$	$\left(2.6 \cdot 10^{-3}\right)$	$\left(4.8 \cdot 10^{-3}\right)$	$\left(5.7 \cdot 10^{-3}\right)$	(0.06)
	0.01	0.25	0.29	0.29	0.29	0.29
n	100000	10000	2000	1110	1000	500
$\bar{m}_{\neq 0}$	990	908	666	526	499	333
L_{2} Risk	0.014	$1.1 \cdot 10^{-3}$	$9.1 \cdot 10^{-4}$	$1.4 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$3.5 \cdot 10^{-3}$
	(0.002)	$\left(5.0 \cdot 10^{-4}\right)$	$\left(5.8 \cdot 10^{-4}\right)$	$\left(1.6 \cdot 10^{-3}\right)$	$\left(1.7 \cdot 10^{-3}\right)$	$\left(5.0 \cdot 10^{-3}\right)$
	0.21	0.34	0.37	0.36	0.36	0.33
n	-	50000	10000	5550	5000	2500
$\bar{m}_{\neq 0}$	-	4545	3333	2969	2500	1666
L_{2} Risk	-	$2.4 \cdot 10^{-4}$	$2.2 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$	$3.7 \cdot 10^{-4}$	$9.2 \cdot 10^{-4}$
	-	$\left(9.5 \cdot 10^{-5}\right)$	$\left(1.3 \cdot 10^{-4}\right)$	$\left(2.3 \cdot 10^{-4}\right)$	$\left(2.9 \cdot 10^{-4}\right)$	$\left(1.1 \cdot 10^{-3}\right)$
	-	0.24	0.43	0.42	0.42	0.39
	-					

TABLE 3. Mean of the \mathbb{L}_{2}-risks for the semi-parametric method 1 with $\Lambda \sim \mathcal{E}(1)$ (standard deviation in parenthesis) and f is $\mathcal{N}(0,3) ; \bar{n}_{\neq 0}$ is the mean of nonzero data; \bar{m} is the mean of selected \hat{m} 's.

Δ	0.01	0.1	0.5	0.9	1
n	20000	2000	400	220	200
$\bar{n}_{\neq 0}$	197	183	132	104	100
K	1	1	3	25	50
L_{2} Risk	$1.6 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$	$3.8 \cdot 10^{-3}$	$2.6 \cdot 10^{-2}$	$1.5 \cdot 10^{16}$
$\overline{\hat{m}}_{K}$	$\left(1.3 \cdot 10^{-3}\right)$	$\left(1.3 \cdot 10^{-3}\right)$	$\left(2.9 \cdot 10^{-3}\right)$	$\left(4.7 \cdot 10^{-2}\right)$	$\left(5.0 \cdot 10^{17}\right)$
	0.36	0.35	0.30	0.25	0.24
n	100000	10000	2000	1110	1000
$\bar{n}_{\neq 0}$	992	910	667	525	499
K	1	1	4	32	50
L_{2} Risk	$4.4 \cdot 10^{-4}$	$4.6 \cdot 10^{-4}$	$9.4 \cdot 10^{-4}$	$5.4 \cdot 10^{-3}$	$2.3 \cdot 10^{3}$
	$\left(3.5 \cdot 10^{-2}\right)$	$\left(3.1 \cdot 10^{-4}\right)$	$\left(6.6 \cdot 10^{-4}\right)$	$\left(3.5 \cdot 10^{-2}\right)$	$\left(3.1 \cdot 10^{4}\right)$
\bar{m}_{K}	0.44	0.42	0.38	0.35	0.34

TABLE 4. Mean of the \mathbb{L}_{2}-risks for the semi-parametric method 2 with $\Lambda \sim \mathcal{E}(1)$ (standard deviation in parenthesis) and f is $\mathcal{N}(0,3) ; \bar{n}_{\neq 0}$ is the mean of nonzero data; $\overline{\hat{m}}$ is the mean of selected \hat{m}_{K} 's.

[^0]: ${ }^{1}$ Université Paris Descartes, MAP5, UMR CNRS 8145.
 ${ }^{2}$ Rostock Universität.

