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SIEGEL–VEECH CONSTANTS AND VOLUMES OF STRATA OF

MODULI SPACES OF QUADRATIC DIFFERENTIALS

ELISE GOUJARD

Abstract. We present an explicit formula relating volumes of strata of mero-
morphic quadratic differentials with at most simple poles on Riemann sur-
faces and counting functions of the number of flat cylinders filled by closed
geodesics in associated flat metric with singularities. This generalizes the re-
sult of Athreya, Eskin and Zorich in genus 0 to higher genera.

1. Introduction

1.1. Cylinders and saddle connections on half-translation surfaces. Amero-
morphic quadratic differential q with at most simple poles on a Riemann surface
S of genus g defines a flat metric on S with conical singularities. If q is not the
global square of a holomorphic 1-form on S, the metric has a non-trivial linear
holonomy group, and in this case (S, q) is called a half-translation surface. In this
paper we consider only quadratic differentials satisfying the previous condition. If
α = {α1, . . . , αn} ⊂ {−1} ∪ N is a partition of 4g − 4, Q(α) denotes the moduli
space of pairs (S, q) as above, where q has exactly n singularities of orders given
by α. It is a stratum in the moduli space Qg of pairs (S, q) with no additional
constraints on q.

In the following we will refer to a half-translation surface (S, q) simply as S.
A saddle connection on S is a geodesic segment on S joining a pair of conical

singularities or a singularity to itself without any singularities in its interior. Note
that maximal flat cylinders filled by parallel regular closed geodesics have their
boundaries composed by one or several parallel saddle connections. In this paper
we will evaluate the number of such cylinders on S in terms of the volumes of some
strata, using the study of saddle connections by Masur and Zorich in [MZ].

1.2. Rigid collections of saddle connections. A saddle connection persists un-
der any small deformation of S inside the stratum Q(α). Moreover Masur and
Zorich noticed in [MZ] that in some cases any small deformation which shortens
a specific saddle connection shortens also some other saddle connections. More
precisely, they give the following result (Proposition 1 of [MZ]):

Proposition 1 (Masur-Zorich). Let {γ1, . . . , γm} be a collection of saddle connec-
tions on a half-translation surface S. Then any sufficiently small deformation of S
inside the stratum preserves the proportions |γ1| : |γ2| : · · · : |γm| of the lengths of

the saddle connections if and only if the saddle connections are ĥomologous.

Roughly two saddle connections are ĥomologous if they define the same anti-
invariant cycle in the orientation double cover. The precise definition will be recalled

in § 2.1. In particular two ĥomologous saddle connections are parallel with ratios
of lengths equal to 1 or 2.
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The geometric types of possible maximal collections of ĥomologous saddle con-
nections γ = {γ1, . . . , γm} on S are called configurations of saddle connections. Ma-
sur and Zorich classified all configurations of saddle connections in [MZ] in terms
of combinatorial data.

We assume in the sequel that S belongs to a connected stratum (unless the non
connectedness is stated explicitly), and we will speak indifferently about configura-
tions for the surface S or for the stratum Q(α), the second means that we look at
all possible configurations on almost every surface S ∈ Q(α).

We are interested in collections of ĥomologous saddle connections, such that some
of the saddle connections bound at least one cylinder filled by parallel regular closed
geodesics. We refer to the geometric type of these collections as “configurations
containing cylinders” or “configurations with cylinders”.

It is proved in [MZ] that such cylinders have in fact each of their two boundaries
composed by exactly one or two saddle connections in the collection, and that if
there are several cylinders in the configuration, the lengths of their waist curves
are either the same or have the ratio 1:2. Namely, if a cylinder has at least one
boundary component composed by two saddle connections, its width is twice the
width of the cylinders which have each of their boundary components composed
by a single saddle connection. We will refer to cylinders of the first type as “thick
cylinders” and to cylinders of the second type as “thin cylinders”.

Let γ be a maximal collection of ĥomologous saddle connections on S. Then
the complimentary region of these saddle connections and the cylinders bounded
by these saddle connections is the union of some surfaces with boundaries. Each
of them might be obtained by a specific surgery from a flat surface belonging to a
stratum Q(αi) or H(βj). The union of these strata Q(α′) = ∪i,jQ(αi) ∪ H(βj) is
called the boundary stratum for the configuration C. This denomination is mean-
ingful: the boundary stratum corresponds to the degeneration of the stratum Q(α)
as the lengths of the saddle connections in the collection tend to 0.

1.3. Counting saddle connections. Let S be a half-translation surface in a con-
nected stratum Q(α), and C a configuration with cylinders on S. It means that in

some given direction, there is a collection of ĥomologous saddle connections of type
C on S. Note that by results of [EM] in many other directions, one can usually find

another collection of ĥomologous saddle connections of same type C.
We introduce N(S, C, L) the number of directions on S in which we can find a

collection of saddle connections of type C, with the length of the smallest saddle
connection smaller than L. Since we are interested in cylinders we introduce also
Ncyl(S, C, L) that counts each appearance of the configuration C with weight equal
to the number of the cylinders of width smaller than L, and Narea(S, C, L) that
counts each appearance of the configuration C with weight equal to the area of the
cylinders of width smaller than L.

For each of these numbers, we introduce the corresponding Siegel–Veech con-
stant, that gives the asymptotic of these numbers as L goes to infinity:

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2

Eskin and Masur showed in [EM] that these constants do not depend on S for
almost every S in the connected stratum Q(α). Combining these results with the
results of Veech ([Ve]), one concludes that all these constants are strictly positive.
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1.4. Application of Siegel–Veech constants. One of the principal reasons, why
the Siegel–Veech constants are more and more intensively studied during the last
years (see [AEZ1], [Ba1], [Ba2], [BG], [EKZ], [Vo]) is the relation between them
and the Lyapunov exponents of the Hodge bundle along the Teichmüller flow: the
key formula of [EKZ] expresses the sum of the positive Lyapunov exponents for any
stratumQ(α) as a sum of a very explicit rational function in α and the Siegel–Veech
constant carea(Q(α)). The Lyapunov exponents are closely related to the deviation
spectrum of measured foliations on individual flat surfaces, see [Fo1], [Fo2], [Zo2],
[Zo3], which opens applications to billiards in polygons, interval exchanges, etc.

A recent breakthrough of A. Eskin and M. Mirzakhani provides, in particular,
new tools allowing to prove that the SL(2,R)-orbit closure of certain individual flat
surfaces is an entire stratum. By the theorem of J. Chaika and A. Eskin [CkE],
almost all directions for such a flat surface are Lyapunov-generic. This allows to
cumulate all the technology mentioned above to compute, for example, the diffusion
rate of billiards with certain periodic obstacles. The final explicit answer (as 2/3
for the diffusion rate in the windtree model studied in [DHL]) is certain Lyapunov
exponent as above. This kind of quantitative answers or estimates are often reduced
to computation of the appropriate Siegel–Veech constant.

The Konsevich formula (see [K]) for the sum of the Lyapunov exponents over
a Teichmüller curve and recent results of S. Filip [Fi] showing that every stratum
is a quasiprojective variety suggest that an adequate intersection theory of the
strata might provide algebro-geometric tools to evaluate Siegel–Veech constants (see
also [KtZg] in this connection). However, such intersection theory is not developed
yet, and we are limited to analytic tools in our evaluation of Siegel–Veech constants.

1.5. Principal results. Now we are ready to state the main theorem of this paper.

Theorem 1. Let C be an admissible configuration for a connected stratum Q(α) of
quadratic differentials. Let q1 denote the number of thin cylinders, q2 the number of
thick cylinders in the configuration C, and q = q1+q2 the total number of cylinders.
Assume that the boundary stratum Q(α′) is non empty, and q ≥ 1. Then the
Siegel–Veech constants associated to C are the following:

c(C) =
M

2q+2

(dimC Q(α′)− 1)!

(dimC Q(α) − 2)!

VolQ1(α
′)

VolQ1(α)
(1)

ccyl(C) =

(

q1 +
1

4
q2

)

c(C)(2)

carea(C) =
1

dimC Q(α)− 1
ccyl(C)(3)

where M =
MsMc

Mt
and Mc, Mt, Ms are combinatorial constants depending only

on the configuration C, explicitly given by equations (8), (11) and (18).

When the boundary stratum is empty, the formulae are simpler and given in
§3.3.4.

This theorem is proven in section 3.3. Note that these formulae coincide in genus
0 with formulae of [AEZ1], for the two configurations containing cylinders (named
“pocket” and “dumbell” in the article).
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The ratio
carea(C)
ccyl(C)

=
1

dimC Q(α)− 1
can be interpreted as the mean area of a

cylinder in the configuration C. Note that it depends only on the dimension of the
ambient stratum.

For a fixed stratum Q(α) consider all admissible configurations, and denote
qmax(α) the maximal number of cylinders for all these configurations. We evaluate

this number in section 5.2. The ratio
qmax(α)

dimC(Q(α)) − 1
represents the maximum

mean total area of the cylinders in stratum Q(α).

Proposition 2. We have

max
α∈Π(4g−4+k)

qmax(α ∪ {−1k})
2g − 3 + ℓ(α) + k

kfixed−−−−→
g→∞

1

3
gfixed−−−−→
k→∞

0

where Π(4g− 4+k) denotes the set of partitions of 4g− 4+k and l(α) is the length
of the partition α. Furthermore for any genus g and number of poles k the bound
is achieved for α ∈ Πk ⊔ Π4(4g − 4), where Π4(4g − 4) denote the set of partitions
of 4g − 4 using only 4’s.

1.6. Historical remarks. The Siegel–Veech constants for the strata of Abelian dif-
ferentials were evaluated in the paper [EMZ]; the relations between various Siegel–
Veech constants were studied in [Vo] and some further ones in a recent paper [BG].
The computation in [EMZ] involves a combination of rather involved combinatorial
and geometric constructions. To test the consistence of their theoretical predic-
tions numerically, the authors of [EMZ] compare the formulae for the Lyapunov
exponents expressed in terms of the Siegel–Veech constants (reduced, in turn, to
combinations of volumes of the boundary strata) with numerics provided by ex-
periments with the Lyapunov exponents. These tests are based, in particular, on
the results of A. Eskin and A. Okounkov [EOk] providing the explicit values of the
volumes of all strata of Abelian differentials in small genera.

The description of combinatorial geometry of configurations of saddle connec-
tions for the strata of quadratic differentials is performed in the paper of H. Masur
and A. Zorich [MZ]; for the hyperelliptic components and for strata in genus zero
such description is given in the paper of C. Boissy [Bo].

The evaluation of the corresponding Siegel–Veech constants in genus zero was
recently performed by J. Athreya, A. Eskin, and A. Zorich [AEZ1]; see also the
related paper [AEZ2]. The results were also verified by computer experiments with
Lyapunov exponents combined with the knowledge of the volumes of the strata of
quadratic differentials in genus zero. (The authors prove in [AEZ1] an extremely
simple explicit formula for such volumes in genus zero conjectured by M. Kontse-
vich.)

In the current paper we treat the strata of quadratic differentials in arbitrary
genus. We should point out that we are currently very limited in numerical tests
of the suggested formulae. In the contrast to the strata of Abelian differentials the
analogous results of A. Eskin, A. Okounkov, and R. Pandharipande [EOPa] do not
provide explicit values for the volumes of the strata of quadratic differentials. This
is why we have included in this paper a straightforward evaluation of volumes of
certain strata, which allows to obtain at least some exact values of Siegel–Veech
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constants for the strata of quadratic differentials away from genus zero, and to show
that our formulae for Siegel–Veech constants are consistent with numerics coming
from Lyapunov exponents of the Hodge bundle over the Teichmüller flow.

1.7. Structure of the paper. The paper is divided into two parts. The first
part, theoretical, gives the proof of Theorem 1, and develops the results on a spe-
cial family of strata: Q(1k,−1l). The first part ends with the extension of some
geometric results proved in [BG] for the strata of Abelian differentials to the strata
of quadratic differentials.

The computations of this first part generalize the computations presented in the
articles [EMZ], and [AEZ1], but in higher genus there is a huge distance between the
theory and getting exact values of Siegel–Veech constants, because the techniques
involve some phenomenons of higher complexity. This is why we present in a second
part all pragmatical computations.

So the second part of this paper is devoted to the computation of the values of the
volumes of certain strata and of the hyperelliptic components of strata. Since the
values of the corresponding Siegel–Veech constants are known, the computed values
of volumes enable us to check that the formulae of the first part are coherent. This
checking is primordial since the choice of the normalization for the volume and the
symmetries of high complexity for the configurations affect each step of the com-
putations. In the Abelian case this checking has been done using numerical values
provided by [EOk], but for the case of quadratic differentials obtaining numerical
values of volumes is still work in progress. So our hope is also that the computed
values of this article will be used as test values for the future effective algorithm
giving approximated values of volumes of strata of quadratic differentials.

1.8. Acknowledgments. I wish to thank my advisor Anton Zorich, for his guid-
ance and support during the preparation of this paper, and for providing me nu-
merical data on Lyapunov exponents. I am grateful to Alex Eskin to letting me
use his program on configurations to check the computations of this paper. I thank
Corentin Boissy for pointing me out some symmetry issues, Julien Courtiel for help-
ful discussions about combinatorial maps, and Rodolfo Rı́os-Zertuche, Pascal Hu-
bert, Samuel Lelièvre and Martin Möller for useful discussions about volumes. I
wish to thank Max Bauer for many helpful discussions related to Siegel–Veech con-
stants. I thank ANR GeoDyM for financial support.

Part 1. Siegel–Veech constants

In this part we first recall the prerequisites and the general method of [EMZ] to
compute Siegel–Veech constants. In section 3 we prove Theorem 1. Then we apply
our results in § 4 to the family of strata Q(1k,−1l). In this case we can give very
explicitly the constant M which appears in Theorem 1. Finally in the last section
of this part we extend some geometric results proven in [BG] in the case of Abelian
differentials.

2. Preliminaries

2.1. Ĥomologous saddle connections. We precise here from [MZ] the notion of

ĥomologous saddle connections.
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Recall that any flat surface (S, q) in Q(α) admits a canonical ramified double

cover Ŝ
p→ S such that the induced quadratic differential on Ŝ is a global square of

an Abelian differential, that is p∗q = ω2 and (Ŝ, ω) ∈ H(α̂). Let Σ = {P1, . . . Pn}
denote the singular points of the quadratic differential on S, and Σ̂ = {P̂1, . . . P̂N}
the singular points of the Abelian differential ω on Ŝ. Note that the pre-images
of poles Pi are regular points of ω so do not appear in the list Σ̂. The subspace
H1

−(Ŝ, Σ̂;C) antiinvariant with respect to the action of the hyperelliptic involution
provides local coordinates in the stratum Q(α) in the neighbourhood of S.

Let γ be a saddle connection on S. We denote γ′ and γ′′ its two lifts on Ŝ.
If [γ] = 0 downstairs, then [γ′] + [γ′′] = 0 upstairs, and in this case we define
[γ̂] := [γ′]. In the other case we have [γ′] + [γ′′] 6= 0 and we define [γ̂] := [γ′]− [γ′′].
We obtain an element of H1

−(Ŝ, Σ̂;C).

Then two saddle connections γ1 and γ2 are said to be ĥomologous if [γ̂1] = [γ̂2]

in H1(Ŝ, Σ̂,Z), under an appropriate choice of orientations of γ1, γ2.

2.2. Configurations of saddle connections. A configuration is one of the geo-

metric type of all possible maximal collections of ĥomologous saddle connections.
We explain here precisely which informations characterize the geometric type of a
collection (Definition 3 of [MZ]). Given such a collection of saddle connections on a
surface S, cutting along these saddle connections will give a union of surfaces with
boundaries. These surfaces can be either flat cylinders, or surfaces obtained by a
surgery from a surface of trivial or non trivial holonomy. These surfaces are called
boundary surfaces. We record the genus and the order of the singularities of all
these surfaces. We record also which type of surgery is applied to which singularity
on each surface with the precise angles. Finally we record the way the surfaces are
glued in the initial surface. All this information characterizes a configuration of

ĥomologous saddle connections.

2.3. Graphs of configurations. We recall here briefly how the graphs introduced
by Masur and Zorich in [MZ] encode all combinatorial information about a config-
uration. Let S be a half-translation and γ a saddle connection of configuration C.
The graph of the configuration C is given by the following procedure: associate to
each of the boundary surfaces a vertex in the graph, with the following symbolic: a
vertex ⊕ represents a surface of trivial holonomy, a vertex ⊖ a surface of non trivial
holonomy, and a vertex ◦ a cylinder. Then there is an edge between two vertices
if the boundaries of the corresponding surfaces share a common saddle connection.
At this stage we obtain a graph described by Figure 3 in [MZ].

The surgeries performed on each surface are represented by local ribbon graphs
belonging to the list described in Figure 6 of [MZ]. These local graphs are decorated
with numbers ki which are the numbers of horizontal geodesic rays emerging from
the zeroes on which we perform the surgery, in an angular sector delimited by two

ĥomologous saddle connections. The reunion of these local ribbon graphs forms
globally a ribbon graph that can be drawn on the graph giving the organization of
the surfaces. The boundary of this ribbon graph has several connected components,
each of them represents a newborn zero. To compute the order of a newborn zero,
one can count the number of geodesic rays emerging from this point, that is, sum
all the ki’s met when one goes along the connected component of the boundary of
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the ribbon graph corresponding to the newborn zero. The cone angle around this
point is then π

∑

i(ki + 1). See Figure 7 in [MZ] for an example.

2.4. General strategy for the computation of Siegel–Veech constants. We
recall here the sketch of the general method developed in [EMZ] to evaluate Siegel–
Veech constants in the Abelian case, transposed to the quadratic case in genus 0 in
[AEZ1].

Let VC(S) be the set of holonomy vectors of saddle connections on S of type C.
The number of configurations C in S such that the length of the ĥomologous saddle
connections is bounded is then

N(S, C, L) = 1

2
|VC(S) ∩B(0, L)|,

where the factor 1
2 compensates the fact that the saddle connections are not oriented

and so their holonomy vectors are defined up to a sign. If q is the number of cylinders
in the configuration and q1 the number of “thin” cylinders, we define as well

Ncyl(S, C, L) =
1

2

(

q

∣
∣
∣
∣
VC(S) ∩B

(

0,
L

2

)∣
∣
∣
∣
+ q1

∣
∣
∣
∣
VC(S) ∩ A

(
L

2
, L

)∣
∣
∣
∣

)

,

with A
(
L
2 , L

)
= B(0, L) \B

(
0, L

2

)
. Note that Ncyl(S, C, L) counts each realization

of configuration C with weight the number of cylinders of width smaller than L: if
the width of the thin cylinders is smaller than L/2 then all the q cylinders have
their width smaller than L, if the width of the thin cylinders is comprised between
L/2 and L, then the thick cylinders do not count.

Simplifying the last expression we get

(4) Ncyl(S, C, L) = q2N(S, C, L/2) + q1N(S, C, L)
where q2 is the number of thick cylinders (q = q1 + q2).

Finally we define

Narea(S, C, L) =
1

2

∑

v∈VC(S)∩B(0,L)

A(v)

where A(v) is the area of the cylinders of width smaller than L among those as-
sociated to the saddle connections of type C and holonomy vector ±v. Note that
Narea(S, C, L) weights only the cylinders which are counted by Ncyl(S, C, L).
Convention 1. Following [AEZ1] we denote Q1(α) the hypersurface in Q(α) of flat
surfaces of area 1/2 such that the area of the double cover is 1.

The stratum Q(α) is equipped with a natural PSL(2,R)-invariant measure µ,
called Masur-Veech measure, induced by the Lebesgue measure in period coordi-
nates. We choose a normalization for µ in 3.1. This measure induces a measure µ1

on Q1(α) in the following way: if E is a subset of Q1(α), we denote C(E) the cone
underneath E in the stratum Q(α):

C(E) = {S ∈ Q(α) s.t. ∃r ∈ (0,+∞), S = rS1 with S1 ∈ E}
and we define

µ1(E) = 2d · µ(C(E)),

with d = dimC Q(α), that is, the measure dµ disintegrates in dµ = r2d−1drdµ1.
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Eskin and Masur proved in [EM] that the asymptotics

lim
L→∞

N∗(S, C, L) · (Area of S)

πL2

do not depend on the surface S for almost every surface in a connected compo-
nent of a stratum of Abelian differentials. Athreya Eskin and Zorich generalized
their method to the quadratic case in Theorem 2.3 in [AEZ1]. Then the following
Siegel–Veech constants are well defined for almost every surface S in a connected
component of a stratum of quadratic differentials:

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2
.

Remark 1. Note that it follows directly from this formula and the definition (4) of
Ncyl(S, C, L) that:

ccyl(C) =
(

q1 +
1

4
q2

)

c(C),

which is the equation (2) in Theorem 1.

Now letQ(α) be connected stratum. The Siegel–Veech formula (cf [Ve], Theorem
0.5) gives the existence of constants b∗(C) such that

1

Vol(Q1(α))

∫

Q1(α)

N∗(S, C, L)dµ1(S) = b∗(C)πL2

so necessarily b∗(C) = 2c∗(C) and we can express the Siegel–Veech constant as

c∗(C) = lim
ε→0

1

2πε2
1

Vol(Q1(α))

∫

Q1(α)

N∗(S, C, ε)dµ1(S).

In fact the integral is over the subset Qε
1(C) of Q1(α) formed by the surfaces with

at least one family of “short” saddle connections of type C, where “short” means of

length smaller than ε. We decompose this subset asQε
1(C) = Qε,thick

1 (C)∪Qε,thin
1 (C)

whereQε,thin
1 (C) is the set of surfaces having at least two distinct collections of short

saddle connections of type C. Eskin and Masur proved that this subset is so small
that we have

1

VolQ1(α)

∫

Qε,thin
1 (C)

N∗(S, C, ε)dµ1(S) = o(ε2).

Finally we obtain

(5) c∗(C) = lim
ε→0

1

2πε2
Vol∗ Qε

1(C)
VolQ1(α)

where Vol∗ Qε
1(C) is the weighted volume:

Vol∗ Qε
1(C) =

∫

Qε
1(C)

W∗(C, S)dµ1(S)

with W (C, S) = 1, Wcyl(C, S) is equal to the number of cylinders of width smaller
than ε, Warea(C, S) is equal to the area of the cylinders of length smaller than ε in
the configuration C on S.

The last step is the computation of Vol∗ Qε
1(C) in term of the volume of the

boundary stratum, see § 3.3.
Counting saddle connections of type C is related to a more general problem:

counting saddle connections with no fixed type. Introducing the number N(S,L)
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of distinct holonomies of saddle connections shorter than L on S ∈ Q(α), the
corresponding Siegel–Veech constants

c∗(Q(α)) = lim
L→∞

N(S,L) · (Area of S)

πL2

are also well-defined for almost every S ∈ Q(α) and depend only of the stratum.
Then we have naturally

c∗(Q(α)) =
∑

C
c∗(C).

The constant carea(Q(α)) is particularly important because the formula of [EKZ]
relates it to the sum of Lyapunov exponents for the Teichmüller geodesic flow. So it
implies a lot a applications to the dynamics in polygonal billiards. Also since there
are numerical experiments on Lyapunov exponents, the Eskin-Kontsevitch-Zorich
formula provides numerical approximation for the constants carea(Q(α)), and that
gives a way to check computations on the constants carea(C). This is the main
reason why we focus on configurations containing cylinders: they are the only ones
that contribute to the constant carea(Q(α)).

2.5. Strata that are not connected. In the last section we explained the method
to compute Siegel–Veech constants for connected strata. The classification of con-
nected components of strata is given in [L2]. Most of the strata are connected, the
only ones which are not connected are the one which have a hyperelliptic component
(except some sporadic examples in genus 3 and 4), and in this case there is only
one supplementary component. The three types of strata containing hyperelliptic
components are recalled on § 6.1.

The general strategy for computing Siegel–Veech constants for the connected
strata can be adapted for connected components. For a connected component
Qcomp(α) we define the Siegel–Veech constants by the means:

c∗(Qcomp(α), C) = lim
ε→0

1

2πε2
1

Vol(Qcomp
1 (α))

∫

Qcomp
1 (α)

N(S, C, ε)dµ1(S).

Note that the connected components of Q1(α) are exactly the intersection of Q1(α)
with the connected components of Q(α). We have also the property that

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2
,

for almost every S in the component Qcomp(α).
So we will obtain the same evaluation:

(6) c∗(Qcomp(α), C) = lim
ε→0

1

2πε2
Vol∗ Qε

1(comp, C)
VolQ1(α)

.

We apply this method in the case of hyperelliptic components in section 7.

3. Computation of Siegel-Veech constant for connected strata

In this section, Q(α) will denote a connected stratum of quadratic differentials.
We will evaluate Siegel–Veech constants c∗(C) defined in § 2.4 using equation (5).



10 E. GOUJARD

3.1. Choice of normalization. We have to choose a normalization for the volume
element on a strata Q(α), which is equivalent to choose a lattice in the space

H1
−(Ŝ, Σ̂;C) which gives the local model of the stratum Q(α) around S.

Convention 2. We follow the convention of [AEZ1] and choose, as lattice inH1
−(Ŝ, Σ̂;C)

of covolume 1, the subset of those linear forms which take values in Z ⊕ iZ on
H−

1 (Ŝ, Σ̂;Z), that we will denote by (H−
1 (Ŝ, Σ̂;Z))∗

C
.

This convention implies that the non zero cycles in H1(S,Σ,Z) (that is, those
represented by saddle connections joining two distinct singularities or closed loops
non homologous to zero) have half-integer holonomy, and the other ones (closed
loops homologous to zero) have integer holonomy.

Convention 3. We choose to labelled all zeroes and poles. This affects the com-
putation of volumes, but it is easy to deduce the value of volumes of strata with
anonymous singularities.

3.2. Construction of a basis of H−
1 (Ŝ, Σ̂,Z). In this section we recall the generic

construction given in [AEZ1] of a basis of H−
1 (Ŝ, Σ̂,Z) from a basis of H1(S,Σ,Z),

and also a specific construction for each configuration. In the following sections we
will look at every configuration and use the specific basis associated to each con-
figuration in order to have a nice expression of the measure in terms of parameters
of the cylinders.

For a primitive cycle [γ] in H1(S,Σ,Z), that is, a saddle connection joining
distinct zeros or a closed cycle (absolute cycle), the lift [γ̂] is a primitive element of

H−
1 (Ŝ, Σ̂,Z).

3.2.1. “Generic” basis. (cf [AEZ1] §3.1) Let k be the number of poles in Σ, a the
number of even zeroes and b the number of odd zeroes (of order ≥ 1). Assume
that the zeroes are numbered in the following way: P1, . . . Pa are the even zeroes,
Pa+1, . . . , Pa+b are the odd zeroes and Pa+b+1, . . . , Pn the poles, and take a simple
oriented broken line P1, . . . Pn−1. Take each saddle connexion γi represented by
[Pi, Pi+1] for i going from 1 to n− 2, and a basis {γn−1, . . . , γn+2g−2} of H1(S,Z).

Lemma 1. The family {γ̂1, . . . , γ̂n+2g−2} is a basis of H−
1 (Ŝ, Σ̂,Z).

Proof. First it is clear that the elements γ̂1, . . . , γ̂n+2g−2 are primitive elements of

H−
1 (Ŝ, Σ̂,Z) and linearly independent. Moreover they do not generate a proper

sub-lattice of H−
1 (Ŝ, Σ̂,Z). Each of the k poles lifts to a regular point in Ŝ so does

not appear in the list Σ̂. An even zero of order αi lifts to two zeroes of degrees
αi

2 , and an odd zero of order αj lifts to a zero of degree αj + 1. So we have

n = |Σ| = k + a + b and N = |Σ̂| = 2a + b. Thus if ĝ is the genus of Ŝ we have
4g − 4 = −k +

∑

αi≥1 αi and 2ĝ − 2 =
∑

αi≥1 αi + b and so

dimC(H1(Ŝ, Σ̂,Z)) = 2ĝ − 1 +N = (2g − 2 + n) + (2g − 1 + a+ b)

= dimC H−
1 (Ŝ, Σ̂,C) + dimC H+

1 (Ŝ, Σ̂,C).

This equality on dimensions shows that we can complete the family {γ̂1, . . . , γ̂n+2g−2}
with {γ′

1, . . . , γ
′
n−k−1, γ

′
n−1, . . . , γ

′
n+2g−2} to form a basis of H1(Ŝ, Σ̂,R) (the linear

independence is clear from the construction). The intersection matrix has integer
coefficients and is of determinant 1, so that ends the proof of the lemma. �
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3.2.2. Basis associated to a configuration. Fix a configuration C. As in [EMZ], we
define an appropriate family {γ1, . . . , γn+2g−2} of H1(S,Σ,Z) for S ∈ C, which lifts

to a basis of H−
1 (Ŝ, Σ̂,Z), as follows:

• for each component of the principal boundary strata Q(α′
i) take a family

{βi
1, . . . , β

i
ni+2gi−2} of H1(S

′
i,Σi,Z) such that {β̂i

1, . . . , β̂
i
ni+2gi−2} is a basis

of H−
1 (Ŝ′

i, Σ̂i,Z) as previously,

• for each ĥomologous cylinder take a curve δj joining its boundary singular-
ities (there might be an ambiguity in the choice of such a curve, cf § 3.3.1)

• take a saddle connection or a closed curve in the homology class of γ (we
denote ±−→v the holonomy of γ ).

Lifting this basis to H−
1 (Ŝ, Σ̂,Z) using theˆoperator provides a primitive basis of

H−
1 (Ŝ, Σ̂,Z), as previously.

We will keep the same notations for elements in (H−
1 (Ŝ, Σ̂;Z))∗

C

3.3. Computation. Fix a configuration C containing q cylinders (q ≥ 1). Now
we give a complete description of the measure µ in terms of parameters of the
configuration by disintegrating the volume element dµ.

By [EM] and [MS] we have Vol∗ Qε
1(C) = Vol∗ Qε,thick

1 (C) + o(ε2), so we will
describe µ only on Qε,thick(C).

Let S ∈ Qε,thick(C). Local coordinates near S are given by H1
−(Ŝ, Σ̂,C), and

µ is just Lebesgue measure in this coordinates. Choose now a basis associated to
the configuration C as above. It follows from the papers [EMZ] and [MZ] that the
measure dµ in Qε,thick(C) disintegrates as the product of the measure dµ′ on Q(α′)
and the measure dνT on the space of parameters T of the cylinders:

dµ = M ′dµ′dνT

where M ′ denotes the number of ways to get a surface S in Qε,thick(C) when the
parameters of the configuration are fixed.

3.3.1. Description of the space T of the cylinders. Roughly T is described by coor-
dinates ±−→v , h1, . . . , hq, t1, . . . tq representing the width, the heights and the twists
of the cylinders, defined such that hi + iti is the holonomy of the curve δi. The
problem here is that there might be an ambiguity for the choice of this curve and
so for the definition of the twist. In the following we assume that the cylinders are
horizontal, that is ±−→v represents the horizontal direction in the surface S. First
note that despite the fact that the surface have a non trivial holonomy, for a given
configuration C it is possible to choose an orientation for each cylinder, for example
by choosing an oriented path covering the graph representing the configuration.
So in each cylinder we have a notion of bottom, up, left and right. Recall that
thin cylinders are the one with each of their boundaries formed by a single saddle
connection of holonomy ±−→v , and so there is only one singularity on each of their
boundaries. For these cylinders we can define the twist and the height of the cylin-
der as usual: starting from the only one singularity on the bottom of the cylinder,
draw a vertical segment going up and ending at a point P on the upper boundary of
the cylinder. The length of this segment defines the height of the cylinder. Starting
from the point P and following the boundary in the right horizontal direction, we
meet the singularity on the upper boundary of the cylinder, which is at distance
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t from P , and t defines the twist of the cylinder (0 ≤ t < |−→v |). The next picture
shows a particular case where the twist is ambiguous for a thick cylinder.

no ambiguity ambiguity

For the thick cylinders, we can define their twist as follows: for such a cylinder, if
one of its boundaries contains two distinct singularities (recall that the singularities
are labelled), then choose the one of the smaller index. We have now in each
case one distinguished singularity on each of the two boundaries. Consider the
shortest geodesic segments joining these two singularities (there might be two such
segments). Then their vertical coordinates coincide and define the height h of

the cylinder, and their horizontal coordinate coincide modulo 2|−→v |
ot

, where ot =

|Γup| ∨ |Γdown|, and Γup (resp. Γdown) is the group of symmetries of the upper
(resp. lower) boundary. In general for cylinders appearing in a configuration the
orders of these groups are 1 or 2, so ot is equal to 1 or 2. In the example of the
figure above, we have |Γdown| = 2, |Γup| = 1 so ot = 2. So we define the twist as the

value t ∈
[

0, 2|−→v |
ot

)

equal to the horizontal coordinates reduced modulo 2|−→v |
ot

. This

definition will be interesting in the case of general cylinders, that is, cylinders which
do not appear necessarily in a configuration, that are used to compute volumes of
strata (cf § 8).

We have
dνT = dhol(γ̂)dhol(δ̂1) . . .dhol(δ̂q).

Denote n(q) the number of the cycles γ, δ1, . . . , δq in H1(S,Σ,Z) that are not
homologous to 0 in H1(S,Σ,Z). Taking care of the normalization (Convention 2)
we get:

(7) dνT = Mc · d−→v dh1 . . . dhqdt1 . . . dtq

with Mc = 4n(q).
Note that with our choice of the basis, δ1, . . . , δq are always non homologous

to zero. And γ is homologous to zero if and only if the associated graph of the
configuration is of type a in the classification of Masur and Zorich (Figure 3 in
[MZ]): in this case a vertex corresponding to a cylinder is separating the graph,
and the boundary of any cylinder in the configuration consists of a single saddle

connection (ĥomologous to γ). So we have:

(8) Mc =

{

4q if C is of type a

4q+1 otherwise

We choose to enumerate the cylinders such that the q1 first cylinders have a
waist curve of holonomy ±−→v and the q2 remaining cylinders have a waist curve of
holonomy 2±−→v .

Consider now T ε
1 the space of parameters of the cylinders with the additional

constraint that the sum of the area of the ĥomologous cylinders is normalized (i.e.
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equal to 1/2) and that |v| is bounded by ε. Then the cone C(T ε
1 ) underneath T ε

1

is given by the following equations:

|v|
(

q1∑

k=1

hk + 2

q2∑

k=1

hq1+k

)

≤ 1

2
(9)

|v| ≤ ε

√
√
√
√2|v|

(
q1∑

k=1

hk + 2

q2∑

k=1

hq1+k

)

(10)

3.3.2. Computation of c(C). The volume of T ε
1 is given by:

Vol(T ε
1 ) = dimR(T )νT (C(T ε

1 )) = 2(q + 1)νT (C(T ε
1 ))

with

νT (C(T ε
1 )) =

∫

C(T ε
1 )

dνT

and dνT given by (7). Note that the measure d−→v on Dε/± disintegrates into
w ·dw ·dθ on [0, ε]× [0, π], and that integrating the measure of the twists dt1 . . . dtq

on [0, w)q1 ×
q
∏

i=q1+1

[

0,
2w

oti

)

gives a factor
2q2

Mt
wq , with

(11) Mt =

q
∏

i=q1+1

oti ,

so we get:

νT (C(T ε
1 )) = Mcπ

2q2

Mt

∫ ε
2

0

wq+1dw

∫

R
q
+

χ

{

w

2ε2
≤ h ≤ 1

2w

}

dh1 . . . dhq.

With the following changes of variables h′
q1+k = 2hq1+k we obtain:

νT (C(T ε
1 )) =

Mc

Mt
π

∫ ε
2

0

wq+1dw

∫

R
q

+

χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

dh1 . . . dh
′
q.

with

h′ =
q1∑

i=1

hi +

q2∑

i=1

h′
q1+i.

Using the fact that
∫

R
q
+

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . . dhq =
1

q!
(bq − aq),

since it is the difference of the volumes under two simplices in Rq, we obtain after
computation:

νT (C(T ε
1 )) =

Mcπε
2

Mt2q+1

q

(q + 1)!

Thus:

Vol(T ε
1 ) =

Mcπε
2

Mt2q(q − 1)!
.

We assume now that Q(α′) is non empty, that is, the configuration C is not
made only by cylinders. Let S′ ∈ Q1(α

′), then the rescaled surface rSS
′ where

0 < rS ≤ 1 has area
r2S
2 . We define Ω(ε, rS) to be the subset of T formed by the
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cylinders rescaled such that gluing them to rSS
′ after performing the appropriate

surgeries gives a surface S ∈ C(Qε
1(C)). Note that the possible variations of area

arising when performing the surgeries on rSS
′ are negligible ([EMZ] and [MZ]).

By definition Ω(ε, rS) is exactly formed by the rescaled surfaces rTT where 0 <

rT ≤ 1, r2T + r2S ≤ 1, and T ∈ T ε̃
1 , with ε̃ = ε

√

r2S + r2T . So we have, denoting
Cusp(ε) = Vol(T ε

1 ),

νT (Ω(ε, rS)) =

∫
√

1−r2
S

0

r2nT −1
T Cusp

(
ε̃

rT

)

drT

=
Mcπ

Mt2q(q − 1)!

∫
√

1−r2
S

0

r2nT −1
T ε2

r2S + r2T
r2T

drT

with nT = dimC(T ) = q + 1, which simplifies:

(12) νT (Ω(ε, rS)) =
Mcπε

2

Mt2q(q − 1)!

∫
√

1−r2
S

0

r2q−1
T (r2S + r2T )drT .

After computation, we obtain:

νT (Ω(ε, rS)) =
Mcπε

2

Mt2q+1(q + 1)!
(1− r2S)

q(r2S + q).

Now if Ms denote the number of ways to obtain a surface S ∈ C(Qε
1(C)) by gluing

rTT ∈ Ω(ε, rS) to rSS
′ ∈ Q(α′) (see (18)), the total measure of the cone C(Qε

1(C))
is:

µ(C(Qε
1(C))) = Ms Vol(Q1(α

′))

∫ 1

0

r2nS−1
S νT (Ω(ε, rS))drS

=
MsMcVol(Q1(α

′))πε2

Mt2q+1(q + 1)!

∫ 1

0

r2nS−1
S (r2S + q)(1 − r2S)

qdrS
︸ ︷︷ ︸

I

(13)

An easy recurrence or a change of variables gives the following lemma:

Lemma 2.

J(a, q) =

∫ 1

0

r2a+1(1− r2)qdr =
1

2

q!a!

(a+ q + 1)!

We recognize

I = J(nS , q) + qJ(nS − 1, q).

After simplification we get:

I =
(q + 1)!(nS − 1)!

2(nS + q + 1)!
(nS + q).

So, denoting M =
MsMc

Mt
we obtain:

µ(C(Qε
1(C))) = Mπε2 Vol(Q1(α

′))
(nS − 1)!(nS + q)

2q+2(nS + q + 1)!

As we have

VolQε
1(C) = dimR(Q(α))µ(C(Qε

1(C)))
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it follows from the definition of the Siegel–Veech constant that:

c(C) = M dimC(Q(α))
(nS − 1)!(nS + q)

2q+2(nS + q + 1)!

VolQ1(α
′)

VolQ1(α)
.

Recall that dimCQ(α) = dimC Q(α′) + dimC T = nS + q+1. We obtain finally the
formula (1) of Theorem 1.

3.3.3. Computation of carea(C). Here we want to compute carea(C), so we have to
count surfaces with weight the area of cylinders with waist curve smaller than ε, by
definition. Note that, since there are q1 cylinders of waist curve of length w = |−→v |
and q2 of waist curve of length 2w, if w ≤ ε

2 (when the area is renormalized), all
cylinders count (with weight their area), and if ε

2 ≤ w ≤ ε, only the thin cylinders
count (with weight their area). Equation (10) contains two cases

w = |v| ≤ ε

2

√
2area

and
ε

2

√
2area ≤ w ≤ ε

√
2area

of different weights. So the domain of integration of C(T ε
1 ) splits into two parts as

shown in the following picture.

2w

ε2

w

2ε2

1

2w

all
cylinders
count

1/ε

1/2ε

h

wε/2 ε
only the q1 small
cylinders count

This gives the following weight function:

W area(w, hi) =







χ

{

2w

ε2
≤ h ≤ 1

2w

}

+

∑q1
i=1 hi

h
χ

{

w

2ε2
≤ h ≤ 2w

ε2

}

if w ≤ ε

2
∑q1

i=1 hi

h
χ

{

w

2ε2
≤ h ≤ 1

2w

}

if
ε

2
≤ w ≤ ε

with

h =

q1∑

k=1

hk + 2

q2∑

k=1

hq1+k.

Now the weighted volume of T ε
1 is given by:

Volarea(T ε
1 ) = dimR(T )ν

area
T (C(T ε

1 )) = 2(q + 1)νareaT (C(T ε
1 ))

with

νareaT (C(T ε
1 )) =

∫

C(T ε
1 )

W area(|−→v |, hi)dνT

and dνT given by (7).
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Following step by step the computations of the last paragraph, using the same
change of variables, we have

νareaT (C(T ε
1 )) =

Mc

Mt
π

[
∫ ε

2

0

wq+1dw

∫

R
q
+

(

χ

{

2w

ε2
≤ h′ ≤ 1

2w

}

+

∑q1
i=1 hi

h′ χ

{

w

2ε2
≤ h′ ≤ 2w

ε2

})

dh1 . . . dh
′
q

+

∫ ε

ε
2

wq+1dw

∫

R
q
+

∑q1
i=1 hi

h′ χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

dh1 . . .dh
′
q

]

.

with

h′ =
q1∑

i=1

hi +

q2∑

i=1

h′
q1+i.

Note that, since the variables hi play symmetric roles, we have:

∫

R
q
+

∑q1
i=1 hi

∑q
i=1 hi

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . .dhq =
q1

q

∫

R
q
+

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . . dhq.

So computations are similar to the previous ones, and we obtain:

Volarea(T ε
1 ) =

Mcπε
2

Mt2q+2q!
(4q1 + q2).

Assume that Q(α′) is not empty. Now in (12) we have to multiply the integrand

by the ratio of the area of the cylinders by the total area of the surface
r2T

r2
S
+r2

T

. We

obtain:

νareaT (Ω(ε, rS)) =
Mcπε

2(4q1 + q − 2)

Mt2q+2q!

∫
√

1−r2
S

0

r2q+1
T drT =

Mcπε
2(4q1 + q2)

Mt2q+2q!

(1− r2S)
q+1

2(q + 1)
.

Then:

µarea(C(Qε
1(C))) = M VolQ1(α

′)
πε2(4q1 + q2)

2q+3(q + 1)!

∫ 1

0

(1− r2S)
q+1r2nS−1

S drS .

Using again Lemma 2 we obtain:

µarea(C(Qε
1(C))) = M VolQ1(α

′)
πε2(4q1 + q2)

2q+4

(nS − 1)!

(nS + q + 1)!
.

So at the end we have:

(14) carea(C) = M
4q1 + q2
2q+4

(dimC Q(α′)− 1)!

(dimC Q(α) − 1)!

VolQ1(α
′)

VolQ1(α)
.

Comparing to equation (1) and (2) we obtain the relation (3), which ends the
proof of Theorem 1.
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3.3.4. Special case. Assume that Q(α′) is empty that is, the configuration is made
only by cylinders. This arises only on strata Q(−14), Q(2,−12) and Q(2, 2). Then
the computations are much easier. Indeed we have in this case

VolQε
1(C) = Vol T ε

1 =
Mcπε

2

Mt2q(q − 1)!

and

Volarea Qε
1(C) = Volarea T ε

1 =
Mcπε

2

Mt2q+2q!
(4q1 + q2)

so

c(C) = Mc

Mt2q+1(q − 1)! VolQ1(α)
(15)

carea(C) =
1

q
ccyl(C) =

4q1 + q2

4q
c(C)(16)

since the ratio of the area of the cylinders over the total area is 1.

3.4. Volume of the boundary strata. Consider a strata Q(α) =
∏m

i=1 Q(αi) of
disconnected flat surfaces. Following the notations of [AEZ1] and generalizing the
result of 4.4 we obtain the following lemma:

Lemma 3.

VolQ1(α) =
1

2m−1

∏
(dimC Q(αi)− 1)!

(dimC Q(α)− 1)!

m∏

i=1

VolQ1(αi)

We also have the following relation between hyperboloids in the Abelian strata:

Lemma 4.

VolH1/2(α) = 2dimC H(α) VolH1(α)

So the final formula for a boundary strata Q(α′) =
∏H(αi)

∏Q(βj) (m con-
nected components) is:

(17) carea(C) = M
4q1 + q2
2m+q+3

∏

i(ai − 1)!2ai VolH1(αi)
∏

j(bj − 1)! VolQ1(βj)

(dimC Q(α) − 1)! VolQ1(α)

where ai = dimC H(αi) and bj = dimC Q(βj).

3.5. Evaluation of Ms. The general formula for Ms is given by:

(18) Ms =
K

|Γ(C)|
For each surface Si in the principal boundary, the number of geodesic rays coming
from a boundary singularity on Si can be read on the local ribbon graph repre-
senting Si: each boundary singularity is represented by a connected component of
the local ribbon graph, summing the orders kij along this connected component
gives the number of geodesic rays emerging form this singularity. If the surface
as several boundary singularities, then one has to multiply the number of geodesic
rays obtained for each of them, to get the combinatorial constant responsible for
the gluing of Si in the configuration. Multiply the numbers obtained for each Si to
get the final combinatorial constant K.
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Γ(C) denotes the symmetries of the configuration C generalising the stratum
interchange and the cyclic symmetry in the Abelian case. We will explicit this
group in the particular cases that we study.

4. Strata Q(1k,−1l), with k − l = 4g − 4 ≥ 0

The strata Q(1k,−1l) are particularly interesting for two reasons. First, they
correspond to strata of maximal dimension at genus and number of poles fixed.
Second, their boundary strata belong to the same family, so that gives recursion
formulae for Siegel–Veech constants and volumes.

The strata Q(12,−12) and Q(14) are hyperelliptic and will be studied in § 7. In
the general case there are only four types of configurations, so we give here their
complete description and apply the formula for the Siegel–Veech constant carea(C)
to each of them.

4.1. Configurations.

Proposition 3. There are only four types of configurations which contain cylinders
for strata Q(1k,−1l), they are described in Figure 1.

Proof. We recall that graphs representing configurations are classified by Theorem
2 in [MZ]. Then the proof is based on the observation that there not many ways
to create zeroes of order 1 or poles (see also Lemma 5 in § 5). We recall that the
order of a newborn zero is given by the formula

∑
(ki +1)− 2 where the ki are the

order of the boundary singularities along the boundary component of the ribbon
graph that corresponds to the newborn zero (see paragraph 1.4 of [MZ] for more
details), and we have ki ≥ 0. A boundary component admits at least one boundary
singularity. So there is only one possibility for a pole: there is only one boundary
singularity, which is equal to 0. For a zero of order 1 there are 3 possibilities:

• One boundary singularity of order 2
• Two boundary singularities of order 1 and 0
• Three boundary singularities of order 0

The first case is realizable when the global graph representing the configuration
contain a loop with only one vertex. But in this case we can see that either there
will be an other newborn zero of higher order, or there will be no cylinders in
the configuration. The third case can be also be eliminated because a boundary
components with exactly three boundary singularities arise only around a vertex of
type +3.1 in the graph, and the parities of the boundary singularities in this case
are odd.

So the only remaining possibility is the second one. We can reformulate this
discussion by saying that there is only one way to get a cone angle 3π: one has
to glue a cone angle π with a cone angle 2π. Looking carefully at all the ways
to have boundary singularities of order 1 or 0 in the local ribbon graphs and the
consequence on the boundary components in the global graph, we reduce the case
to only two possibilities: the boundary singularity of order 0 arises only as cone
angle around points on the boundary of a cylinder, and the one of order 1 arises
either by creating a hole adjacent to a pole in a surface of non trivial holonomy
(i.e. for vertices of type −1.1 and −2.2), or by breaking up a marked point on
a surface of trivial holonomy (i.e. for vertices of type +2.1). Note that the last
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Configurations with cylinders Boundary strata
General configurations for g ≥ 1

C1(k1, l1)

11 00
{1k2 ,−1l2−1}{1k1 ,−1l1−1}







l1 + l2 − 2 = l

k1 + k2 + 2 = k

k1 − l1 = 4g1 − 4

k2 − l2 = 4g2 − 4

ki ≥ 0, li ≥ 1, (ki, li) 6= (1, 1)

Qg1(1
k1 ,−1l1) and

Qg2(1
k2 ,−1l2), for

g1 + g2 = g

C2 1

1

0

0
{1k−2,−1l}

Qg−1(1
k−2,−1l+2),

for k ≥ 2

C3

1 0
{1k−3,−1l}

0

0 1 1

H(0),
Qg−1(1

k−3,−1l+1)
for k ≥ 3

C4

1 0
{1k−1,−1l−2}

0

0

Qg(1
k−1,−1l−1)

for l ≥ 2
Additional configurations for g = 1, 2

Q(12,−12)

0

0

0
0

11

H(0)

Q(14)

1 1 0
0

∅ ∅
0

0 1 1

H(0),H(0)

Figure 1. Configurations containing cylinders for strata
Q(1k,−1l), with kl = 4g − 4 and g ≥ 1.

surgery creates two points of cone angle π, so gluing each of them to a cylinder will
create two newborn zeroes.

This situation is resumed in the following pictures (Figure 2).
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1 0
0 0 11

Figure 2. Newborn zeroes of order 1

For a pole, similar considerations give that there is only one way to get a pole
(and not creating zeroes of order ≥ 2), by pinching the boundary of a cylinder
(Figure 3).

0 0

Figure 3. Newborn poles

Note that, since the interior singularities are zeroes of order 1 or poles, the only
boundary strata are H(0) and Q(1K ,−1L).

These remarks allow us to eliminate most of the configurations, and to keep only
the four possible types of configurations described on Figure 1. �

The following tabular details the boundary strata (except H(0)) of a stratum in
genus 2.

Number of poles
0 1 2 3 4 5 6

G
en
u
s 0 × × × × Q(−14) Q(1,−15) Q(12,−16)

1 × × Q(12,−12) Q(13,−13) Q(14,−14) Q(15,−15) Q(16,−16)

2 Q(14) Q(15,−1) Q(16,−12) Q(17,−13) Q(18,−14) Q(19,−15) Q(110,−16)

Stratum Boundary strata

In general, the boundary strata of Q(1k,−1l) are those of same genus with at
most l − 1 poles, those of lower genus with at most l + 2 poles, and H(0).

Note that, in this list, all values of volumes in genus 0 are known (cf [AEZ1]), and
(25) gives the values of volumes for the first entries in genus 1 and 2 (hyperelliptic
case).

4.2. Siegel–Veech constants.

Theorem 2. Let d = 2g−2+k+ l = 1
2 (k+ l) be the complex dimension of the stra-

tum Q(1k,−1l). The Siegel–Veech constants associated to the four configurations
described in Figure 1 are the following:

If (k1, l1) = (k2, l2):

carea(C1(k1, l1)) =
1

8

((d1 − 1)!)
2

(d− 1)!

VolQ1(1
k1 ,−1l1)2

VolQ1(1k,−1l)
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Otherwise:

carea(C1(k1, l1)) =
1

4

(d1 − 1)!(d2 − 1)!

(d− 1)!

VolQ1(1
k1 ,−1l1)VolQ1(1

k2 ,−1l2)

VolQ1(1k,−1l)

where di = dimC Q(1ki ,−1li) = 1
2 (3ki + li).

carea(C2) = 2
(d− 3)!

(d− 1)!

VolQ1(1
k−2,−1l+2)

VolQ1(1k,−1l)

carea(C3) =
π2

3

(d− 5)!

(d− 1)!

VolQ1(1
k−3,−1l+1)

VolQ1(1k,−1l)

carea(C4) =
1

2

(d− 3)!

(d− 1)!

VolQ1(1
k−1,−1l−1)

VolQ1(1k,−1l)

If all the four configurations appear in a stratum Q(1k,−1l), then the Siegel–
Veech constant for the whole stratum is given by:

carea(Q(1k,−1l)) =
∑

admissible (k1,l1)

k(k − 1)

(
k − 2

k1

)(
l

l1 − 1

)

carea(C1(k1, l1))

+

(
k

2

)

carea(C2) +
1

2
k(k − 1)(k − 2)carea(C3) +

(
k

1

)(
l

2

)

carea(C4)

For the additional configurations in genera 1 and 2, see § 7.2.1.

Proof. For each configuration we compute the combinatorial data and apply equa-
tion (17).

(1) Configuration 1 (Figure 4):

11 00

Q(1k2 ,−1l2)

{1k2,−1l2−1}{1k1,−1l1−1}

Q(1k1 ,−1l1)

Figure 4. Configurations C1(k1, l1) for Q(1k,−1l) in genus g ≥ 1

We have the following combinatorial data for this configuration:
• Mc = 41, Mt = 1
• Ms =

1
|Γ| with |Γ| = 2 if (k1, l1) = (k2, l2), |Γ| = 1 otherwise

• q1 = 1, q2 = 0
• dimC Q(1ki ,−1li) = 2gi − 2 + ki + li =

1
2 (3ki + li)

Applying Theorem 1 we get:

carea(C1(k1, l1)) =
4

|Γ|
4

26
(3k1+l1

2 − 1)!(3k2+l2
2 − 1)! VolQ1(1

k1 ,−1l1)VolQ1(1
k2 ,−1l2)

(3k+l
2 − 1)! VolQ1(1k,−1l)

Taking care of the numbering of the zeroes, there are
(
k
1

)
×
(
k−1
1

)
×

(
k−2
k1

)
×
(

l
l1−1

)
= k(k − 1)

(
k−2
k1

)
×
(

l
l1−1

)
configurations C1(k1, l1).
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1

1

0

0

{1k−2,−1l}
Q(1k−2,−1l+2)

Figure 5. Configuration C2 for Q(1k,−1l) in genus g ≥ 1 and k ≥ 2

(2) Configuration 2 (Figure 5):
The combinatorial data are:
• Mc = 42, Mt = 1
• Ms = 1/|Γ| = 1
• q1 = 1, q2 = 0
• dimC Q(1k−2,−1l+2) = 2g + k + l − 4
We get:

carea(C2) = 42
4

25
(2g + k + l− 5)! VolQ1(1

k−2,−1l+2)

(2g + k + l − 3)! VolQ1(1k,−1l)

Taking care of the numbering of the zeroes, there are
(
k
2

)
configurations

C2.
(3) Configuration 3 (Figure 6):

1 0{1k−3,−1l}

Q(1k−3,−1l+1) H(0)

0

0 1 1

Figure 6. Configuration C3 for Q(1k,−1l) in genus g ≥ 1 and k ≥ 3

The combinatorial data are:
• Mc = 42, Mt = 1
• Ms = 2/|Γ| = 1 because of the involution of H(0).
• q1 = 0, q2 = 1
• dimC Q(1k−3,−1l+1) = 2g + k + l − 6

• VolH1/2(0) =
4π2

3
We obtain:

carea(C3) = 42
1

26
(2g + k + l − 7)! VolQ1(1

k−3,−1l+1)(2− 1)! VolH1/2(0)

(2g + k + l − 3)! VolQ1(1k,−1l)

=
π2

3

(2g + k + l − 7)! VolQ1(1
k−2,−1l+2)

(2g + k + l − 3)! VolQ1(1k,−1l)

Taking care of the numbering of the zeroes, there are
(
k
1

)
×
(
k−1
2

)
=

1
2k(k − 1)(k − 2) configurations C3.
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1 0{1k−1,−1l−2}

Q(1k−1,−1l−1)

0

0

Figure 7. Configuration C4 for Q(1k,−1l) in genus g ≥ 1 and l ≥ 2

(4) Configuration 4 (Figure 7):
The combinatorial data are:
• Mc = 42, Mt = 1, Ms = 1
• q1 = 0, q2 = 1
• dimC Q(1k−1,−1l−1) = 2g + k + l − 4
Theorem 1 gives:

carea(C4) = 42
1

25
(2g + k + l − 5)! VolQ1(1

k−1,−1l−1)

(2g + k + l − 3)! VolQ1(1k,−1l)

Taking care of the numbering of the zeroes, there are
(
k
1

)
×
(
l
2

)
configu-

rations C4.
After simplification of the formulae we obtain the results of Theorem 2. �

5. Geometry of configurations containing cylinders

This section develops the quadratic version of some geometric results on config-
urations, proven in the Abelian case in [BG].

5.1. Variants of Siegel–Veech constants. The result (3) of Theorem 1 can be

interpreted as follows: the ratio
carea(C)
ccyl(C)

represents the mean area of a cylinder in

configuration C. It does not depend on the configuration, but only on the dimension
of the stratum. Summing on all configurations in a stratum we get a result of
Vorobets (Theorem 1.6 in [Vo]).

We introduce variants of Siegel–Veech constants whose ratios admit a geometric
interpretation. Some of them were introduced by Vorobets.

We define NA1≥p(S, C, L) (resp. NA≥p(S, C, L)) that counts configurations C on
S only if the area of a fixed cylinder (resp. all cylinders) filled at least proportion
p of the area of the entire surface. As before we denote

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2

the associated Siegel–Veech constants.
We give the analogue of Theorems 4 and 5 of [BG]. Proofs are very similar to

the Abelian case so we keep them short.
We introduce the incomplete Beta function

B(x;n, q) =

∫ x

0

un−1(1− u)q−1du
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and the Beta function B(n, q) = B(1;n, q). It is a standard fact that

B(x;n, q) = B(n, q)

n+q−1
∑

k=n

(
n+ q − 1

k

)

xk(1− x)n+q−1−k.

Theorem 3. Let C be an admissible configuration for a connected stratum Q(α) of
quadratic differentials. Let q denote the total number of cylinders. Assume that the
boundary stratum Q(α′) is non empty, and q ≥ 1. Then the ratios of Siegel–Veech
constants associated to C are the following:

cA>p(C)
c(C) =

B(1 − p;nS, q)

B(nS , q)
(19)

cA1>p(C)
c(C) = (1 − p)dimC Q(α)−2(20)

The first ratio can be interpreted as the probability for the cylinders to fill a
large part of the area of the surface, and the second ratio the probability for a
distinguished cylinder to fill a large part of the area of the surface. Note that the
first ratio depends on the number of cylinders q in the configuration, as the second
ratio depends only of the dimension of the stratum.

Proof. We begin with the proof of (19). We follow step by step the computations of
§ 3.3.2. The value of Cusp(ε) does not change. The only adjustment to made is that
the area of the surface rTT which we glue to rSS

′ has to satisfy r2T > p(r2T + r2S),

which is equivalent to rT >
√

p
1−prS . So (12) becomes

νA>p
T (Ω(ε, rS)) =

Mcπε
2

Mt2q(q − 1)!

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )drT .

and using the constraint r2T + r22 ≤ 1 we obtain the following bound on rS : rS ≤√
1− p, so (13) becomes

µA>p(C(Qε
1(C))) =

M Vol(Q1(α
′))πε2

2q+1(q + 1)!

∫ √
1−p

0

r2nS−1
S

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )drT drS

︸ ︷︷ ︸

Ip

Using an appropriate change of variables as the Abelian case, we recognize

Ip =
B(1− p;nS , q)

4(nS + q + 1)

where B(1− p;nS , q) is the incomplete Beta function. Comparing the result to (1)
we get (19).

Now we compute cA1>p(C): we have the same constraints as before, plus the
additional constraint that the first cylinder fills at least part p of the area of the
surface. This affects the calculus of the cusp. Note that a cylinder in S ∈ Q1(α)

fills at least part p of the surface if it fills at least part a = p · r2S+r2T
r2
T

in the space
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of the cylinders T1. So we have to replace Cusp(ε) by

CuspA1>a(ε) = 2(q + 1)νA1>p
T (C(T ε

1 ))

= 2(q + 1)
Mc

Mt
π

∫ ε
2

0

wq+1dw

∫

R
q
+

χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

χ{h1 ≥ ah′}dh1 . . . dh
′
q.

Using the change of variables h′
1 = h1 − ah we get:

CuspA1>a(ε) = Cusp(ε) · (1− a)q−1

Note that if we choose another cylinder, the computations are exactly the same,
even if it is a thick cylinder. Finally (13) becomes

µA1>p(C(Qε
1(C))) =

M Vol(Q1(α
′))πε2

2q+1(q + 1)!

·
∫ √

1−p

0

r2nS−1
S

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )

(

1− p · r
2
S + r2T
r2T

)

drT drS

︸ ︷︷ ︸

I′
p

and we get

I ′p =
(1− p)nS+q−1

4(nS + q + 1)
·B(n, q).

Comparing the result to (1) we get (20). �

5.2. Maximal number of cylinders. Configurations of quadratic differentials in
genus 0 are detailed in [AEZ1]. They contain at most one cylinder. The following
proposition gives the maximal number of cylinders in a configuration in higher
genus.

Proposition 4. Consider a stratum Q(α) in genus g ≥ 1, with α = (4l1, . . . , 4lm, 4k1+
2, . . . , 4kn + 2, b1, . . . , bp,−1k), and li ≥ 0, ki ≥ 0, bi odd. First assume that

2n+

p
∑

i=1

bi − k+4 ≥ 0, then the maximal number of ĥomologous cylinders satisfies:

qmax(α) = ⌊n
2
⌋+m+ εα,

where εα ∈ {0, 1, 2}.
Without this assumption, the maximal number of ĥomologous cylinders is given

by:

qmax(α) = max{card I + cardJ

2
; I ⊂ {1, . . . ,m}, J ⊂ {1, . . . n}, cardJ even,

4
∑

i∈I

li + 4
∑

j∈J

kj + 2n+

p
∑

k=1

bk + 4− k ≥ 0}+ εα

To prove this proposition we will need the following lemma:

Lemma 5. Odd zeroes are created by surfaces of non trivial holonomy ⊖ or by loops
in the graphs of configurations. At most four newborn odd zeroes can be created in
a configuration.
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Proof. Since the zeroes on which we perform surgeries on surfaces of non trivial
holonomy ⊖ are of any order (even or odd), it is easy to see that we can obtain any
parity order for newborns zeroes created by surfaces ⊖.

This is not the case of surfaces ⊕. In fact, a newborn zero represented in the
graph by a boundary of a ribbon graph which frames a chain of surfaces ⊕ (as
in the picture below) surrounded by surfaces ⊕ or cylinders has always an even
order. This is due to the fact that we perform surgeries such as creating a hole
on surfaces of trivial holonomy, so on singularities of cone angle 2kπ. If we glue
all these surfaces identifying all boundary singularities, then the new cone angle is
also multiple of 2π, so the newborn zero is of even order. Boundary types involved
in these chains are ◦2.2, +2.1, +2.2, +3.2a, +3.2b, +3.3, +4.2a, +4.3a, +4.4.

Then we just have to look at the remaining cases, namely, graphs containing
surfaces of boundary type ◦3.2 ◦4.2, +3.1, +4.1a, +4.1b, +4.2b, +4.2c, +4.3b. Then
one can see case by case that if the ribbon graph is locally as on the picture above,
one or two odd zeroes are created (one can replace the surface ⊕ by a cylinder ◦).

As an example, Figure 3 represents how poles are created by loops in the graph
of the configuration. �

Proof of Proposition 4. This result is a corollary of the classification of configu-

rations of ĥomologous cylinders by Masur and Zorich (Figure 3 in [MZ]). Each
configuration is represented by a graph with one, two or three chains of surfaces ⊕
(with trivial linear holonomy) and cylinders ◦ (see also § 2.3 for more details about
these graphs). Then there are some remarks:

• A surface ⊕ of type +2.1 (cf Figure 6 in [MZ]) in a chain is surrounded
by at most two cylinders. In that case if there is no interior singularity it
creates a newborn zero of order 4g = k1 + k2 + 2, where g is the genus of
the boundary strata H

(
k1+k2−2

2

)
(k1 and k2 are odd).

0 0

∅

k1

k2

H
(
k1+k2−2

2

)

• A surface ⊕ of type +2.2 in a chain is surrounded by at most two cylinders
and in that case if there is no interior singularity it creates two newborn
zeroes of order k1 and k2 (even) with k1 + k2 = 4g where g is the genus of

the boundary strata H
(
k1−2

2 , k2−2
2

)

• By Lemma 5, at most 4 zeros of odd order can be realized as newborn
zeroes (created by loops in the graph of the configuration or by surfaces
⊖), the others are necessarily interior singularities (of surfaces ⊖).
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0 0

∅

k1 k2

H
(
k1−2

2 , k2−2
2

)

• Realizing zeroes as newborn zeroes instead of interior singularities increases
the number of cylinders.

First we assume that 2n +
∑p

i=1 bi − k + 4 ≥ 0. One procedure to construct the
configuration containing the most cylinders is the following: we consider all zeroes
of order 4l and realize them as newborn zeroes with a surface of type +2.1 as
described above. Then we consider the other even zeroes and realize them by pairs
as newborn zeroes with surfaces of type +2.2 as described above. At this stage
we obtain a chain of m + ⌊n

2 ⌋ surfaces with a cylinder between each surface ⊕.
We consider the remaining zeroes (at most one even zero and all the odd zeroes).
If there are at least 5 odd zeroes, we have to choose graph a), b) or c) following
notations of Figure 6 in [MZ] to complete your configuration. If not, we can choose
graph c), d) or e). In all cases we will get at most 2 additional cylinders, by looking
carefully at all possible configurations depending on the number of odd/even zeroes
and poles.

In the general case, we have to choose carefully the even zeroes that we realize
as newborn zeroes. Indeed all remaining zeroes should be produced by another
surface of non-negative genus in a boundary strata. This condition implies that we
can choose to realize zeroes of orders 4li or pairs of zeroes 4kj1 + 2, 4kj2 + 2 with
i ∈ I and j1, j2 ∈ J while 4

∑

i∈I li + 4
∑

j∈J kj + 2n+
∑p

k=1 bk + 4− k ≥ 0. This
explains the general formula for the maximal number of cylinders. �

We are interested in the asymptotic geometry of configurations, in particular
when the genus or the number of zeroes tends to infinity, so we will consider
q̃max(α) = qmax(α)− εα instead of qmax(α), to simplify the computations.

As a corollary of Proposition 4 we obtain that the strata maximizing the number
of cylinders at genus fixed are the ones with the most even zeroes:

Corollary 1. Fix the genus g ≥ 1 and the number of poles k. Denote Π(4g−4+k)
the set of partitions α of 4g − 4 + k, and l = ⌊k

4 ⌋. Then:

max
α∈Π(4g−4+k)

q̃max(α ∪ {−1k}) = g − l

and the maximum is realized for α ∈ Πk ⊔Π4,2(4g− 4), where Π4,2(4g− 4) denotes
the set of partitions of 4g − 4 using only 4 and 2.

Note that the maximal number of cylinders does not depend on k anymore.

Recall that the mean area of a cylinder is given by
1

dimC Q(α)− 1
(cf Theorem

1), so
qmax(α)

dimC(Q(α)) − 1
represents the maximum mean total area of the cylinders in

stratum Q(α). As another corollary of Proposition 4, we obtain Proposition 2.

5.3. Configurations with simple surfaces. This section provides an answer in
the quadratic case to the following question of Alex Eskin and Alex Wright: for
a given stratum or a connected component of a stratum is it possible to find an
admissible configuration whose boundary surfaces are only tori ?
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Lemma 5 gives the main obstruction to solve this problem in the quadratic case:
odd zeroes are created by surfaces of non trivial holonomy ⊖ or by loops in graphs
of configurations, and there are at most two surfaces of non trivial holonomy or
two loops in a configuration. That means that a strata with enough odd zeroes will
never have a configuration with only tori as boundary surfaces.

The second obstruction is that, as in the case of abelian differentials, there is
no way to have a decomposition into simple surfaces in hyperelliptic components
of strata, since they are made from at most two surfaces and cylinders (cf [Bo] and
§ 7).

Considering these two obstructions (odd zeroes and hyperelliptic components),
we can formulate the following result, which is very similar to the case of Abelian
differentials (cf [BG]).

Proposition 5. Let Qcomp(α1, . . . , αs) be a connected component of a stratum of
quadratic differentials, which is not hyperelliptic. If all the αi are even then there
exists a configuration in this component containing only tori and cylinders.

Proof. Denote n the number of zeroes of order 4k+ 2 and m the number of zeroes
of order 4k. As in the case of abelian differentials, we just look at what type of
zeroes can be created by chains of tori and cylinders. We obtain the same type of
zeroes as in the case of Abelian differentials.

For the first type represented in the picture above, the cone angle around the
singularity is also 2(2k + 1)π so we obtain a zero of order 4k.

0
1

1 1

1

1

1
0

Zeroes of the second type represented are of order 4k+2 since the cone angle is
(4k + 4)π.

0
1

1 1

1

1

1 2 2

Finally zeroes of the third type are of order 4k + 4.

2 2 1

1 1

1

1

1 2 2

With these chains we can easily construct a bigger chain that realizes all zeroes.
It remains to embed this chain in a graph of configuration. We can see that if there
is at least two zeroes of order greater than 4, or if there is at least one zero of order
greater than 8, then we can embed this chain in the graph e) with local ribbon
graph of type +4.2a.
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Since Q(4) is empty, it remains only strata Q(2, 2, . . . , 2), which is realizable
with a graph of type e) and a local ribbon graph of type ◦4.2, by example.

�
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Part 2. Volumes of strata and hyperelliptic components of strata

This part details certain cases where we can find a closed formula for the volume
of a stratum or a connected component of a stratum. In genus 0 the volumes of
strata are computed by Athreya, Eskin and Zorich (Theorem 1.6. of [AEZ1]). In
higher genus, no closed formula is currently known, even though some calculations
are possible using [EOPa].

The two cases where we can find explicit formulae for the volumes are the hy-
perelliptic components, using the known volumes in genus 0, and the strata of
complex dimension smaller than 5, using techniques developed by Zorich in [Z1],
and by Athreya, Eskin and Zorich in [AEZ2].

Note that in all these cases, we obtain a formula:

VolQ1(α) = r · π2geff , r ∈ Q,

which is expected to be general. Here geff = ĝ − g where ĝ is the genus of the

double cover Ŝ.
In these two cases, we apply our previous results and compute Siegel–Veech

constants for the entire components or for the entire strata, using values of Siegel–
Veech constants for configurations. We choose in purpose examples where we know
the values of Siegel–Veech constants in order to show that the results are coherent.

6. Volumes of hyperelliptic components

We begin with hyperelliptic components of strata: the values of their volumes
are easier to compute since they are related to values of volumes in genus 0, which
are computed in [AEZ1].

6.1. Volumes of hyperelliptic components of strata of quadratic differen-

tials. The strata of the moduli spaces of quadratic differentials have one or two
connected components: for genus g ≥ 5 there are two components when the stra-
tum contains a hyperelliptic component (cf [L2]). For genus g ≤ 4 some strata are
hyperelliptic and connected (cf [L1]): namely Q(12,−12) and Q(2,−12) in genus
1, Q(14), Q(2, 12), and Q(2, 2) in genus 2. For these strata and for hyperelliptic
components of strata in higher genus the volume is easier to compute. We explain
here the general strategy to compute these volumes, that we apply in section 7.

Proposition 6. The volumes of hyperelliptic components of strata of quadratic
differentials are given by the following formulae:

• First type (k1 ≥ −1 odd, k2 ≥ −1 odd, (k1, k2) 6= (−1,−1)):
If k1 6= k2:

(21) Volnumb Qhyp
1 (k21 , k

2
2) =

2d

(d)!
πd k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!

Otherwise:

(22) Volnumb Qhyp
1 ((g − 1)4) =

3 · 22g+2

(2g + 2)!
π2g+2

(
(g − 1)!!

g!!

)2

• Second type (k1 ≥ −1 odd, k2 ≥ 0 even):

(23) Volnumb Qhyp
1 (k21 , 2k2 + 2) =

2d

(d)!
πd−1 k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!
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• Third type (k1, k2 even):

(24) Volnumb Qhyp
1 (2k1 + 2, 2k2 + 2) =

2d+1

(d)!
πd−2 k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!

where d = k1 + k2 + 4 is the complex dimension of the strata.

Example 1. For the five strata that are connected and hyperelliptic we obtain:

VolQ1(1
2,−12) =

π4

3
= 30ζ(4) VolQ1(1

4) =
π6

15
= 63ζ(6)(25)

VolQ1(2,−12) =
4π2

3
= 8ζ(2) VolQ1(2, 1

2) =
2π4

15
= 12ζ(4)(26)

VolQ1(2, 2) =
4π2

3
= 8ζ(2)(27)

For an alternative computation of some of these volumes using graphs, see Appendix
B.

Proof. By Convention 3 we compute volumes of strata with numbered zeroes. We
denote Volnumb Q(α) the volume of the strata Q(α) when the zeroes are numbered

and Volunnumb Q(α) when they are not. We have the following relation:

Volnumb Q1(d
α1

1 , dα2

2 , . . . , dαm
m ) =

α1!α2! . . . αm!

|Γ(α)| Volunnumb Q1(d
α1

1 , dα2

2 , . . . , dαm
m )

where Γ(α) denotes the group of possible symmetries of all surfaces in the stratum
Q(α).

We recall here the three types of strata that contain hyperelliptic components
(cf [L1]):

• First type:

Qhyp
g (k21 , k

2
2)

π // Q0(k1, k2,−12g+2)

for k1 ≥ −1 odd, k2 ≥ −1 odd, (k1, k2) 6= (−1,−1), g = 1
2 (k1+k2)+1. The

ramification points are 2g+2 poles. Note that for ki = −1 there are 2g+3
poles and

(
2g+3

1

)
choices for the cover, so in that case π is (2g + 3) : 1.

• Second type:

Qhyp
g (k21 , 2k2 + 2)

π // Q0(k1, k2,−12g+1)

for k1 ≥ −1 odd, k2 ≥ 0 even, g = 1
2 (k1 + k2 + 3). The ramification points

are 2g + 1 poles and the zero of order k2. Note that for k1 = −1 there are
2g+2 poles and

(
2g+2

1

)
choices for the cover, so in that case π is (2g+2) : 1.

• Third type:

Qhyp
g (2k1 + 2, 2k2 + 2)

π // Q0(2k1, k2,−12g)

for k1, k2 even, g = 1
2 (k1 + k2)+ 2. The ramification points are over all the

singularities.

Except the special cases, π is always 1 : 1.
We introduce the following notation for the general case:

Qhyp(α)
π−→
I:1

Q(β)

with α = (dα1

1 , . . . , dαn
n ) and β = (d̃β1

1 , . . . , d̃βm
m ).
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Let d = dimC Q(β) be the complex dimension of the stratum that we consider.
Recall that, by definition, the volume of the hyperboloid of surfaces of area equal

to 1/2 is given by the volume of the cone underneath times the real dimension of
the stratum:

VolQ1(β) = 2d ·Vol{S ∈ Q(β), area(S) ≤ 1/2}
Let S be a point in Q1(β), and let S′ be one of the I possible lifts π∗(S). As S is

of area 1/2, S′ is of area 1 so belongs toQhyp
2 (α). So the cone underneathQ1(β) is in

1 : I correspondence with the cone underneath Qhyp
2 (α). Now we want to compare

the volume elements ofQhyp(α) andQ(β). So we have to understand how the lattice

(H−
1 (Ŝ, Σ̂;Z))∗

C
is lifted by π and compare it with the lattice (H−

1 (Ŝ′, Σ̂′;Z))∗
C
.

For the first type we have the following commutative diagram:

Hg+1(k1 + 1, k2 + 1)

��

H2g+1((2k1 + 1)2, (k2 + 1)2)oo

��

Q0(k1, k2,−12g+2) Qhyp
g (k21 , k

2
2)

π

I:1
oo

On S ∈ Q0(k1, k2,−12g+2) we consider the saddle connections defined by taking a
broken line joining all the singularities except one pole, as in the picture above, such
that a joins the two zeroes, b joins a zero to a pole, and ai, bi join the remaining poles

except the last one, for i going from 1 to g. Then â, b̂, â1, . . . , b̂g is a primitive basis

of H−
1 (Ŝ, Σ̂;Z) (cf Lemma 1). On the other hand consider the saddle connections

on Qhyp
g (k21 , k

2
2) constructed using a, b, a1, . . . bg in the following way: for all ai and

bi and for b, take the combination of the two lifts by π to obtain primitive cycles
Ai, Bi, and B in H1(S

′,Σ′,Z). Take only one of the two preimages of a to get a

primitive cycle A. Then Â, B̂, Â1, . . . , B̂g define a primitive basis of H−
1 (Ŝ′, Σ̂′;Z)

(same arguments as in Lemma 1).

Q(β)

H(β′)

Qhyp(α)

H(α′)

π

σd σu

s

ai

b
a

âi
b̂

â

Ai

B
A

Âi

B̂

Â

On the picture σu and σd are the involutions of the double covers and s is the
hyperelliptic involution.

In this local coordinates volume elements are given by:

dνdown = dâ db̂ dâ1 . . . db̂g = 22dda db da1 . . .dbg

and

dνup = dÂdB̂ dÂ1 . . . dB̂g = 22ddAdB dA1 . . .dBg

with dA = π∗(da), dB = 4π∗(db), dAi = 4π∗(dai) and dBi = 4π∗(dbi).
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So we obtain the following relation between the volume elements:

dνup = 22d−2π∗(dνdown)

Same considerations for the two other types give the same result.
So now we have all the elements to compute the relation between Volnumb Q1(β)

and Volnumb Qhyp
1 (α):

Volnumb Qhyp
1 (α) =

α1! . . . αn!

|Γhyp(α)| Volunnumb Qhyp
1 (α)

=
α1! . . . αn!

|Γhyp(α)| · 2dVolunnumb{S′ ∈ Qhyp(α), area(S′) ≤ 1/2}

=
α1! . . . αn!

|Γhyp(α)| · 2d · 1

2d
Volunnumb{S ∈ Qhyp(α), area(S) ≤ 1}

=
α1! . . . αn!

|Γhyp(α)| · 2d · 1

2d
· I · 22d−2Volunnumb{S ∈ Q(β), area(S) ≤ 1/2}

=
α1! . . . αn!

|Γhyp(α)| · I · 2d−2 Volunnumb Q1(β)

=
α1! . . . αn!

|Γhyp(α)| · I · 2d−2 · |Γ(β)|
β1! . . . βm!

Volnumb Q1(β)

Note that, for the first two types, the hyperelliptic involution exchanges the ze-
roes which are preimages of the same zero downstairs. So for these types |Γhyp(α)| =
2. For the third type |Γhyp(α)| = 1. Downstairs there is no symmetry for each stra-
tum that we consider so |Γ(β)| = 1 for each β.

The values of the volumes of strata of quadratic differentials in genus 0 are given
in [AEZ1], Theorem 1.6:

(28) VolQ1(d1, . . . , dn) = 2π2
n∏

i=1

v(di),

with

v(n) =
n!!

(n+ 1)!!
· πn ·

{

π when n is odd

2 when n is even

for n ∈ {−1, 0} ∪ N and with

n!! = n(n− 2)(n− 4) · · · ,
by convention (−1)!! = 0!! = 1.

In particular we have:

• for the first type (k1 ≥ −1 odd, k2 ≥ −1 odd, (k1, k2) 6= (−1,−1), d =
2g + 2):

Volnumb Q1(k1, k2,−1d) = 2πd k1!!

(k1 + 1)!!
· k2!!

(k2 + 1)!!
,

• for the second type (k1 ≥ −1 odd, k2 ≥ 0 even, d = 2g + 1):

Volnumb Q1(k1, k2,−1d) = 4πd−1 k1!!

(k1 + 1)!!
· k2!!

(k2 + 1)!!
,
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• for the third type (k1, k2 even, d = 2g):

Volnumb Q1(k1, k2,−1d) = 8πd−2 k1!!

(k1 + 1)!!
· k2!!

(k2 + 1)!!
.

So we obtain the result. �

6.2. Volumes of hyperelliptic components of strata of Abelian differen-

tials.

Proposition 7. The volumes of hyperelliptic components of strata of Abelian dif-
ferentials with area 1/2 are given by the following formulae:

Volnumb Hhyp
1/2 (k − 1) =

2k+2

(k + 2)!
· (k − 2)!!

(k − 1)!!
· πk+1(29)

Volnumb Hhyp
1/2

((
k

2
− 1

)2
)

=
2k+3

(k + 2)!
· (k − 2)!!

(k − 1)!!
· πk(30)

Proof. We recall here the two types of strata of Abelian differentials that contain
hyperelliptic components (cf [KZ]):

• First type (g ≥ 2):

Hhyp(2g − 2)
π // Q(2g − 3,−12g+1)

• Second type (g ≥ 2):

Hhyp((g − 1)2)
π // Q(2g − 2,−12g+2)

In both cases, π is an isomorphism. By conventions 2 and 1, the volume elements
are chosen to be invariant under this isomorphism, so we have:

Volunnumb Hhyp
1 (2g − 2) = Volunnumb Q1(2g − 3,−12g+1)

Volunumb Hhyp
1 ((g − 1)2) = Volunnumb Q1(2g − 2,−12g+2)

So considering the naming of the singularities we obtain:

Volnumb Hhyp
1 (2g − 2) =

1

(2g + 1)!
Volnumb Q1(2g − 3,−12g+1)

=
2

(2g + 1)!
· (2g − 3)!!

(2g − 2)!!
· π2g

Volnumb Hhyp
1 ((g − 1)2) =

2!

2
Volunnumb Hhyp

1 ((g − 1)2)

=
2

(2g + 2)!
Volnumb Q1(2g − 2,−12g+2)

=
8

(2g + 2)!
· (2g − 2)!!

(2g − 1)!!
· π2g

by plugging values of volumes given in (28). For the first type, for k = 2g − 1
we have dimC H(k − 1) = 2g = k + 1. For the second type, for k = 2g we have

dimC H
((

k
2 − 1

)2
)

= 2g + 1 = k + 1. Finally, using Lemma 4 we obtain the

result. �
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7. Coherence of the formulae for the hyperelliptic components of

strata

7.1. Configurations containing cylinders in hyperelliptic components. The

complete list of all configurations of ĥomologous saddle connexions is described by
C. Boissy in [Bo]. We extract from this list the configurations containing cylinders,
and recall them on Figure 8.

The following proposition precise the boundary of the hyperelliptic components
of strata.

Proposition 8. Let S be a flat surface in a hyperelliptic component of a stratum

of quadratic differentials Qhyp(α). Les γ be a collection of ĥomologous saddle con-
nexions realizing a configuration C on the previous list (Figure 8). Then the two
possible boundary components S1, S2 ∈ Q(α′

1),Q(α′
2) of S are hyperelliptic.

For every surfaces S1 ∈ Qhyp(α′
1), S2 ∈ Qhyp(α′

2), there is at least one way to
assemble S1 and eventually S2 following configuration C to obtain a hyperelliptic
surface S.

Proof. If S ∈ Qhyp(α), following Lemma 10.3 of [EMZ], we may assume that the
hyperelliptic involution fixes each boundary component. So it implies that S1 and
S2 are also hyperelliptic.

If S1 ∈ Qhyp(α′
1) and S2 ∈ Qhyp(α′

2), we can make the surgeries on the boundary
surfaces in such a way that the new surfaces stay invariant under the hyperelliptic
involution (cf § 14 in [EMZ]). Then we construct an application on S that acts
on each boundary component as the hyperelliptic involution for the corresponding
stratum and on the cylinder either by fixing its boundaries and rotating or by
exchanging its two boundaries depending on the configuration C, in such a way
that the global application is an involution of S. The action of the hyperelliptic
involution on the configurations is detailed in [Bo]. �

7.2. Siegel–Veech constants for configurations in hyperelliptic compo-

nents. Note that the complex dimension of any hyperelliptic component is given
by: dimC Qhyp(k21 , 2k2 + 2) = dimC Qhyp(k21 , k

2
2) = dimC Qhyp(2k1 + 2, 2k2 + 2) =

k1 + k2 + 4 =: d.
First recall that the constants for the entire components are known ([EKZ]):

Lemma 6.

(31) carea(Qhyp(α)) =
k1 + k2 + 4

4π2

(

2 +
1

(k1 + 2)(k2 + 2)

)

for α = (k21 , k
2
2), α = (k21 , 2k2 + 2) or α = (2k1 + 2, 2k2 + 2).

Proof. It is a direct consequence of Corollary 3 in [EKZ]. We L− denote the sum
of the Lyapunov exponents λ−

1 , . . . , λ
−
geff

for the hyperelliptic component Qhyp(α).
Recall that by Theorem 1 of [EKZ], we have:

carea(Qhyp(α)) =
3

π2
(L− − I −K)

where

I =
1

4

∑

dj odd

1

dj + 2
, K =

1

24

∑

j

dj(dj + 4)

dj + 2
.
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Configurations with cylinders Boundary strata

Qhyp(k21 , k
2
2), k1, k2 odd, (k1, k2) 6= (−1,−1)

C1
k1 k1

0

0
∅ ∅

0
0k2 k2

Hhyp(k1 − 1), Hhyp(k2 − 1)

C2(ki) ki

ki

0

0
{k2j }

Qhyp
g−1(k

2
j , (ki − 2)2)

Qhyp(k21 , 2k2 + 2), k1 odd and k2 even

C1
k1 k1

0

0
∅ ∅

0

0
k2

k2

Hhyp(k1 − 1), Hhyp(
(
k2

2 − 1
)2
)

C2
k2 k2

0

0
{k21}

Qhyp
g−1(k

2
1 , 2k2 − 2)

C3 k1

k1

0

0
{2k2 + 2}

Qhyp
g−1(2k2 + 2, (k1 − 2)2)

Qhyp(2k1 + 2, 2k2 + 2), k1, k2 even

C1
k1

k1 0

0
∅ ∅

0

0
k2

k2

Hhyp(
(
k1

2 − 1
)2
), Hhyp(

(
k2

2 − 1
)2
)

C2(ki)
ki ki

0

0
{2kj + 2}

Qhyp
g−1(2kj + 2, 2ki − 2)

Additional configurations

Qhyp(k2i , 2)

ki ki
0

0
∅ ∅

0

0
0

0

Hhyp(ki − 1)

Qhyp(2ki + 2, 2)
ki

ki 0

0
∅

0

0
0

0

Hhyp(
(
ki

2 − 1
)2
)

Q(2, 2)
0

0 0

0

0

0
0

0

∅

Figure 8. Configurations containing cylinders for hyperelliptic
components of strata of quadratic differentials
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Corollary 3 in [EKZ] gives the values of L− for hyperelliptic components, that we
recall here:

L− =
k1 + k2 + 4

4

(

1 +
1

(k1 + 2)(k2 + 2)

)

for Qhyp(k21 , k
2
2)

L− =
k1 + k2 + 4

4

(

1 +
1

k1 + 2

)

for Qhyp(k21 , 2k2 + 2)

L− =
k1 + k2 + 4

4
for Qhyp(2k1 + 2, 2k2 + 2)

�

Now to compute these constants for each configuration, we use the method de-
scribed in § 2.5, we follow step by step the computations of § 3 and make only a
few adjustments.

First the boundary of Qhyp(α) is described by Proposition 8 and consists of
hyperelliptic components of the boundary strata of Q(α), so Vol∗ Qε

1(comp, C) will
be express in terms of

∏

i VolQhyp(α′
i). Second we will have to take care of the

symmetries induced by the hyperelliptic involution.
Finally we obtain the following variation of formula (17):

(32) carea(C) = M
4q1 + q2
2m+q+3

∏

i(ai − 1)!2ai VolHhyp
1 (αi)

∏

j(bj − 1)! VolQhyp
1 (βj)

(dimC Q(α) − 1)! VolQhyp
1 (α)

where M = MsMc

Mt
and Mc, Mt are given by (8) and (11), and Ms takes care

of the hyperelliptic involution. It will be detailed for each configuration in the
following paragraphs.

7.2.1. Qhyp(k21 , k
2
2), with k1 and k2 odd and (k1, k2) 6= (−1,−1).

Proposition 9. For the first type of hyperelliptic components, the Siegel–Veech
constants for the configurations described on Figure 8 are given by the following
formulae:

carea(C1) =
k1 + k2 + 4

4(k1 + 2)(k2 + 2)π2
(33)

carea(C2(ki)) =
(k1 + k2 + 4)(ki + 1)

(k1 + k2 + 2)2π2
(34)

Moreover:

carea(Qhyp(k21 , k
2
2)) = carea(C1) + carea(C2(k1)) + carea(C2(k2))

Example 2.

carea(Q(12, (−1)2)) = carea(C1) + carea(C2(1)) =
1

3π2
+

2

π2
=

7

3π2

carea(Q(14)) = carea(C1) + 2carea(C2(1)) =
1

6π2
+

3

π2
=

19

6π2

Proof. For each configuration on the list (Figure 8) we apply the formula (32).

(1) Configuration C1 for k1 ≥ 1, k2 ≥ 1:
• Mc = 42, Mt = 1
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0

0

0

0
k1

k1 k2
k2

Hhyp(k1 − 1) Hhyp(k2 − 1)

Figure 9. Configuration C1 for Qhyp(k21 , k
2
2)

• Ms =
4k1k2

|Γ| , |Γ| = 2 · 2 because of the action of the hyperelliptic

involutions on the two boundary components.
• q1 = 0, q2 = 1, m = 2
• dimC H(ki − 1) = ki + 1
Applying formula (32) we get:

carea(C1) = 42k1k2
1

26

k1!k2! VolHhyp
1/2 (k1 − 1)VolHhyp

1/2 (k2 − 1)

(k1 + k2 + 3)!VolQhyp
1 (k21 , k

2
2)

Plugging values (29) and (21) of volumes we obtain (33).
Taking care of the numbering of the zeroes, there is only one such con-

figuration.
(2) Configuration C1 for k1 ≥ 1, k2 = −1: it is a degeneration of the first

configuration:

0

0

0

0
k1

k1

Hhyp(k1 − 1)

Figure 10. Configuration Cdeg
1 for Qhyp(k21 , (−1)2)

• Mc = 42, Mt = 1

• Ms =
2k1

|Γ| , |Γ| = 2 (hyperelliptic involution)

• q1 = 0, q2 = 1, m = 1
• dimC H(ki − 1) = ki + 1
Applying formula (32) we get:

carea(Cdeg
1 ) = 42

2k1

2

1

25

k1! VolHhyp
1/2 (k1 − 1)

(k1 + 2)!VolQhyp
1 (k21 , (−1)2)

Plugging values (29) and (21) of volumes we obtain

carea(Cdeg
1 ) =

k1 + 3

(k1 + 2)4π2

which is equivalent to (33).
(3) Configuration C2(ki) for ki ≥ 1:

• Mc = 42, Mt = 1
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ki

ki 0

0{k2j }

Qhyp(k2j , (ki − 2)2)

Figure 11. Configuration C2 for Qhyp(k21 , k
2
2)

• Ms = ki. Here once we have chosen a direction in which we make the
surgery for one of the two zeroes of order ki − 2 of the boundary sur-
face, the direction for the other zero is determined by the hyperelliptic
involution.

• q1 = 1, q2 = 0, m = 1
• dimC Q(k2j , (ki − 2)2) = k1 + k2 + 2

Applying formula (32) we get:

carea(C2(ki)) = 42ki
4

25
(k1 + k2 + 1)!VolQhyp

1 (k2j , (ki − 2)2)

(k1 + k2 + 3)!VolQhyp
1 (k21 , k

2
2)

Plugging values (21) of volumes we obtain (34).
For each ki there is only one such configuration.

Summing on all configurations we find the known value (6) for the entire hyperel-
liptic component. �

7.2.2. Qhyp(k21 , 2k2 + 2) with k1 odd and k2 even.

Proposition 10. For the second type of hyperelliptic components, the Siegel–Veech
constants for the configurations described on Figure 8 are given by the following
formulae:

carea(C1) =
(k1 + k2 + 4)

(k1 + 2)(k2 + 2)4π2
(35)

carea(C2) =
(k2 + 1)(k1 + k2 + 4)

2(k1 + k2 + 2)π2
(36)

carea(C3) =
(k1 + 1)(k1 + k2 + 4)

2(k1 + k2 + 2)π2
(37)

Moreover if k2 6= 0:

carea(Qhyp(k21 , 2k2 + 2)) = carea(C1) + carea(C2) + carea(C3).
If k2 = 0 and k1 6= −1, for the additional configuration we have:

(38) carea(Cadd) =
5(k1 + 4)

8(k1 + 2)π2

and we have:
carea(Qhyp(k21 , 2)) = carea(Cadd) + carea(C3).

For Q(2,−12), cf § 7.3.1.

Example 3.

carea(Q(2, 12)) = carea(Cadd) + carea(C3) =
25

24π2
+

5

3π2
=

65

24π2
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Proof. For each configuration on the list (Figure 8) we apply the formula (32).

(1) Configuration C1:

0

0

0

0
k1

k1
k2
k2

Hhyp(k1 − 1) Hhyp(
(
k2

2 − 1
)2
)

Figure 12. Configuration C1 for Qhyp(k21 , 2k2 + 2)

• Mc = 42, Mt = 2
• Ms = k1k2, same reasons as for the first type.
• q1 = 0, q2 = 1, m = 2

• dimC H(k1 − 1) = k1 + 1, dimC H(
(
k2

2 − 1
)2
) = k2 + 1

Applying formula (32) we get:

carea(C1) = 42
k1k2
2

1

26

k1!k2! VolHhyp
1/2 (k1 − 1)VolHhyp

1/2 (
(
k2

2 − 1
)2
)

(k1 + k2 + 3)!VolQhyp
1 (k21 , 2k2 + 2)

Plugging values (29), (30) and (23) of volumes we obtain (35).
There is only one such configuration.

(2) Configuration C2:

k2 k2
0

0

{k21}
Qhyp(k21 , 2k2 − 2)

Figure 13. Configuration C2 for Qhyp(k21 , 2k2 + 2)

• Mc = 42, Mt = 1

• Ms =
2k2

|Γ| , |Γ| = 2.

• q1 = 1, q2 = 0, m = 1
• dimC Q(k21 , 2k2 − 2) = k1 + k2 + 2
Applying formula (32) we get:

carea(C2) = 42
2k2

2

4

25
(k1 + k2 + 1)!VolQhyp

1 (k21 , 2k2 − 2)

(k1 + k2 + 3)!VolQhyp
1 (k21 , 2k2 + 2)

Plugging values (23) of volumes we obtain (36). There is only one con-
figuration of this type.

(3) Configuration C3:
• Mc = 42, Mt = 1, Ms = k1
• q1 = 1, q2 = 0, m = 1
• dimC Q(2k2 + 2, (k1 − 2)2) = k1 + k2 + 2
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k1

k1 0

0{2k2 + 2}

Qhyp(2k2 + 2, (k1 − 2)2)

Figure 14. Configuration C3 for Qhyp(k21 , 2k2 + 2)

Applying formula (32) we get:

carea(C3) = 42k1
4

25
(k1 + k2 + 1)!VolQ1(2k2 + 2, (k1 − 2)2)

(k1 + k2 + 3)!VolQ1(k21 , 2k2 + 2)

Plugging values (23) of volumes we obtain (37). There is only one con-
figuration of this type.

Summing on all the three configurations we find the known value (6) for
the entire component.

(4) For Qhyp(k21 , 2) there is an additional configuration:

0

0

0

0
k1

k1
0

0
Hhyp(k1 − 1)

Figure 15. Additional configuration for Qhyp(k21 , 2)

• Mc = 43, Mt = 2, Ms = k1
• q1 = 1, q2 = 1, m = 1
• dimC H(k1 − 1) = k1 + 1
Applying formula (32) we get:

carea(Cadd) = 43
k1
2

4 + 1

26
k1! VolH1/2(k1 − 1)

(k1 + 3)!VolQ1(k21 , 2)

Plugging values (29) and (21) of volumes we obtain (10).

�

7.2.3. Qhyp(2k1 + 2, 2k2 + 2) with k1 and k2 even.

Proposition 11. For the third type of hyperelliptic components, the Siegel–Veech
constants for the configurations described on Figure 8 are given by the following
formulae:

carea(C1) =
k1 + k2 + 4

4(k1 + 2)(k2 + 2)π2
(39)

carea(C2(ki)) =
(k1 + k2 + 4)(ki + 1)

2(k1 + k2 + 2)π2
(40)

Moreover:

carea(Qhyp(2k1 + 2, 2k2 + 2)) = carea(C1) + carea(C2(k1)) + carea(C2(k2))
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If k2 = 0 and k1 6= 0:

(41) carea(Cadd) =
5(k1 + 4)

8(k1 + 2)π2

and:

carea(Qhyp(2k1 + 2, 2)) = carea(C2(k1)) + carea(Cadd).
For Q(2, 2), cf § 7.3.2.

Proof. For each configuration on the list (Figure 8) we apply the formula (32).

(1) Configuration C1:

0

0

0

0
k1

k1 k2
k2

Hhyp(
(
k1

2 − 1
)2
) Hhyp(

(
k2

2 − 1
)2
)

Figure 16. Configuration C1 for Qhyp(2k1 + 2, 2k2 + 2)

• Mc = 42, Mt = 1, Ms = k1k2
• q1 = 0, q2 = 1, m = 2
• dimC H(

(
ki

2 − 1
)
) = ki + 1

Applying formula (32) we get:

carea(C1) = 42
k1k2

1

1

26
k1!k2! VolH1/2(

(
k1

2 − 1
)2
)VolH1/2(

(
k2

2 − 1
)2
)

(k1 + k2 + 3)!VolQ1(2k1 + 2, 2k2 + 2)

Plugging values (30) and (24) of volumes we obtain (39).
(2) Configuration C2(ki):

ki ki
0

0

{2kj + 2}

Qhyp(2kj + 2, 2ki − 2)

Figure 17. Configuration C2 for Qhyp(2k1 + 2, 2k2 + 2)

• Mc = 42, Mt = 1, Ms = ki
• q1 = 1, q2 = 0, m = 1
• dimC Q(2kj + 2, 2ki − 2) = k1 + k2 + 2
Applying formula (32) we get:

carea(C2) = 42ki
4

25
(k1 + k2 + 1)!VolQ1(2kj + 2, 2ki − 2)

(k1 + k2 + 3)!VolQ1(2k1 + 2, 2k2 + 2)

Plugging values (24) of volumes we obtain (40).
(3) For Qhyp(2ki + 2, 2) there is an additional configuration:

• M = 43, Mt = 2, Ms = k1
• q1 = 1, q2 = 1, m = 1
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0

0

0

0
k1

k1 0

0

Hhyp(
(
k1

2 − 1
)2
)

Figure 18. Additional configuration for Qhyp(2k1 + 2, 2)

• dimC H(
(
k1

2 − 1
)2
) = k1 + 1

Applying formula (32) we get:

carea(Cadd) = 43
k1
2

5

25
k1! VolH1/2(

(
k1

2 − 1
)2
)

(k1 + 3)!VolQ1(2k1 + 2, 2)

Plugging values (29) and (21) of volumes we obtain (11).

�

7.3. Special cases: empty boundary stratum. The strataQ(2,−12) andQ(2, 2)
have no boundary stratum (cf §3.3.4), so their configurations are degenerations of
the configurations presented on the previous paragraph. With Q(−14) they are the
only strata with an empty boundary stratum.

Note that furthermore they are connected.

7.3.1. Stratum Q(2,−12). This stratum is hyperelliptic of second type with k2 = 0
and k1 = −1.

Recall the value of the volume computed in (26):

VolQnum
1 (2,−12) =

4

3
π2.

For an alternative computation of this volume using graphs, see Appendix B.1.
The only one configuration is a degeneration of the configuration of Figure 15,

shown in Figure 19.

0

00

0

Figure 19. The only configuration of Q(2,−1,−1) containing
cylinders, and its topological picture

We have the following configuration data:

• Mc = 43 , Mt = 2
• q1 = 1 = q2
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In this case we have to use a variation of the main formula, given by equation
(16), we obtain:

carea(C2) =
1

2
43

4 + 1

25(2)! VolQ1(2,−12)

=
5

2VolQ1(2,−12)

The configuration counts only once, so with the computed value of the volume
it gives:

carea(Q1(2,−12)) =
15

8π2

which is the known value of carea(Q(2,−12))

7.3.2. Stratum Q(2, 2). This stratum is hyperelliptic of the third type with k1 =
k2 = 0.

Recall the value of the volume computed in (27):

VolQnum
1 (2, 2) =

4

3
π2.

There is only one configuration shown on Figure 20.

0

0

0

0

0

0

0

0

Figure 20. Configuration C for Q(2, 2)

Data:

• Mc = 44, Mt = 2
• q1 = 2, q2 = 1
• dimC Q(2, 2) = 4

Equation (16) gives:

carea(C) =
1

2
44

4 · 2 + 1

26(3)! VolQ(2, 2)

=
3

VolQ1(2, 2)

The configuration counts only once, so with the computed value of the volume it
gives:

carea(Q(2, 2)) =
9

4π2

which is the known value for the stratum.
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8. Volumes of strata of complex dimension smaller than 5

For strata of complex dimension d ≤ 5, we can use the ideas developed by Eskin
and Okounkov in [EOk], Zorich in [Z1], Athreya Eskin and Zorich in [AEZ2], and
compute volumes by counting “integer points” in the stratum.

The relation between volume and number of “integer points” is given in § 2.3 of
[AEZ2]:

Proposition 12 (Athreya-Eskin-Zorich).

VolQ1(α) = 2d · lim
N→∞

N−d ·
(Number of “integer points” of area at most N/2 in Q(α))(42)

Here we recall briefly the techniques of Athreya, Eskin and Zorich to count
integer points (or square-tiles surfaces, or pillowcase covers) in genus 0, and explain
how generalize them to genus g > 0.

A flat surface (S, ω) corresponding to an integer point, i.e. a point in the lattice

(H−
1 (Ŝ, Σ̂;Z))∗

C
in local coordinates, can be decomposed into horizontal cylinders

with half-integer or integer widths, with zeroes and poles lying on the boundaries
of these cylinders, that are called singular layers in [AEZ2]. Each layer defines a
ribbon graph (graph with a tubular neighbourhood inside the surface), called map
in combinatorics. A zero of order di belonging to a layer corresponds to a vertex
of valency di + 2 in the associated graph, and edges of the graph emerging from
this vertex correspond to horizontal rays emerging from the zero in the surface.
The graph is metric: edges have half-integer lengths. A ribbon graph or a map
carries naturally a genus: it is the minimal genus of the surface in which it can be
embedded. So a ribbon graph associated to a singular layer in S has a genus lower
or equal to the genus g of S. Also a ribbon graph has some faces corresponding to
the connected components of its complementary in the minimal surface in which
it can be embedded. In our case faces correspond to cylinders emerging from the
layer. In genus 0 each face corresponds to a distinct cylinder, in higher genus some
cylinders may have both of their boundaries glued to the same layer. For a ribbon
graph Γ we have the Euler relation:

χΓ = 2− 2gΓ = VΓ − EΓ + FΓ

where gΓ is the genus of Γ, VΓ, EΓ and FΓ the number of respectively vertices, edges
and faces of Γ. In the figure below we represent the two maps with one 4-valent
vertex: one is of genus 0 and has 3 faces, the other is of genus 1 and has 1 face.

genus 0 genus 1

=

We encode the decomposition of the surface S into horizontal cylinders in a
supplementary graph T , by representing each singular layer by a point in this graph
and each cylinder emerging form a layer by an edge emerging form the corresponding
vertex. So a layer with k faces corresponds to a k-valent vertex in T . We record
also the information on the order of the zeroes lying in each layer, and on the genus
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of the ribbon graph: that gives a decoration of the graph T . For surfaces S of genus
0 this graph is a tree.

As an example we consider a surface in Q(2, 12) represented by the following
graph:

1(1, 1)

w1

w2

0(2)

l4

l3

l5

l2 l1

On the left we figure the graph T . The lower vertex represents a ribbon graph of
genus 1 with two zeroes of order 1 (two 3-valent vertices): the corresponding layer
is drawn on the right. The higher vertex corresponds to the ribbon graph of genus
0 with one 4-valent vertex (zero of order 2) drawn on the right. The width wi of
the cylinders and the lengths li of the edges of the ribbon graphs are also recorded.

Below is a flat representation of a surface corresponding to the configuration
described above.

1

2 1

3 4 5 3 4 5

Note that the genus of S is the sum of the genera of the vertices of T , and the
genus created by loops in the graph T : namely, the dimension of the homology of
the graph T . In the example, the surface is of genus 2.

Note also that horizontal cylinders in S which are homologous to 0 correspond to
separating edges on the graph T . It will be useful because with Convention 2, the
width w of a cylinder is an integer if its waist curve is homologous to 0, and half-
integer otherwise. In the example w1 is integer and w2 half-integer (furthermore
here w1 is necessarily equal to 2w2).

We have to choose the li such that the length of the boundaries of the faces of
the ribbon graphs Γj correspond to the wk. In the example we have necessarily
w2 = l1 = l2 and w1 = 2l1 = 2w1 = 2(l3+ l4+ l5). So we have only one choice for l1

and l2 and exactly
∑w1−2

i=1 (i − 1) = (w1−2)2

2 choices for (l3, l4, l5) (see also Lemma
7), because with the convention 2, w2 is an integer and the li are half-integer.

To count surfaces of area lower than N/2 corresponding to lattice points, we
have to sum on the possible graphs T and on the possible corresponding layers Γ,
the number of distinct flat surfaces of this combinatorial type. So for a fixed graph
T and fixed layers Γi we have to count the number of twists tj , widths wi, heights
hi and lengths of saddle connexions li satisfying the combinatorial configuration,
and such that the area w · h =

∑

iwihi is lower or equal to N/2. More precisely
by (42) we have to get the asymptotic of this number as N goes to infinity. In the
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example all the li are half-integer, h1, t1, h2, t2 also because they are coordinates
of saddle connexions that are non homologous to zero, w2 is half-integer and w1

is integer. Twists t1 and t2 take respectively 2w1 and 2w2 half-integer values. We

have already seen that the li take (w1−2)2

2 values (with the condition w1 = 2w2).
So we want to find the asymptotic of

∑

w1h1+w2h2≤N/2
w1∈N,

w2,h1,h2∈N/2

2w12w2
(w1 − 2)2

2
1{w1=2w2} =

∑

w(h1+2h2)≤N/2
w∈N,h1,
h2∈N/2

8w2 (2w − 2)2

2

Remark that since we want only the term of higher order in N we just need to

take the term of higher order in wi, so we can replace (2w−2)2

2 by (2w)2

2 = 2w2. In
general the asymptotic for such sums is given by Lemma 3.7 of [AEZ2]. For this

particular case, it is given by Lemma 9, and we obtain N5

10 (32ζ(4)− 33ζ(5)).
This approach is somehow limited because we need to known all the ribbon

graphs of a certain type and the number of these ribbon graphs increases fast as
the dimension of the stratum grows. So we apply this method to strata of complex
dimension d ≤ 5, using the complete description of ribbon graphs with at most 5
edges given in [JV]: recall that a zero of order di corresponds in the ribbon graph
to a vertex with di +2 adjacent edges, so the maximal number of edges of a ribbon
graph in a strata Q(d1, . . . , dn) is

∑n
i=1 di

2
= 2g − 2 + n = dimC Q(d1, . . . , dn).

In genus 0, Athreya, Eskin and Zorich were able to compute the volumes of all
strata of type Q(1K ,−1K+4) with this method because they used a formula which
gives directly the number of ways the cylinders of widths wi can be glued at a
vertex j of a tree T . This formula was deduced from a formula of M. Kontsevich
by a recurrence on the number of poles. The formula of Kontsevich works also for
higher genus, but for distinct widths wi, and since cylinders can form some loops
in the surface, it is not obvious to get a general formula for the higher genus case,
even for the strata Q(1k,−1l).

Convention 4. In the following we write the half-integers in lower case and the
integers in capitals.

9. First example: Q(5,−1)

For this stratum, the Siegel–Veech constant carea(Q(5,−1)) is known, cf Theo-
rem 9.1. in [CM]. We compute the volume of this stratum following the method
described in section 8. We evaluate also all combinatorial parameters appearing in
(1), and so we check formula (1) in this case.

9.1. Volume of Q(5,−1). We use here the method described in § 8 to compute
by hands the volume of Q(5,−1). In this case, there are only two possible graphs
T , and for each graph, only two possible layers. This gives four configurations

(note that here we do not speak about configurations of ĥomologous cylinders, but
about configurations of horizontal cylinders for integer surfaces in the stratum).
The computations of the asymptotics are detailed in the appendix C.
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0

w1 w2

l2 l4

l3
l1

Figure 21. Configuration 1

• Configuration 1:

Convention 2 implies that all parameters wi, hi, ti, li are half-integers.
The possible lengths of the waist curves of the cylinders are l3, l4, l2 + 2l1
and l2 + l3 + l4. Since l2 + l3 + l4 > l3 and l2 + l3 + l4 > l4 we should have
l3 = l4 and l2 + 2l1 = l2 + 2l3:

{

w1 = l3 = l4

w2 = l2 + 2l1 = l2 + 2l3

There is one way to find such (l1, l2, l3, l4), if 2w1 < w2. The contribution
to the counting for this configuration is:
∑

(w1h1+w2h2)≤N/2

4w1w2(1{2w1<w2}) =
∑

(W1H1+W2H2)≤2N

W1W2(1{2W1<W2})

• Configuration 2:

0

w1 w2

l2
l3

l4
l1

Figure 22. Configuration 2

All parameters are half-integers. The possible lengths for the waist
curves of the cylinders are l4, l3 + l4 , l2 + l3 and l2 +2l1. Since l3 + l4 > l4
and the situation {

l4 = l2 + 2l1

l3 + l4 = l2 + l3

is impossible, the only remaining case is:
{

w1 = l4 = l2 + l3

w2 = l3 + l4 = l2 + 2l1
.

This implies that l3 = l1 and there is only one way to find such li, but only
if w1 < w2 < 2w1. The contribution to the counting is:
∑

(w1h1+w2h2)≤N/2

4w1w2(1{w1<w2<2w1}) =
∑

(W1H1+W2H2)≤2N

W1W2(1{W1<W2<2W1})
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Summing the contributions of the 2 first configurations gives:
∑

(W ·H)≤2N

W1W2(1{2W1<W2} + 1{W1<W2<2W1}) =
∑

W.H≤2N

W1W21{W1<W2}

∼ 1

2

(2N)4

4!
(ζ(2))2 =

N4(ζ(2))2

3

• Configuration 3:

1

w

l3

l2

l1

l4

Figure 23. Configuration 3

All parameters are half-integers. The two lengths are 2l1 + 2l2 + l3 and
l3+2l4 so we should have l4 = l2+ l1 in order that the two are equal. Then
we search the number of (l1, l2, l3) such that w = l3 + 2(l1 + l2). It is a

polynomial of w with leading term
1

4

(2w)2

2
=

w2

2
.

The contribution to the counting is:

∑

wh≤N/2

2
w3

2
=

∑

WH≤2N

(
W

2

)3

∼ 1

8

(2N)4

4
ζ(4) =

ζ(4)

2

• Configuration 4:

1

w

l3

l1

l4

l2

Figure 24. Configuration 4

All parameters are half integers. The lengths for the waist curves are
2l1 + l2 + l3 and 2l4 + l2 + l3, so we have l1 = l4. The number of solutions

of w = 2l1 + l2 + l3 is approximately
1

2

(2w)2

2
= w2.

The contribution to the counting for this configuration:

∑

wh≤N/2

2w3 =
∑

WH≤2N

2

(
W

2

)3

= 2
1

8

(2N)4

4
ζ(4) = ζ(4).
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• Total:
The sum of the 4 contributions is:

N4

(

(ζ(2))2

3
+

3

2
ζ(4)

)

=
7π4N4

2 · 33 · 5
We obtain:

VolQ(5,−1) = dimR Q(5,−1)
7

2 · 33 · 5π
4 =

22 · 7
33 · 5π

4

9.2. Siegel–Veech constant. For this strata, the value of the Siegel-Veech con-
stant is known:

careaQ(5,−1) =
15

7π2
.

There is only one configuration C containing cylinders, cf Figure 25. To understand
how to read the graph corresponding to the configuration, see § 2.3.

0
0

00

1

1

H(0)

Figure 25. The only configuration of Q(5,−1) containing cylin-
ders, and its topological picture

For this configuration, we take the family of curves as in § 3.2.2, cf Figure 26.
We evaluate the combinatorial constants that appear in (17).

Figure 26. Family of curves associated to the configuration

First we can see that all cycles in the family {γ, δ} are not homologous to zero
in H1(S, {Pi},Z). Thus Mc = 42.

There is only one thin cylinder so Mt = 1.
The surgery applied to the marked point on the torus belonging to the principal

boundary stratum H(0) is of type +4.1a (local construction). There are 2 geodesics
rays coming from this point. But choosing either of the geodesic rays do not change
the configuration because the involution of the torus exchanges these two rays, so
Ms =

2
|Γ| = 1.

We have the following combinatorial data:

• dimC H(0) = 2,
• dimC Q(5,−1) = 4,

• VolH1(0) =
π2

3 ,
• q1 = 1, q2 = 0.



SIEGEL–VEECH CONSTANTS 51

Applying formula (17) we get :

carea(C) = 42
4

25
(2 − 1)!22π2/3

(4− 1)! VolQ(5,−1)
.

So:

carea(C) =
22π2

32VolQ1(5,−1)

The value of the volume computed in the previous section is VolQ1(5,−1) =
22 · 7
33 · 5π

4, it gives:

carea(C) =
15

7π2
,

which coincides with value of Theorem 9.1. in [CM].

10. Second example Q(3,−13)

This stratum is also non-varying so the Siegel–Veech constant for the entire
stratum is known (cf [CM]), and it is of complex dimension 4, which allows a
computation of the volumes by counting graphs.

10.1. Volume. As previously we compute the volume of this stratum using the
method described in § 8.

• Configuration 1

0

w l1

l3
l2

l4

Figure 27. Configuration 1

All parameters are half-integers. The constraints are given by: w =

l3 +2l4 = l3 +2l1 +2l2. There are ∼ 1
4
(2w)2

2 = w2

2 choices for the li. There
are 6 ways to give name to the poles. The contribution to the counting is

6
∑

w.h≤N/2

2w
w2

2
= 6

∑

WH≤2N

(
W

2

)3

∼ 3

4

(2N)4

4
ζ(4) = 3ζ(4)

• Configuration 2

0

0

w1

w2

l3
l4

l2

l1

Figure 28. Configuration 2
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The parameter w1 = W1 is an integer and all remaining parameters are
half-integers. Note that here there are 3 ways to give names to the poles.
The equations

{

w2 = l2 = l3

W1 = 2l1 + l2 + l3 = 2l4

have one solution if W1 > 2w2.
The contribution of this configuration is:

3
∑

W1h1+w2h2≤N/2

2w12w21{W1>2w2} = 6
∑

2W1H1+W2H2≤2N

W1W21{W1>W2}

• Configuration 3

0

0

w1

w2

l1
l4

l3

l2

Figure 29. Configuration 3

The parameter w1 = W1 is an integer and all remaining parameters are
half-integers. Note that here there are 3 ways to give names to the poles.

Two ribbon graphs are possible for the second layer:
1

22 1
2

2

For the first ribbon graph, the equations
{

W1 = 2l4 = l1 + l2

w2 = l1 = l2 + 2l3

have one solution if w2 < W1 < 2w2.
For the second ribbon graph, the equations

{

W1 = 2l4 = l1

w2 = l2 + 2l3 = l2 + l1

have one solution if W1 < w2.
The total number of solutions is then:

1{w2<W1<2w2} + 1{W1<w2} = 1{W1<2w2} − 1{W1=w2}
︸ ︷︷ ︸

negligible

This gives a contribution:

3
∑

W1h1+w2h2≤N/2

2w12w21{W1<2w2} = 6
∑

2W1H1+W2H2≤2N

W1W21{W1<W2}

Summing the contributions of configurations 2 and 3 we get:

6
∑

2W1H1+W2H2≤2N

W1W2 =
1

4
6

∑

W ·H≤2N

W1W2 ∼ 3

2

(2N)4

4!
(ζ(2))2 =

5N4

2
ζ(4)
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• Configuration 4

1

0

w

l4

l3

l1

l2

Figure 30. Configuration 4

The parameter w = W is an integer and all remaining parameters are
half-integers. Note that here also there are 3 ways to give name to the
poles.

The constraints are:

W = 2l4 = 2(l1 + l2 + l3)

So there are ∼ W 2

2 ways to choose (l1, . . . , l4).
The contribution of this configuration is:

3
∑

W.h≤N/2

2W
W 2

2
= 3

∑

WH≤N

W 3 ∼ 3N4

4
ζ(4)

• The sum of all contributions is 25N4

4 ζ(4) so it gives

Volcomp Q(3,−13) = 50ζ(4) =
5π4

9

10.2. Siegel–Veech constant. The stratumQ(3,−13) is non-varying, so the value
of the sum of the Lyapunov exponents λ+ of the invariant subbundle H1

+ of the

Hodge bundle over the stratum along the Teichmüller flow is given in [CM]: L+ = 2
5 .

By the Eskin-Kontsevich-Zorich formula ([EKZ]) we obtain

carea(Q(3,−13)) =
9

5π2
.

There are two configurations for this stratum.

(1) Configuration C1:

0 1
0

0

{−13}
Q(−14)

Figure 31. Configuration C1 ofQ(3,−1,−1,−1) containing cylin-
ders, and its topological picture

The combinatorial data for this configuration are:
• Mc = 42, Ms = 1, Mt = 1
• q1 = 1, q2 = 0
• dimC Q(3,−13) = 4
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• dimC Q(−14) = 2.
• VolQ1(−14) = 2π2 ([AEZ1])
Applying formulae of Theorem 1 gives:

carea(C1) =
2π2

3VolQ1(3,−13)

There is only one configuration of type C1.
(2) Configuration C2:

0
0

1

1 0

0

H(0)

Figure 32. Configuration C2 ofQ(3,−1,−1,−1) containing cylin-
ders, and its topological picture

The combinatorial data are:
• Mc = 42, Ms =

2
2 (hyperelliptic involution), Mt = 1.

• q1 = 0, q2 = 1
• dimC H(0) = 2.

• VolH1/2(0) =
4π2

3
Applying formulae of Theorem 1 gives:

carea(C) =
π2

9VolQ1(3,−13)

Due to the numbering of the poles there are 3 configurations of type C2.
Substituting the computed value of the volume and summing on all configura-

tions we find

care(Q(3,−13)) = carea(C1) + 3carea(C2) =
6

5π2
+ 3 · 1

5π2
=

9

5π2

which is coherent with the formula of Theorem 8.1. in [CM].

Appendix A. Summary

In the following tabular we gather the data about the strata studied in this paper.
We denote L+ (resp. L−) the sum of the Lyapunov exponents λ+ (resp. λ−) of
the invariant subbundle H1

+ (resp. H1
−) of the Hodge bundle over the stratum

Q(d1, . . . , dn) along the Teichmüller flow.
Denoting

K =
1

24

n∑

j1

dj(dj + 4)

dj + 2
and I =

1

4

∑

dj odd

1

dj + 2
,

Theorem 2 of [EKZ] gives

L+ = K +
π2

3
carea(Q(α))

L− − L+ = I.
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So carea is given by the formula

carea(Q(d1, . . . , dn)) =
3

π2
(L+ −K) =

3

π2
(L− − I −K).

We denote also geff = ĝ − g where ĝ is the genus of the double cover surface Ŝ for

S ∈ Q(α). Recall that H1
−(Ŝ) has dimension 2geff . In comparison to the Abelian

case we expect that the values of the volumes of the strata of quadratic differen-
tials are given by rπ2geff with r ∈ Q. This is true for the examples cited below.

strata g geff dimC K I L+ L− carea boundary comp. hyp Vol

Q(2,−12) 1 1 3 −1

8

1

2

1

2
1

15

8π2
∅ Q(0,−14)

4

3
π2

Q(12,−12) 1 2 4 −1

9

2

3

2

3

4

3

7

3π2
H(0),Q(−14) Q(1,−15)

1

3
π4

Q(2, 2) 2 1 4
1

4
0 1 1

9

4π2
∅ Q(−14, 02)

4

3
π2

Q(2, 12) 2 2 5
19

72

1

6

7

6

4

3

65

24π2
Q(2,−12),H(0) Q(1,−15, 0)

2

15
π4

Q(14) 2 3 6
5

18

1

3

4

3

5

3

19

6π2
Q(12,−12),H(0) Q(12,−16)

1

15
π6

Q(5,−1) 2 2 4
1

7

2

7

6

7

9

7

15

7π2
H(0) no

28

135
π4

Q(3,−13) 1 2 4 −1

5

1

5

2

5

6

5

9

5π2
Q(−14),H(0) no

5

9
π4

Appendix B. Alternative computations of volumes

Here we use the method of § 8 and the lemmas of appendix C to compute some
volumes of hyperelliptic strata already computed in § 6. This allows us to check
one more time that our choices of normalization for the volumes are consistent.

B.1. Q(2,−12).

• Configuration 1:

0

w
l3

l1 l2

Figure 33. Configuration 1

All parameters are half-integers. We have w = 2l1 + l3 = 2l2 + l3, which

has ≃ 2w

2
= w solutions. The contribution is therefore:

∑

wh≤N/2

2w2 =
∑

WH≤2N

W 2

2
∼ 1

2

(2N)3

3
ζ(3) =

4N3

3
ζ(3)
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• Configuration 2:

0

2w

w

0

ll

l

Figure 34. Configuration 2

All parameters are half-integers. Equation w = l has 1 solution. We
have an additional factor 1

ot
= 1

2 which comes from the definition of the

twist (cf § 3.3.1). By Lemma 9 we obtain the following contribution:

1

2

∑

w(2h1+h2)≤N/2

2w(4w) =
∑

W (2H1+H2)≤2N

W 2 ∼ N3

6
(8ζ(2)− 9ζ(3))

• Configuration 3:

0

1

w

l1

l1 + l2

l2

Figure 35. Configuration 3

w = W is an integer and l1, l2, h, t are half-integers. Equation W =
2(l1 + l2) has approximately W solutions. There is an additional factor 1

2

for the twist, and another factor 1
2 because (l2, l1) and (l1, l2) give the same

surfaces. The contribution of this configuration is then:

1

4

∑

Wh≤N/2

2W ·W =
1

2

∑

WH≤N

W 2 ∼ N3

6
ζ(3)

Summing all the contributions we get
4N3

3
ζ(2) so by (42), we obtain:

V olQ(2,−12) = 8ζ(2) =
4π2

3
,

which coincides with the value found in (26).

B.2. Q(12,−12).

• Configuration 1:
w = W is an integer and all remaining parameters are half-integers.

Equation W = 2(l1 + l2 + l3) = 2l4 has approximatively
W 2

2
solutions.
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0

1

w
l3

l1
l2

l4

Figure 36. Configuration 1

Here ot = 3 so we have an extra factor 1
3 . So the contribution of this

configuration is:

1

3

∑

Wh≤N/2

2W · W
2

2
=

1

3

∑

WH≤N

W 3 ∼ N4

12
ζ(4)

• Configuration 2:

0

w

l3

l1

l2

l4

Figure 37. Configuration 2

All parameters are half-integers. Equation w = 2l1+ l2+ l3 = 2l4+ l2+ l3

has ∼ 1

2

(2w)2

2
= w2 solutions. There are 2 ways to give name to the zeroes.

Therefore the contribution of this configuration is:

2
∑

wh≤N/2

2w · w2 = 2
∑

WH≤2N

W

(

W

2

)2

∼ 1

2

(2N)4

4
ζ(4) = 2N4ζ(4)

• Configuration 3:

0

0

w2w1

l1

l1
l2

l2

Figure 38. Configuration 3

All parameters are half-integers. There are two ways to give name to
the zeroes. There are 2 ways to numbered the faces of the ribbon graphs:
the first gives:

{

w1 = l1

w2 = l1 + 2l2

so there is 1{w1<w2}1{w2−w1∈N} solution. The second intertwines w1 and
w2, but w1 and w2 play symmetric roles in the graph T . We get the
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following contribution:

2
∑

w·h≤N/2

2w12w21{w1<w2}1{w2−w1∈N} =
1

2

∑

W ·H≤2N

W1W2 ∼ (2N)4

4!
(ζ(2))2 =

5N4

6
ζ(4)

• Configuration 4:

0

w1

w2

0

l3

l2

l4

l1

Figure 39. Configuration 4

w1 = W1 is an integer and all remaining parameters are half-integers.
There is 1 = 1

3

(
3
1

)
way to give name to the faces, say
{

W1 = 2l4 = l1 + l3

w2 = l1 + l2 = l2 + l3
.

So there is 1{2w2>W1} solution.
• Configuration 5:

0

w1

w2

0 l1l1

l4

l2

Figure 40. Configuration 5

w1 = W1 is an integer and all remaining parameters are half-integers.
There is 1 = 1

3

(
3
1

)
way to give name to the faces, say
{

W1 = 2l4 = 2(l2 + l1)

w2 = l1
.

So there is 1{2w2<W1} solution.
Summing the contributions of configurations 4 and 5 we obtain:

∑

W1h1+w2h2≤N/2

2W12w2 =
∑

2W1H1+W2H2≤2N

2W1W2 ∼ 2
1

4

(2N)4

4!
(ζ(2))2 =

5N4

6
ζ(4)

(To understand the factor 1/4, take x1 = 2W1H1

2N in the proof of Lemma 3.7
of [AEZ2]).
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• Total Summing all the contributions, we obtain
15N4

4
ζ(4). So by (42):

VolQ(12,−12) = 30ζ(4) =
π4

3
,

which coincides with the value found in (25).

Appendix C. Toolbox

Recall that

ζ(2) =
π2

6
, ζ(4) =

π4

90
so (ζ(2))2 =

5

2
ζ(4).

Lemma 7.

∀m ≥ 2,
∑

k≥0

1

(2k + 1)m
=

2m − 1

2m
ζ(m)(43)

∀m ≥ 1,

N∑

i=1

im ∼
N→∞

Nm+1

m+ 1
(44)

∀m ≥ 1, card{(l1, . . . , lm) ∈ Nm|N = 2l1 + · · ·+ 2lj + lj+1 + · · ·+ lm}

∼
N→∞

Nm−1

2j(m− 1)!
(45)

We recall the following standard fact (Lemma 3.7 of [AEZ2]):

Lemma 8 (Athreya-Eskin-Zorich).

∑

H·W≤N

W∈N
k,W∈N

k

W a1+1
1 . . .W ak+1

k ∼ Na+2k

(a+ 2k)!
·

k∏

i=1

(ai + 1)ζ(ai + 2)

We will need the following variation of the previous lemma:

Lemma 9.
∑

W (H1+2H2)≤2N

Wm ∼ Nm+1

2(m+ 1)

(
2m+1ζ(m)− (2m+1 + 1)ζ(m+ 1)

)
(46)

Proof.

A =
∑

W (H1+2H2)≤2N

Wm =
∑

WH≤2N

Wm card{(H1, H2) ∈ N2 s.t. H = H1 + 2H2}

Since 2H2 is even and goes from 2 to H − 1 or H − 2 depending on the parity of
H , we have :

card{(H1, H2) s.t. H = H1 + 2H2} = ⌊H − 1

2
⌋.

A ∼
∑

WH≤2N

Wm⌊H − 1

2
⌋ =

∑

W (2K+1)≤2N

WmK +
∑

W (2K+2)≤2N

WmK

∼
∑

K≥1

K

(

1

m+ 1

(
2N

2K + 1

)m+1

+
1

m+ 1

(
2N

2K + 2

)m+1
)

using (44). So
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A =
Nm+1

m+ 1










2m+1
∑

K≥0

K

(2K + 1)m+1

︸ ︷︷ ︸

S1(m)

+
∑

K≥0

K

(K + 1)m+1

︸ ︷︷ ︸

S2(m)










2S1(m) +
∑

K≥0

1

(2K + 1)m+1
=
∑

K≥0

1

(2K + 1)m

So using (43) we obtain:

S1(m) =
1

2m+2
((2m+1 − 2)ζ(m) − (2m+1 − 1)ζ(m+ 1))

Similarly,

S2(m) = ζ(m) − ζ(m+ 1),

which gives the result.
�

References

[AEZ1] J.S. Athreya, A. Eskin, A. Zorich, Right-Angled Billiards and Volumes of Moduli Spaces

of Quadratic Differentials on CP 1, arXiv:1212.1660.
[AEZ2] J.S. Athreya, A. Eskin, A. Zorich, Counting Generalized Jenkins-Strebel Differentials,
Geom. Dedicata, 170 (2014), pp. 195–217.

[Ba1] M. Bainbridge, Euler Characteristics of Teichmüller Curves in Genus Two, Geom. Topol.,
11 (2007), 1887–2073.

[Ba2] M. Bainbridge, Billiards in L-shaped tables with barriers, GAFA, 20 no. 2 (2010), 299–356;
20 no. 5 (2010), 1306.

[Bo] C. Boissy Configurations of saddle connections of quadratic differentials on CP1 and on

hyperelliptic Riemann surfaces,Comment. Math. Helv., 84:4 (2009), pp. 757–791
[BG] M. Bauer, E. Goujard, Geometry of periodic regions on flat surfaces and associated Siegel–

Veech constants, arXiv:1405.4748.
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